gpt-oss-20b-Fast / modeling_gpt_oss.py
Jackmin108's picture
init
4940163
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gpt_oss/modular_gpt_oss.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gpt_oss.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
from torch import nn
from torch.nn import functional as F
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations.hub_kernels import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_layers import (
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.deprecation import deprecate_kwarg
from transformers.utils.generic import OutputRecorder, check_model_inputs
from .configuration_gpt_oss import GptOssConfig
@use_kernel_forward_from_hub("RMSNorm")
class GptOssRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
GptOssRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype) # main diff with Llama
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class GptOssExperts(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_size = config.intermediate_size
self.num_experts = config.num_local_experts
self.hidden_size = config.hidden_size
self.expert_dim = self.intermediate_size
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
self.gate_up_proj_bias = nn.Parameter(torch.empty(self.num_experts, 2 * self.expert_dim))
self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
self.down_proj_bias = nn.Parameter(torch.empty(self.num_experts, self.hidden_size))
self.alpha = 1.702
self.limit = 7.0
def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor:
"""
When training it is more efficient to just loop over the experts and compute the output for each expert
as otherwise the memory would explode.
For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs.
Args:
hidden_states (torch.Tensor): (batch_size, seq_len, hidden_size)
selected_experts (torch.Tensor): (batch_size * token_num, top_k)
routing_weights (torch.Tensor): (batch_size * token_num, num_experts)
Returns:
torch.Tensor
"""
batch_size = hidden_states.shape[0]
hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size)
num_experts = routing_weights.shape[1]
if hidden_states.device.type == "cpu" or self.training:
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
with torch.no_grad():
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts)
expert_mask = expert_mask.permute(2, 1, 0)
# we sum on the top_k and on the sequence length to get which experts
# are hit this time around
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hit[:]:
# expert_idx only have 1 element, so we can use scale for fast indexing
expert_idx = expert_idx[0]
with torch.no_grad():
_, token_idx = torch.where(expert_mask[expert_idx])
current_state = hidden_states[token_idx]
gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx]
gate, up = gate_up[..., ::2], gate_up[..., 1::2]
gate = gate.clamp(min=None, max=self.limit)
up = up.clamp(min=-self.limit, max=self.limit)
glu = gate * torch.sigmoid(gate * self.alpha)
gated_output = (up + 1) * glu
out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx]
weighted_output = out * routing_weights[token_idx, expert_idx, None]
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
next_states = next_states.view(batch_size, -1, self.hidden_size)
else:
hidden_states = hidden_states.repeat(num_experts, 1)
hidden_states = hidden_states.view(num_experts, -1, self.hidden_size)
gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :]
gate, up = gate_up[..., ::2], gate_up[..., 1::2]
gate = gate.clamp(min=None, max=self.limit)
up = up.clamp(min=-self.limit, max=self.limit)
glu = gate * torch.sigmoid(gate * self.alpha)
next_states = torch.bmm(((up + 1) * glu), self.down_proj)
next_states = next_states + self.down_proj_bias[..., None, :]
next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size)
next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None]
next_states = next_states.sum(dim=0)
return next_states
class GptOssTopKRouter(nn.Module):
def __init__(self, config):
super().__init__()
self.top_k = config.num_experts_per_tok
self.num_experts = config.num_local_experts
self.hidden_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim))
self.bias = nn.Parameter(torch.empty(self.num_experts))
def forward(self, hidden_states):
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
router_logits = F.linear(hidden_states, self.weight, self.bias) # (seq_len, num_experts)
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k)
router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype)
router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value)
return router_scores, router_indices
@use_kernel_forward_from_hub("MegaBlocksMoeMLP")
class GptOssMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.router = GptOssTopKRouter(config)
self.experts = GptOssExperts(config)
def forward(self, hidden_states):
router_scores, router_indices = self.router(hidden_states) # (num_experts, seq_len)
routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores)
return routed_out, router_scores
class GptOssRotaryEmbedding(nn.Module):
inv_freq: torch.Tensor # fix linting for `register_buffer`
def __init__(self, config: GptOssConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = freqs
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(x.dtype), sin.to(x.dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def _apply_rotary_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
first_half, second_half = torch.chunk(x, 2, dim=-1)
first_ = first_half * cos - second_half * sin
second_ = second_half * cos + first_half * sin
return torch.cat((first_, second_), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = _apply_rotary_emb(q, cos, sin)
k_embed = _apply_rotary_emb(k, cos, sin)
return q_embed, k_embed
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1)
combined_logits = torch.cat([attn_weights, sinks], dim=-1)
# This was not in the original implementation and slightly affect results; it prevents overflow in BF16/FP16
# when training with bsz>1 we clamp max values.
combined_logits = combined_logits - combined_logits.max(dim=-1, keepdim=True).values
probs = F.softmax(combined_logits, dim=-1, dtype=combined_logits.dtype)
scores = probs[..., :-1] # we drop the sink here
attn_weights = nn.functional.dropout(scores, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class GptOssAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GptOssConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
self.sinks = nn.Parameter(torch.empty(config.num_attention_heads))
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_values is not None:
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
s_aux=self.sinks, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GptOssDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: GptOssConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GptOssAttention(config=config, layer_idx=layer_idx)
self.mlp = GptOssMLP(config)
self.input_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, _ = self.mlp(hidden_states) # diff with llama: router scores
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class GptOssPreTrainedModel(PreTrainedModel):
config: GptOssConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GptOssDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = False
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"router_logits": OutputRecorder(GptOssTopKRouter, index=0),
"hidden_states": GptOssDecoderLayer,
"attentions": GptOssAttention,
}
_keep_in_fp32_modules = ["post_attention_layernorm", "input_layernorm", "norm"]
_supports_flash_attention = False
_supports_flex_attention = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Parameter):
module.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GptOssRMSNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, GptOssExperts):
module.gate_up_proj.data.normal_(mean=0.0, std=std)
module.gate_up_proj_bias.data.zero_()
module.down_proj.data.normal_(mean=0.0, std=std)
module.down_proj_bias.data.zero_()
elif isinstance(module, GptOssAttention):
module.sinks.data.normal_(mean=0.0, std=std)
elif isinstance(module, GptOssTopKRouter):
module.weight.data.normal_(mean=0.0, std=std)
module.bias.data.normal_(mean=0.0, std=std)
@auto_docstring
class GptOssModel(GptOssPreTrainedModel):
_no_split_modules = ["GptOssDecoderLayer"]
def __init__(self, config: GptOssConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GptOssDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = GptOssRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = DynamicCache(config=self.config)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
}
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
}
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
@auto_docstring
class GptOssForCausalLM(GptOssPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = GptOssModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> MoeCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, GptOssForCausalLM
>>> model = GptOssForCausalLM.from_pretrained("mistralai/GptOss-8x7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/GptOss-8x7B-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_router_logits=output_router_logits,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
class GptOssForSequenceClassification(GenericForSequenceClassification, GptOssPreTrainedModel):
pass
class GptOssForTokenClassification(GenericForTokenClassification, GptOssPreTrainedModel):
pass
__all__ = [
"GptOssForCausalLM",
"GptOssForSequenceClassification",
"GptOssForTokenClassification",
"GptOssModel",
"GptOssPreTrainedModel",
]