lbourdois commited on
Commit
083eca2
·
verified ·
1 Parent(s): 009c750

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +77 -63
README.md CHANGED
@@ -1,64 +1,78 @@
1
- ---
2
- base_model:
3
- - Qwen/Qwen2.5-1.5B-Instruct
4
- - Qwen/Qwen2.5-1.5B
5
- tags:
6
- - merge
7
- - mergekit
8
- - lazymergekit
9
- - Qwen/Qwen2.5-1.5B-Instruct
10
- - Qwen/Qwen2.5-1.5B
11
- license: apache-2.0
12
- ---
13
-
14
- # ECE-1B-merge-PRYMMAL
15
-
16
- ECE-1B-merge-PRYMMAL is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
17
- * [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
18
- * [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B)
19
-
20
- ## 🧩 Configuration
21
-
22
- ```yaml
23
- slices:
24
- - sources:
25
- - model: Qwen/Qwen2.5-1.5B-Instruct
26
- layer_range: [0, 28]
27
- - model: Qwen/Qwen2.5-1.5B
28
- layer_range: [0, 28]
29
- merge_method: slerp
30
- base_model: Qwen/Qwen2.5-1.5B-Instruct
31
- parameters:
32
- t:
33
- - filter: self_attn
34
- value: [0, 0.5, 0.3, 0.7, 1]
35
- - filter: mlp
36
- value: [1, 0.5, 0.7, 0.3, 0]
37
- - value: 0.5
38
- dtype: bfloat16
39
- ```
40
-
41
- ## 💻 Usage
42
-
43
- ```python
44
- !pip install -qU transformers accelerate
45
-
46
- from transformers import AutoTokenizer
47
- import transformers
48
- import torch
49
-
50
- model = "LilRg/ECE-1B-merge-PRYMMAL"
51
- messages = [{"role": "user", "content": "What is a large language model?"}]
52
-
53
- tokenizer = AutoTokenizer.from_pretrained(model)
54
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
55
- pipeline = transformers.pipeline(
56
- "text-generation",
57
- model=model,
58
- torch_dtype=torch.float16,
59
- device_map="auto",
60
- )
61
-
62
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
63
- print(outputs[0]["generated_text"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ```
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-1.5B-Instruct
4
+ - Qwen/Qwen2.5-1.5B
5
+ tags:
6
+ - merge
7
+ - mergekit
8
+ - lazymergekit
9
+ - Qwen/Qwen2.5-1.5B-Instruct
10
+ - Qwen/Qwen2.5-1.5B
11
+ license: apache-2.0
12
+ language:
13
+ - zho
14
+ - eng
15
+ - fra
16
+ - spa
17
+ - por
18
+ - deu
19
+ - ita
20
+ - rus
21
+ - jpn
22
+ - kor
23
+ - vie
24
+ - tha
25
+ - ara
26
+ ---
27
+
28
+ # ECE-1B-merge-PRYMMAL
29
+
30
+ ECE-1B-merge-PRYMMAL is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
31
+ * [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
32
+ * [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B)
33
+
34
+ ## 🧩 Configuration
35
+
36
+ ```yaml
37
+ slices:
38
+ - sources:
39
+ - model: Qwen/Qwen2.5-1.5B-Instruct
40
+ layer_range: [0, 28]
41
+ - model: Qwen/Qwen2.5-1.5B
42
+ layer_range: [0, 28]
43
+ merge_method: slerp
44
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
45
+ parameters:
46
+ t:
47
+ - filter: self_attn
48
+ value: [0, 0.5, 0.3, 0.7, 1]
49
+ - filter: mlp
50
+ value: [1, 0.5, 0.7, 0.3, 0]
51
+ - value: 0.5
52
+ dtype: bfloat16
53
+ ```
54
+
55
+ ## 💻 Usage
56
+
57
+ ```python
58
+ !pip install -qU transformers accelerate
59
+
60
+ from transformers import AutoTokenizer
61
+ import transformers
62
+ import torch
63
+
64
+ model = "LilRg/ECE-1B-merge-PRYMMAL"
65
+ messages = [{"role": "user", "content": "What is a large language model?"}]
66
+
67
+ tokenizer = AutoTokenizer.from_pretrained(model)
68
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
69
+ pipeline = transformers.pipeline(
70
+ "text-generation",
71
+ model=model,
72
+ torch_dtype=torch.float16,
73
+ device_map="auto",
74
+ )
75
+
76
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
77
+ print(outputs[0]["generated_text"])
78
  ```