Upload folder using huggingface_hub
Browse files- added_tokens.json +40 -0
- config.json +207 -0
- configuration_navil_chat.py +101 -0
- configuration_navil_vit.py +126 -0
- configuration_qwen3.py +399 -0
- constants.py +31 -0
- conversation.py +460 -0
- generation_config.json +4 -0
- image_processing_qwen2_vl.py +510 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_navil_chat.py +582 -0
- modeling_navil_vit_anyres.py +349 -0
- modeling_qwen3_ve.py +1629 -0
- modular_intern_vit.py +279 -0
- special_tokens_map.json +115 -0
- tokenizer_config.json +349 -0
- vocab.json +0 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</box>": 151669,
|
| 3 |
+
"</img>": 151672,
|
| 4 |
+
"</quad>": 151674,
|
| 5 |
+
"</ref>": 151676,
|
| 6 |
+
"</think>": 151668,
|
| 7 |
+
"</tool_call>": 151658,
|
| 8 |
+
"</tool_response>": 151666,
|
| 9 |
+
"<IMG_CONTEXT>": 151671,
|
| 10 |
+
"<IMG_FRAME_BREAK>": 151680,
|
| 11 |
+
"<IMG_LINE_BREAK>": 151679,
|
| 12 |
+
"<box>": 151670,
|
| 13 |
+
"<img>": 151673,
|
| 14 |
+
"<img_uncond>": 151678,
|
| 15 |
+
"<quad>": 151675,
|
| 16 |
+
"<ref>": 151677,
|
| 17 |
+
"<think>": 151667,
|
| 18 |
+
"<tool_call>": 151657,
|
| 19 |
+
"<tool_response>": 151665,
|
| 20 |
+
"<|box_end|>": 151649,
|
| 21 |
+
"<|box_start|>": 151648,
|
| 22 |
+
"<|endoftext|>": 151643,
|
| 23 |
+
"<|file_sep|>": 151664,
|
| 24 |
+
"<|fim_middle|>": 151660,
|
| 25 |
+
"<|fim_pad|>": 151662,
|
| 26 |
+
"<|fim_prefix|>": 151659,
|
| 27 |
+
"<|fim_suffix|>": 151661,
|
| 28 |
+
"<|im_end|>": 151645,
|
| 29 |
+
"<|im_start|>": 151644,
|
| 30 |
+
"<|image_pad|>": 151655,
|
| 31 |
+
"<|object_ref_end|>": 151647,
|
| 32 |
+
"<|object_ref_start|>": 151646,
|
| 33 |
+
"<|quad_end|>": 151651,
|
| 34 |
+
"<|quad_start|>": 151650,
|
| 35 |
+
"<|repo_name|>": 151663,
|
| 36 |
+
"<|video_pad|>": 151656,
|
| 37 |
+
"<|vision_end|>": 151653,
|
| 38 |
+
"<|vision_pad|>": 151654,
|
| 39 |
+
"<|vision_start|>": 151652
|
| 40 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"anyres_image_size": true,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"NaViL"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_navil_chat.NaViLChatConfig",
|
| 9 |
+
"AutoModel": "modeling_navil_chat.NaViL",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_navil_chat.NaViL"
|
| 11 |
+
},
|
| 12 |
+
"downsample_ratio": 0.5,
|
| 13 |
+
"force_image_size": 32,
|
| 14 |
+
"llm_config": {
|
| 15 |
+
"_attn_implementation_autoset": true,
|
| 16 |
+
"_name_or_path": "./pretrained/Qwen3-8B",
|
| 17 |
+
"add_cross_attention": false,
|
| 18 |
+
"architectures": [
|
| 19 |
+
"Qwen3VEForCausalLM"
|
| 20 |
+
],
|
| 21 |
+
"attention_bias": false,
|
| 22 |
+
"attention_dropout": 0.0,
|
| 23 |
+
"bad_words_ids": null,
|
| 24 |
+
"begin_suppress_tokens": null,
|
| 25 |
+
"bos_token_id": 151643,
|
| 26 |
+
"chunk_size_feed_forward": 0,
|
| 27 |
+
"cross_attention_hidden_size": null,
|
| 28 |
+
"decoder_start_token_id": null,
|
| 29 |
+
"diversity_penalty": 0.0,
|
| 30 |
+
"do_sample": false,
|
| 31 |
+
"early_stopping": false,
|
| 32 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 33 |
+
"eos_token_id": 151645,
|
| 34 |
+
"exponential_decay_length_penalty": null,
|
| 35 |
+
"finetuning_task": null,
|
| 36 |
+
"forced_bos_token_id": null,
|
| 37 |
+
"forced_eos_token_id": null,
|
| 38 |
+
"head_dim": 128,
|
| 39 |
+
"hidden_act": "silu",
|
| 40 |
+
"hidden_size": 4096,
|
| 41 |
+
"id2label": {
|
| 42 |
+
"0": "LABEL_0",
|
| 43 |
+
"1": "LABEL_1"
|
| 44 |
+
},
|
| 45 |
+
"initializer_range": 0.02,
|
| 46 |
+
"intermediate_size": 12288,
|
| 47 |
+
"is_decoder": false,
|
| 48 |
+
"is_encoder_decoder": false,
|
| 49 |
+
"label2id": {
|
| 50 |
+
"LABEL_0": 0,
|
| 51 |
+
"LABEL_1": 1
|
| 52 |
+
},
|
| 53 |
+
"length_penalty": 1.0,
|
| 54 |
+
"max_length": 20,
|
| 55 |
+
"max_position_embeddings": 40960,
|
| 56 |
+
"max_window_layers": 36,
|
| 57 |
+
"min_length": 0,
|
| 58 |
+
"model_type": "qwen3",
|
| 59 |
+
"mrope_section": [
|
| 60 |
+
16,
|
| 61 |
+
24,
|
| 62 |
+
24
|
| 63 |
+
],
|
| 64 |
+
"no_repeat_ngram_size": 0,
|
| 65 |
+
"num_attention_heads": 32,
|
| 66 |
+
"num_beam_groups": 1,
|
| 67 |
+
"num_beams": 1,
|
| 68 |
+
"num_hidden_layers": 36,
|
| 69 |
+
"num_key_value_heads": 8,
|
| 70 |
+
"num_return_sequences": 1,
|
| 71 |
+
"output_attentions": false,
|
| 72 |
+
"output_hidden_states": false,
|
| 73 |
+
"output_scores": false,
|
| 74 |
+
"pad_token_id": null,
|
| 75 |
+
"prefix": null,
|
| 76 |
+
"problem_type": null,
|
| 77 |
+
"pruned_heads": {},
|
| 78 |
+
"remove_invalid_values": false,
|
| 79 |
+
"repetition_penalty": 1.0,
|
| 80 |
+
"return_dict": true,
|
| 81 |
+
"return_dict_in_generate": false,
|
| 82 |
+
"rms_norm_eps": 1e-06,
|
| 83 |
+
"rope_scaling": null,
|
| 84 |
+
"rope_theta": 1000000,
|
| 85 |
+
"sep_token_id": null,
|
| 86 |
+
"sliding_window": null,
|
| 87 |
+
"suppress_tokens": null,
|
| 88 |
+
"task_specific_params": null,
|
| 89 |
+
"temperature": 1.0,
|
| 90 |
+
"tf_legacy_loss": false,
|
| 91 |
+
"tie_encoder_decoder": false,
|
| 92 |
+
"tie_word_embeddings": false,
|
| 93 |
+
"tokenizer_class": null,
|
| 94 |
+
"top_k": 50,
|
| 95 |
+
"top_p": 1.0,
|
| 96 |
+
"torch_dtype": "bfloat16",
|
| 97 |
+
"torchscript": false,
|
| 98 |
+
"transformers_version": "4.51.0",
|
| 99 |
+
"typical_p": 1.0,
|
| 100 |
+
"use_bfloat16": false,
|
| 101 |
+
"use_cache": false,
|
| 102 |
+
"use_mrope": false,
|
| 103 |
+
"use_sliding_window": false,
|
| 104 |
+
"vocab_size": 151681
|
| 105 |
+
},
|
| 106 |
+
"max_dynamic_patch": 24576,
|
| 107 |
+
"min_dynamic_patch": 256,
|
| 108 |
+
"model_type": "navil_chat",
|
| 109 |
+
"pad2square": false,
|
| 110 |
+
"ps_version": "v2",
|
| 111 |
+
"scale_downsample_ratio": 0.7071,
|
| 112 |
+
"select_layer": -1,
|
| 113 |
+
"template": "qwen3-chat",
|
| 114 |
+
"torch_dtype": "bfloat16",
|
| 115 |
+
"transformers_version": null,
|
| 116 |
+
"use_backbone_lora": 0,
|
| 117 |
+
"use_llm_lora": 0,
|
| 118 |
+
"vision_config": {
|
| 119 |
+
"_attn_implementation_autoset": true,
|
| 120 |
+
"_name_or_path": "",
|
| 121 |
+
"add_cross_attention": false,
|
| 122 |
+
"architectures": [
|
| 123 |
+
"NaViLVisionModelAnyRes"
|
| 124 |
+
],
|
| 125 |
+
"attention_dropout": 0.0,
|
| 126 |
+
"bad_words_ids": null,
|
| 127 |
+
"begin_suppress_tokens": null,
|
| 128 |
+
"bos_token_id": null,
|
| 129 |
+
"chunk_size_feed_forward": 0,
|
| 130 |
+
"cross_attention_hidden_size": null,
|
| 131 |
+
"decoder_start_token_id": null,
|
| 132 |
+
"diversity_penalty": 0.0,
|
| 133 |
+
"do_sample": false,
|
| 134 |
+
"downsample_ratio": 0.5,
|
| 135 |
+
"drop_path_rate": 0.0,
|
| 136 |
+
"dropout": 0.0,
|
| 137 |
+
"early_stopping": false,
|
| 138 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 139 |
+
"eos_token_id": null,
|
| 140 |
+
"exponential_decay_length_penalty": null,
|
| 141 |
+
"finetuning_task": null,
|
| 142 |
+
"forced_bos_token_id": null,
|
| 143 |
+
"forced_eos_token_id": null,
|
| 144 |
+
"fullatt_block_indexes": null,
|
| 145 |
+
"hidden_act": "gelu",
|
| 146 |
+
"hidden_size": 1792,
|
| 147 |
+
"id2label": {
|
| 148 |
+
"0": "LABEL_0",
|
| 149 |
+
"1": "LABEL_1"
|
| 150 |
+
},
|
| 151 |
+
"image_size": 32,
|
| 152 |
+
"initializer_factor": 1.0,
|
| 153 |
+
"initializer_range": 0.02,
|
| 154 |
+
"intermediate_size": 7168,
|
| 155 |
+
"is_decoder": false,
|
| 156 |
+
"is_encoder_decoder": false,
|
| 157 |
+
"label2id": {
|
| 158 |
+
"LABEL_0": 0,
|
| 159 |
+
"LABEL_1": 1
|
| 160 |
+
},
|
| 161 |
+
"layer_norm_eps": 1e-06,
|
| 162 |
+
"length_penalty": 1.0,
|
| 163 |
+
"max_length": 20,
|
| 164 |
+
"min_length": 0,
|
| 165 |
+
"model_type": "navil_vit",
|
| 166 |
+
"no_repeat_ngram_size": 0,
|
| 167 |
+
"norm_type": "layer_norm",
|
| 168 |
+
"num_attention_heads": 28,
|
| 169 |
+
"num_beam_groups": 1,
|
| 170 |
+
"num_beams": 1,
|
| 171 |
+
"num_channels": 3,
|
| 172 |
+
"num_hidden_layers": 32,
|
| 173 |
+
"num_return_sequences": 1,
|
| 174 |
+
"output_attentions": false,
|
| 175 |
+
"output_hidden_states": false,
|
| 176 |
+
"output_scores": false,
|
| 177 |
+
"pad_token_id": null,
|
| 178 |
+
"patch_size": 16,
|
| 179 |
+
"prefix": null,
|
| 180 |
+
"problem_type": null,
|
| 181 |
+
"pruned_heads": {},
|
| 182 |
+
"qk_normalization": false,
|
| 183 |
+
"qkv_bias": true,
|
| 184 |
+
"remove_invalid_values": false,
|
| 185 |
+
"repetition_penalty": 1.0,
|
| 186 |
+
"return_dict": true,
|
| 187 |
+
"return_dict_in_generate": false,
|
| 188 |
+
"sep_token_id": null,
|
| 189 |
+
"suppress_tokens": null,
|
| 190 |
+
"task_specific_params": null,
|
| 191 |
+
"temperature": 1.0,
|
| 192 |
+
"tf_legacy_loss": false,
|
| 193 |
+
"tie_encoder_decoder": false,
|
| 194 |
+
"tie_word_embeddings": true,
|
| 195 |
+
"tokenizer_class": null,
|
| 196 |
+
"top_k": 50,
|
| 197 |
+
"top_p": 1.0,
|
| 198 |
+
"torch_dtype": "bfloat16",
|
| 199 |
+
"torchscript": false,
|
| 200 |
+
"transformers_version": "4.51.0",
|
| 201 |
+
"typical_p": 1.0,
|
| 202 |
+
"use_bfloat16": true,
|
| 203 |
+
"use_flash_attn": true,
|
| 204 |
+
"vision_fullatt_block_indexes": null,
|
| 205 |
+
"window_size": 8
|
| 206 |
+
}
|
| 207 |
+
}
|
configuration_navil_chat.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# NaViL
|
| 3 |
+
# Copyright (c) 2025 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
from transformers import AutoConfig, LlamaConfig
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from .configuration_navil_vit import NaViLVisionConfig
|
| 14 |
+
|
| 15 |
+
from .configuration_qwen3 import Qwen3VEConfig
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class NaViLChatConfig(PretrainedConfig):
|
| 21 |
+
model_type = 'navil_chat'
|
| 22 |
+
is_composition = True
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
vision_config=None,
|
| 27 |
+
llm_config=None,
|
| 28 |
+
use_backbone_lora=0,
|
| 29 |
+
use_llm_lora=0,
|
| 30 |
+
pad2square=False,
|
| 31 |
+
select_layer=-1,
|
| 32 |
+
force_image_size=None,
|
| 33 |
+
downsample_ratio=0.5,
|
| 34 |
+
template=None,
|
| 35 |
+
anyres_image_size=True,
|
| 36 |
+
scale_downsample_ratio=0.7071,
|
| 37 |
+
ps_version='v1',
|
| 38 |
+
min_dynamic_patch=256,
|
| 39 |
+
max_dynamic_patch=24576,
|
| 40 |
+
**kwargs):
|
| 41 |
+
super().__init__(**kwargs)
|
| 42 |
+
|
| 43 |
+
if vision_config is None:
|
| 44 |
+
vision_config = {}
|
| 45 |
+
logger.info('vision_config is None. Initializing the NaViLVisionConfig with default values.')
|
| 46 |
+
|
| 47 |
+
if llm_config is None:
|
| 48 |
+
llm_config = {'architectures': ['InternLM2VEForCausalLM']}
|
| 49 |
+
logger.info('llm_config is None. Initializing the llm_config with default values (`InternLM2VEForCausalLM`).')
|
| 50 |
+
|
| 51 |
+
self.vision_config = NaViLVisionConfig(**vision_config)
|
| 52 |
+
self.vision_config.downsample_ratio = downsample_ratio
|
| 53 |
+
if llm_config['architectures'][0] == 'Qwen3VEForCausalLM':
|
| 54 |
+
self.llm_config = Qwen3VEConfig(**llm_config)
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
| 57 |
+
self.use_backbone_lora = use_backbone_lora
|
| 58 |
+
self.use_llm_lora = use_llm_lora
|
| 59 |
+
self.pad2square = pad2square
|
| 60 |
+
self.select_layer = select_layer
|
| 61 |
+
self.force_image_size = force_image_size
|
| 62 |
+
self.downsample_ratio = downsample_ratio
|
| 63 |
+
self.template = template
|
| 64 |
+
|
| 65 |
+
self.anyres_image_size = anyres_image_size
|
| 66 |
+
self.scale_downsample_ratio = scale_downsample_ratio
|
| 67 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 68 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 69 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 70 |
+
|
| 71 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 72 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 73 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 74 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 75 |
+
|
| 76 |
+
def to_dict(self):
|
| 77 |
+
"""
|
| 78 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 82 |
+
"""
|
| 83 |
+
output = copy.deepcopy(self.__dict__)
|
| 84 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 85 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 86 |
+
output['model_type'] = self.__class__.model_type
|
| 87 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 88 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 89 |
+
output['pad2square'] = self.pad2square
|
| 90 |
+
output['select_layer'] = self.select_layer
|
| 91 |
+
output['force_image_size'] = self.force_image_size
|
| 92 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 93 |
+
output['template'] = self.template
|
| 94 |
+
|
| 95 |
+
output['anyres_image_size'] = self.anyres_image_size
|
| 96 |
+
output['scale_downsample_ratio'] = self.scale_downsample_ratio
|
| 97 |
+
output['ps_version'] = self.ps_version
|
| 98 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 99 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 100 |
+
|
| 101 |
+
return output
|
configuration_navil_vit.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# NaViL
|
| 3 |
+
# Copyright (c) 2025 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from typing import Union
|
| 9 |
+
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class NaViLVisionConfig(PretrainedConfig):
|
| 17 |
+
r"""
|
| 18 |
+
This is the configuration class to store the configuration of a [`InternVisionModelAnyRes`]. It is used to
|
| 19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 20 |
+
|
| 21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 22 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 28 |
+
The size (resolution) of each patch.
|
| 29 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 30 |
+
The size (resolution) of each image.
|
| 31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 44 |
+
Whether to use flash attention mechanism.
|
| 45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 49 |
+
The epsilon used by the layer normalization layers.
|
| 50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 53 |
+
Dropout rate for stochastic depth.
|
| 54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 55 |
+
The dropout ratio for the attention probabilities.
|
| 56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 59 |
+
A factor for layer scale.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
model_type = 'navil_vit'
|
| 63 |
+
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
num_channels=3,
|
| 67 |
+
patch_size=14,
|
| 68 |
+
image_size=224,
|
| 69 |
+
qkv_bias=False,
|
| 70 |
+
hidden_size=3200,
|
| 71 |
+
num_attention_heads=25,
|
| 72 |
+
intermediate_size=12800,
|
| 73 |
+
qk_normalization=True,
|
| 74 |
+
num_hidden_layers=48,
|
| 75 |
+
use_flash_attn=True,
|
| 76 |
+
hidden_act='gelu',
|
| 77 |
+
norm_type='rms_norm',
|
| 78 |
+
layer_norm_eps=1e-6,
|
| 79 |
+
dropout=0.0,
|
| 80 |
+
drop_path_rate=0.0,
|
| 81 |
+
attention_dropout=0.0,
|
| 82 |
+
initializer_range=0.02,
|
| 83 |
+
initializer_factor=0.1,
|
| 84 |
+
downsample_ratio=1.0,
|
| 85 |
+
fullatt_block_indexes=None,
|
| 86 |
+
window_size=8,
|
| 87 |
+
**kwargs,
|
| 88 |
+
):
|
| 89 |
+
super().__init__(**kwargs)
|
| 90 |
+
|
| 91 |
+
self.hidden_size = hidden_size
|
| 92 |
+
self.intermediate_size = intermediate_size
|
| 93 |
+
self.dropout = dropout
|
| 94 |
+
self.drop_path_rate = drop_path_rate
|
| 95 |
+
self.num_hidden_layers = num_hidden_layers
|
| 96 |
+
self.num_attention_heads = num_attention_heads
|
| 97 |
+
self.num_channels = num_channels
|
| 98 |
+
self.patch_size = patch_size
|
| 99 |
+
self.image_size = image_size
|
| 100 |
+
self.initializer_range = initializer_range
|
| 101 |
+
self.initializer_factor = initializer_factor
|
| 102 |
+
self.attention_dropout = attention_dropout
|
| 103 |
+
self.layer_norm_eps = layer_norm_eps
|
| 104 |
+
self.hidden_act = hidden_act
|
| 105 |
+
self.norm_type = norm_type
|
| 106 |
+
self.qkv_bias = qkv_bias
|
| 107 |
+
self.qk_normalization = qk_normalization
|
| 108 |
+
self.use_flash_attn = use_flash_attn
|
| 109 |
+
self.downsample_ratio = downsample_ratio
|
| 110 |
+
self.fullatt_block_indexes = fullatt_block_indexes
|
| 111 |
+
self.window_size = window_size
|
| 112 |
+
|
| 113 |
+
@classmethod
|
| 114 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 115 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 116 |
+
|
| 117 |
+
if 'vision_config' in config_dict:
|
| 118 |
+
config_dict = config_dict['vision_config']
|
| 119 |
+
|
| 120 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
| 121 |
+
logger.warning(
|
| 122 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 123 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_qwen3.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Qwen3 model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Qwen3Config(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
|
| 28 |
+
Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 29 |
+
with the defaults will yield a similar configuration to that of
|
| 30 |
+
Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 38 |
+
Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
|
| 39 |
+
`inputs_ids` passed when calling [`Qwen3Model`]
|
| 40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 41 |
+
Dimension of the hidden representations.
|
| 42 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 43 |
+
Dimension of the MLP representations.
|
| 44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 45 |
+
Number of hidden layers in the Transformer encoder.
|
| 46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 48 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 55 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 56 |
+
The attention head dimension.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 60 |
+
The maximum sequence length that this model might ever be used with.
|
| 61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 64 |
+
The epsilon used by the rms normalization layers.
|
| 65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 67 |
+
relevant if `config.is_decoder=True`.
|
| 68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether the model's input and output word embeddings should be tied.
|
| 70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 71 |
+
The base period of the RoPE embeddings.
|
| 72 |
+
rope_scaling (`Dict`, *optional*):
|
| 73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 74 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 75 |
+
accordingly.
|
| 76 |
+
Expected contents:
|
| 77 |
+
`rope_type` (`str`):
|
| 78 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 79 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 80 |
+
`factor` (`float`, *optional*):
|
| 81 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 82 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 83 |
+
original maximum pre-trained length.
|
| 84 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 85 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 86 |
+
pretraining.
|
| 87 |
+
`attention_factor` (`float`, *optional*):
|
| 88 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 89 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 90 |
+
`factor` field to infer the suggested value.
|
| 91 |
+
`beta_fast` (`float`, *optional*):
|
| 92 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 93 |
+
ramp function. If unspecified, it defaults to 32.
|
| 94 |
+
`beta_slow` (`float`, *optional*):
|
| 95 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 96 |
+
ramp function. If unspecified, it defaults to 1.
|
| 97 |
+
`short_factor` (`List[float]`, *optional*):
|
| 98 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 99 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 100 |
+
size divided by the number of attention heads divided by 2
|
| 101 |
+
`long_factor` (`List[float]`, *optional*):
|
| 102 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 103 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 104 |
+
size divided by the number of attention heads divided by 2
|
| 105 |
+
`low_freq_factor` (`float`, *optional*):
|
| 106 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 107 |
+
`high_freq_factor` (`float`, *optional*):
|
| 108 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 109 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 110 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 111 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Whether to use sliding window attention.
|
| 113 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 114 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 115 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 116 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 117 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 118 |
+
The dropout ratio for the attention probabilities.
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
>>> from transformers import Qwen3Model, Qwen3Config
|
| 122 |
+
|
| 123 |
+
>>> # Initializing a Qwen3 style configuration
|
| 124 |
+
>>> configuration = Qwen3Config()
|
| 125 |
+
|
| 126 |
+
>>> # Initializing a model from the Qwen3-8B style configuration
|
| 127 |
+
>>> model = Qwen3Model(configuration)
|
| 128 |
+
|
| 129 |
+
>>> # Accessing the model configuration
|
| 130 |
+
>>> configuration = model.config
|
| 131 |
+
```"""
|
| 132 |
+
|
| 133 |
+
model_type = "qwen3"
|
| 134 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 135 |
+
|
| 136 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 137 |
+
base_model_tp_plan = {
|
| 138 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 139 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 140 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 141 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 142 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 143 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 144 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 145 |
+
}
|
| 146 |
+
base_model_pp_plan = {
|
| 147 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 148 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 149 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
def __init__(
|
| 153 |
+
self,
|
| 154 |
+
vocab_size=151936,
|
| 155 |
+
hidden_size=4096,
|
| 156 |
+
intermediate_size=22016,
|
| 157 |
+
num_hidden_layers=32,
|
| 158 |
+
num_attention_heads=32,
|
| 159 |
+
num_key_value_heads=32,
|
| 160 |
+
head_dim=128,
|
| 161 |
+
hidden_act="silu",
|
| 162 |
+
max_position_embeddings=32768,
|
| 163 |
+
initializer_range=0.02,
|
| 164 |
+
rms_norm_eps=1e-6,
|
| 165 |
+
use_cache=True,
|
| 166 |
+
tie_word_embeddings=False,
|
| 167 |
+
rope_theta=10000.0,
|
| 168 |
+
rope_scaling=None,
|
| 169 |
+
attention_bias=False,
|
| 170 |
+
use_sliding_window=False,
|
| 171 |
+
sliding_window=4096,
|
| 172 |
+
max_window_layers=28,
|
| 173 |
+
attention_dropout=0.0,
|
| 174 |
+
**kwargs,
|
| 175 |
+
):
|
| 176 |
+
self.vocab_size = vocab_size
|
| 177 |
+
self.max_position_embeddings = max_position_embeddings
|
| 178 |
+
self.hidden_size = hidden_size
|
| 179 |
+
self.intermediate_size = intermediate_size
|
| 180 |
+
self.num_hidden_layers = num_hidden_layers
|
| 181 |
+
self.num_attention_heads = num_attention_heads
|
| 182 |
+
self.use_sliding_window = use_sliding_window
|
| 183 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
| 184 |
+
self.max_window_layers = max_window_layers
|
| 185 |
+
|
| 186 |
+
# for backward compatibility
|
| 187 |
+
if num_key_value_heads is None:
|
| 188 |
+
num_key_value_heads = num_attention_heads
|
| 189 |
+
|
| 190 |
+
self.num_key_value_heads = num_key_value_heads
|
| 191 |
+
self.head_dim = head_dim
|
| 192 |
+
self.hidden_act = hidden_act
|
| 193 |
+
self.initializer_range = initializer_range
|
| 194 |
+
self.rms_norm_eps = rms_norm_eps
|
| 195 |
+
self.use_cache = use_cache
|
| 196 |
+
self.rope_theta = rope_theta
|
| 197 |
+
self.rope_scaling = rope_scaling
|
| 198 |
+
self.attention_bias = attention_bias
|
| 199 |
+
self.attention_dropout = attention_dropout
|
| 200 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 201 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 202 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 203 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 204 |
+
rope_config_validation(self)
|
| 205 |
+
|
| 206 |
+
super().__init__(
|
| 207 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 208 |
+
**kwargs,
|
| 209 |
+
)
|
| 210 |
+
self._attn_implementation = "flash_attention_2"
|
| 211 |
+
|
| 212 |
+
class Qwen3VEConfig(PretrainedConfig):
|
| 213 |
+
r"""
|
| 214 |
+
This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
|
| 215 |
+
Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 216 |
+
with the defaults will yield a similar configuration to that of
|
| 217 |
+
Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
|
| 218 |
+
|
| 219 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 220 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 225 |
+
Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
|
| 226 |
+
`inputs_ids` passed when calling [`Qwen3Model`]
|
| 227 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 228 |
+
Dimension of the hidden representations.
|
| 229 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 230 |
+
Dimension of the MLP representations.
|
| 231 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 232 |
+
Number of hidden layers in the Transformer encoder.
|
| 233 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 234 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 235 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 236 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 237 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 238 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 239 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 240 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 241 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 242 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 243 |
+
The attention head dimension.
|
| 244 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 245 |
+
The non-linear activation function (function or string) in the decoder.
|
| 246 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 247 |
+
The maximum sequence length that this model might ever be used with.
|
| 248 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 249 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 250 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 251 |
+
The epsilon used by the rms normalization layers.
|
| 252 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 253 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 254 |
+
relevant if `config.is_decoder=True`.
|
| 255 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 256 |
+
Whether the model's input and output word embeddings should be tied.
|
| 257 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 258 |
+
The base period of the RoPE embeddings.
|
| 259 |
+
rope_scaling (`Dict`, *optional*):
|
| 260 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 261 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 262 |
+
accordingly.
|
| 263 |
+
Expected contents:
|
| 264 |
+
`rope_type` (`str`):
|
| 265 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 266 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 267 |
+
`factor` (`float`, *optional*):
|
| 268 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 269 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 270 |
+
original maximum pre-trained length.
|
| 271 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 272 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 273 |
+
pretraining.
|
| 274 |
+
`attention_factor` (`float`, *optional*):
|
| 275 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 276 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 277 |
+
`factor` field to infer the suggested value.
|
| 278 |
+
`beta_fast` (`float`, *optional*):
|
| 279 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 280 |
+
ramp function. If unspecified, it defaults to 32.
|
| 281 |
+
`beta_slow` (`float`, *optional*):
|
| 282 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 283 |
+
ramp function. If unspecified, it defaults to 1.
|
| 284 |
+
`short_factor` (`List[float]`, *optional*):
|
| 285 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 286 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 287 |
+
size divided by the number of attention heads divided by 2
|
| 288 |
+
`long_factor` (`List[float]`, *optional*):
|
| 289 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 290 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 291 |
+
size divided by the number of attention heads divided by 2
|
| 292 |
+
`low_freq_factor` (`float`, *optional*):
|
| 293 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 294 |
+
`high_freq_factor` (`float`, *optional*):
|
| 295 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 296 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 297 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 298 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 299 |
+
Whether to use sliding window attention.
|
| 300 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 301 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 302 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 303 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 304 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 305 |
+
The dropout ratio for the attention probabilities.
|
| 306 |
+
|
| 307 |
+
```python
|
| 308 |
+
>>> from transformers import Qwen3Model, Qwen3Config
|
| 309 |
+
|
| 310 |
+
>>> # Initializing a Qwen3 style configuration
|
| 311 |
+
>>> configuration = Qwen3Config()
|
| 312 |
+
|
| 313 |
+
>>> # Initializing a model from the Qwen3-8B style configuration
|
| 314 |
+
>>> model = Qwen3Model(configuration)
|
| 315 |
+
|
| 316 |
+
>>> # Accessing the model configuration
|
| 317 |
+
>>> configuration = model.config
|
| 318 |
+
```"""
|
| 319 |
+
|
| 320 |
+
model_type = "qwen3"
|
| 321 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 322 |
+
|
| 323 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 324 |
+
base_model_tp_plan = {
|
| 325 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 326 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 327 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 328 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 329 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 330 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 331 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 332 |
+
}
|
| 333 |
+
base_model_pp_plan = {
|
| 334 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 335 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 336 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
def __init__(
|
| 340 |
+
self,
|
| 341 |
+
vocab_size=151936,
|
| 342 |
+
hidden_size=4096,
|
| 343 |
+
intermediate_size=22016,
|
| 344 |
+
num_hidden_layers=32,
|
| 345 |
+
num_attention_heads=32,
|
| 346 |
+
num_key_value_heads=32,
|
| 347 |
+
head_dim=128,
|
| 348 |
+
hidden_act="silu",
|
| 349 |
+
max_position_embeddings=32768,
|
| 350 |
+
initializer_range=0.02,
|
| 351 |
+
rms_norm_eps=1e-6,
|
| 352 |
+
use_cache=True,
|
| 353 |
+
tie_word_embeddings=False,
|
| 354 |
+
rope_theta=10000.0,
|
| 355 |
+
rope_scaling=None,
|
| 356 |
+
attention_bias=False,
|
| 357 |
+
use_sliding_window=False,
|
| 358 |
+
sliding_window=4096,
|
| 359 |
+
max_window_layers=28,
|
| 360 |
+
attention_dropout=0.0,
|
| 361 |
+
**kwargs,
|
| 362 |
+
):
|
| 363 |
+
self.vocab_size = vocab_size
|
| 364 |
+
self.max_position_embeddings = max_position_embeddings
|
| 365 |
+
self.hidden_size = hidden_size
|
| 366 |
+
self.intermediate_size = intermediate_size
|
| 367 |
+
self.num_hidden_layers = num_hidden_layers
|
| 368 |
+
self.num_attention_heads = num_attention_heads
|
| 369 |
+
self.use_sliding_window = use_sliding_window
|
| 370 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
| 371 |
+
self.max_window_layers = max_window_layers
|
| 372 |
+
|
| 373 |
+
# for backward compatibility
|
| 374 |
+
if num_key_value_heads is None:
|
| 375 |
+
num_key_value_heads = num_attention_heads
|
| 376 |
+
|
| 377 |
+
self.num_key_value_heads = num_key_value_heads
|
| 378 |
+
self.head_dim = head_dim
|
| 379 |
+
self.hidden_act = hidden_act
|
| 380 |
+
self.initializer_range = initializer_range
|
| 381 |
+
self.rms_norm_eps = rms_norm_eps
|
| 382 |
+
self.use_cache = use_cache
|
| 383 |
+
self.rope_theta = rope_theta
|
| 384 |
+
self.rope_scaling = rope_scaling
|
| 385 |
+
self.attention_bias = attention_bias
|
| 386 |
+
self.attention_dropout = attention_dropout
|
| 387 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 388 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 389 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 390 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 391 |
+
rope_config_validation(self)
|
| 392 |
+
|
| 393 |
+
super().__init__(
|
| 394 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 395 |
+
**kwargs,
|
| 396 |
+
)
|
| 397 |
+
self._attn_implementation = "flash_attention_2"
|
| 398 |
+
|
| 399 |
+
__all__ = ["Qwen3Config", "Qwen3VEConfig"]
|
constants.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
| 2 |
+
IMG_START_TOKEN = '<img>'
|
| 3 |
+
IMG_END_TOKEN = '</img>'
|
| 4 |
+
IMG_LINE_BREAK_TOKEN = '<IMG_LINE_BREAK>'
|
| 5 |
+
IMG_FRAME_BREAK_TOKEN = '<IMG_FRAME_BREAK>'
|
| 6 |
+
QUAD_START_TOKEN = '<quad>'
|
| 7 |
+
QUAD_END_TOKEN = '</quad>'
|
| 8 |
+
REF_START_TOKEN = '<ref>'
|
| 9 |
+
REF_END_TOKEN = '</ref>'
|
| 10 |
+
BOX_START_TOKEN = '<box>'
|
| 11 |
+
BOX_END_TOKEN = '</box>'
|
| 12 |
+
|
| 13 |
+
IMG_UNCOND_TOKEN = '<img_uncond>'
|
| 14 |
+
|
| 15 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 16 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 17 |
+
CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
|
| 18 |
+
CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
|
| 19 |
+
SIGLIP_MEAN = (0.5, 0.5, 0.5)
|
| 20 |
+
SIGLIP_STD = (0.5, 0.5, 0.5)
|
| 21 |
+
VAE_MEAN = (0.5, 0.5, 0.5)
|
| 22 |
+
VAE_STD = (0.5, 0.5, 0.5)
|
| 23 |
+
|
| 24 |
+
SPECIAL_TOKEN_LIST = [
|
| 25 |
+
BOX_END_TOKEN, BOX_START_TOKEN,
|
| 26 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN,
|
| 27 |
+
IMG_START_TOKEN, QUAD_END_TOKEN,
|
| 28 |
+
QUAD_START_TOKEN, REF_END_TOKEN,
|
| 29 |
+
REF_START_TOKEN, IMG_UNCOND_TOKEN,
|
| 30 |
+
IMG_LINE_BREAK_TOKEN, IMG_FRAME_BREAK_TOKEN,
|
| 31 |
+
]
|
conversation.py
ADDED
|
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Conversation prompt templates.
|
| 3 |
+
|
| 4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
| 5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import dataclasses
|
| 9 |
+
from enum import IntEnum, auto
|
| 10 |
+
from typing import Any, Dict, List, Tuple, Union
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SeparatorStyle(IntEnum):
|
| 14 |
+
"""Separator styles."""
|
| 15 |
+
|
| 16 |
+
ADD_COLON_SINGLE = auto()
|
| 17 |
+
ADD_COLON_TWO = auto()
|
| 18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
| 19 |
+
NO_COLON_SINGLE = auto()
|
| 20 |
+
NO_COLON_TWO = auto()
|
| 21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
| 22 |
+
LLAMA2 = auto()
|
| 23 |
+
CHATGLM = auto()
|
| 24 |
+
CHATML = auto()
|
| 25 |
+
CHATINTERN = auto()
|
| 26 |
+
DOLLY = auto()
|
| 27 |
+
RWKV = auto()
|
| 28 |
+
PHOENIX = auto()
|
| 29 |
+
ROBIN = auto()
|
| 30 |
+
FALCON_CHAT = auto()
|
| 31 |
+
CHATGLM3 = auto()
|
| 32 |
+
INTERNVL_ZH = auto()
|
| 33 |
+
MPT = auto()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclasses.dataclass
|
| 37 |
+
class Conversation:
|
| 38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
| 39 |
+
|
| 40 |
+
# The name of this template
|
| 41 |
+
name: str
|
| 42 |
+
# The template of the system prompt
|
| 43 |
+
system_template: str = '{system_message}'
|
| 44 |
+
# The system message
|
| 45 |
+
system_message: str = ''
|
| 46 |
+
# The names of two roles
|
| 47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
| 48 |
+
# All messages. Each item is (role, message).
|
| 49 |
+
messages: List[List[str]] = ()
|
| 50 |
+
# The number of few shot examples
|
| 51 |
+
offset: int = 0
|
| 52 |
+
# The separator style and configurations
|
| 53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
| 54 |
+
sep: str = '\n'
|
| 55 |
+
sep2: str = None
|
| 56 |
+
# Stop criteria (the default one is EOS token)
|
| 57 |
+
stop_str: Union[str, List[str]] = None
|
| 58 |
+
# Stops generation if meeting any token in this list
|
| 59 |
+
stop_token_ids: List[int] = None
|
| 60 |
+
|
| 61 |
+
def get_prompt(self) -> str:
|
| 62 |
+
"""Get the prompt for generation."""
|
| 63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
| 64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
| 65 |
+
ret = system_prompt + self.sep
|
| 66 |
+
for role, message in self.messages:
|
| 67 |
+
if message:
|
| 68 |
+
ret += role + ': ' + message + self.sep
|
| 69 |
+
else:
|
| 70 |
+
ret += role + ':'
|
| 71 |
+
return ret
|
| 72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
| 73 |
+
seps = [self.sep, self.sep2]
|
| 74 |
+
ret = system_prompt + seps[0]
|
| 75 |
+
for i, (role, message) in enumerate(self.messages):
|
| 76 |
+
if message:
|
| 77 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 78 |
+
else:
|
| 79 |
+
ret += role + ':'
|
| 80 |
+
return ret
|
| 81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
| 82 |
+
ret = system_prompt + self.sep
|
| 83 |
+
for role, message in self.messages:
|
| 84 |
+
if message:
|
| 85 |
+
ret += role + ': ' + message + self.sep
|
| 86 |
+
else:
|
| 87 |
+
ret += role + ': ' # must be end with a space
|
| 88 |
+
return ret
|
| 89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
| 90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
| 91 |
+
for role, message in self.messages:
|
| 92 |
+
if message:
|
| 93 |
+
ret += role + '\n' + message + self.sep
|
| 94 |
+
else:
|
| 95 |
+
ret += role + '\n'
|
| 96 |
+
return ret
|
| 97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
| 98 |
+
ret = system_prompt
|
| 99 |
+
for role, message in self.messages:
|
| 100 |
+
if message:
|
| 101 |
+
ret += role + message + self.sep
|
| 102 |
+
else:
|
| 103 |
+
ret += role
|
| 104 |
+
return ret
|
| 105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
| 106 |
+
seps = [self.sep, self.sep2]
|
| 107 |
+
ret = system_prompt
|
| 108 |
+
for i, (role, message) in enumerate(self.messages):
|
| 109 |
+
if message:
|
| 110 |
+
ret += role + message + seps[i % 2]
|
| 111 |
+
else:
|
| 112 |
+
ret += role
|
| 113 |
+
return ret
|
| 114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
| 115 |
+
ret = system_prompt
|
| 116 |
+
for i, (role, message) in enumerate(self.messages):
|
| 117 |
+
if message:
|
| 118 |
+
ret += (
|
| 119 |
+
role
|
| 120 |
+
+ ': '
|
| 121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
| 122 |
+
)
|
| 123 |
+
ret += '\n\n'
|
| 124 |
+
else:
|
| 125 |
+
ret += role + ':'
|
| 126 |
+
return ret
|
| 127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
| 128 |
+
seps = [self.sep, self.sep2]
|
| 129 |
+
if self.system_message:
|
| 130 |
+
ret = system_prompt
|
| 131 |
+
else:
|
| 132 |
+
ret = '[INST] '
|
| 133 |
+
for i, (role, message) in enumerate(self.messages):
|
| 134 |
+
tag = self.roles[i % 2]
|
| 135 |
+
if message:
|
| 136 |
+
if i == 0:
|
| 137 |
+
ret += message + ' '
|
| 138 |
+
else:
|
| 139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
| 140 |
+
else:
|
| 141 |
+
ret += tag
|
| 142 |
+
return ret
|
| 143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
| 144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
| 145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
| 146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
| 147 |
+
if system_prompt:
|
| 148 |
+
ret = system_prompt + self.sep
|
| 149 |
+
else:
|
| 150 |
+
ret = ''
|
| 151 |
+
|
| 152 |
+
for i, (role, message) in enumerate(self.messages):
|
| 153 |
+
if i % 2 == 0:
|
| 154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
| 155 |
+
|
| 156 |
+
if message:
|
| 157 |
+
ret += f'{role}:{message}{self.sep}'
|
| 158 |
+
else:
|
| 159 |
+
ret += f'{role}:'
|
| 160 |
+
return ret
|
| 161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
| 162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
| 163 |
+
for role, message in self.messages:
|
| 164 |
+
if message:
|
| 165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
| 166 |
+
else:
|
| 167 |
+
ret += role + '\n'
|
| 168 |
+
return ret
|
| 169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
| 170 |
+
ret = ''
|
| 171 |
+
if self.system_message:
|
| 172 |
+
ret += system_prompt
|
| 173 |
+
for role, message in self.messages:
|
| 174 |
+
if message:
|
| 175 |
+
ret += role + '\n' + ' ' + message
|
| 176 |
+
else:
|
| 177 |
+
ret += role
|
| 178 |
+
return ret
|
| 179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
| 180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
| 181 |
+
seps = [self.sep, self.sep2]
|
| 182 |
+
ret = system_prompt
|
| 183 |
+
for i, (role, message) in enumerate(self.messages):
|
| 184 |
+
# if i % 2 == 0:
|
| 185 |
+
# ret += "<s>"
|
| 186 |
+
if message:
|
| 187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
| 188 |
+
else:
|
| 189 |
+
ret += role + ':'
|
| 190 |
+
return ret
|
| 191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
| 192 |
+
seps = [self.sep, self.sep2]
|
| 193 |
+
ret = system_prompt
|
| 194 |
+
for i, (role, message) in enumerate(self.messages):
|
| 195 |
+
if message:
|
| 196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
| 197 |
+
if i % 2 == 1:
|
| 198 |
+
ret += '\n\n'
|
| 199 |
+
else:
|
| 200 |
+
ret += role + ':\n'
|
| 201 |
+
return ret
|
| 202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
| 203 |
+
ret = system_prompt
|
| 204 |
+
for role, message in self.messages:
|
| 205 |
+
if message:
|
| 206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
| 207 |
+
else:
|
| 208 |
+
ret += role + ': ' + '<s>'
|
| 209 |
+
return ret
|
| 210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
| 211 |
+
ret = system_prompt + self.sep
|
| 212 |
+
for role, message in self.messages:
|
| 213 |
+
if message:
|
| 214 |
+
ret += role + ':\n' + message + self.sep
|
| 215 |
+
else:
|
| 216 |
+
ret += role + ':\n'
|
| 217 |
+
return ret
|
| 218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
| 219 |
+
ret = ''
|
| 220 |
+
if self.system_message:
|
| 221 |
+
ret += system_prompt + self.sep
|
| 222 |
+
for role, message in self.messages:
|
| 223 |
+
if message:
|
| 224 |
+
ret += role + ': ' + message + self.sep
|
| 225 |
+
else:
|
| 226 |
+
ret += role + ':'
|
| 227 |
+
|
| 228 |
+
return ret
|
| 229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
| 230 |
+
seps = [self.sep2, self.sep]
|
| 231 |
+
ret = self.system_message + seps[0]
|
| 232 |
+
for i, (role, message) in enumerate(self.messages):
|
| 233 |
+
if message:
|
| 234 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 235 |
+
else:
|
| 236 |
+
ret += role + ':'
|
| 237 |
+
return ret
|
| 238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
| 239 |
+
ret = system_prompt + self.sep
|
| 240 |
+
for role, message in self.messages:
|
| 241 |
+
if message:
|
| 242 |
+
if type(message) is tuple:
|
| 243 |
+
message, _, _ = message
|
| 244 |
+
ret += role + message + self.sep
|
| 245 |
+
else:
|
| 246 |
+
ret += role
|
| 247 |
+
return ret
|
| 248 |
+
else:
|
| 249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
| 250 |
+
|
| 251 |
+
def set_system_message(self, system_message: str):
|
| 252 |
+
"""Set the system message."""
|
| 253 |
+
self.system_message = system_message
|
| 254 |
+
|
| 255 |
+
def append_message(self, role: str, message: str):
|
| 256 |
+
"""Append a new message."""
|
| 257 |
+
self.messages.append([role, message])
|
| 258 |
+
|
| 259 |
+
def update_last_message(self, message: str):
|
| 260 |
+
"""Update the last output.
|
| 261 |
+
|
| 262 |
+
The last message is typically set to be None when constructing the prompt,
|
| 263 |
+
so we need to update it in-place after getting the response from a model.
|
| 264 |
+
"""
|
| 265 |
+
self.messages[-1][1] = message
|
| 266 |
+
|
| 267 |
+
def to_gradio_chatbot(self):
|
| 268 |
+
"""Convert the conversation to gradio chatbot format."""
|
| 269 |
+
ret = []
|
| 270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
| 271 |
+
if i % 2 == 0:
|
| 272 |
+
ret.append([msg, None])
|
| 273 |
+
else:
|
| 274 |
+
ret[-1][-1] = msg
|
| 275 |
+
return ret
|
| 276 |
+
|
| 277 |
+
def to_openai_api_messages(self):
|
| 278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
| 279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
| 280 |
+
|
| 281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
| 282 |
+
if i % 2 == 0:
|
| 283 |
+
ret.append({'role': 'user', 'content': msg})
|
| 284 |
+
else:
|
| 285 |
+
if msg is not None:
|
| 286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
| 287 |
+
return ret
|
| 288 |
+
|
| 289 |
+
def copy(self):
|
| 290 |
+
return Conversation(
|
| 291 |
+
name=self.name,
|
| 292 |
+
system_template=self.system_template,
|
| 293 |
+
system_message=self.system_message,
|
| 294 |
+
roles=self.roles,
|
| 295 |
+
messages=[[x, y] for x, y in self.messages],
|
| 296 |
+
offset=self.offset,
|
| 297 |
+
sep_style=self.sep_style,
|
| 298 |
+
sep=self.sep,
|
| 299 |
+
sep2=self.sep2,
|
| 300 |
+
stop_str=self.stop_str,
|
| 301 |
+
stop_token_ids=self.stop_token_ids,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def dict(self):
|
| 305 |
+
return {
|
| 306 |
+
'template_name': self.name,
|
| 307 |
+
'system_message': self.system_message,
|
| 308 |
+
'roles': self.roles,
|
| 309 |
+
'messages': self.messages,
|
| 310 |
+
'offset': self.offset,
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# A global registry for all conversation templates
|
| 315 |
+
conv_templates: Dict[str, Conversation] = {}
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
| 319 |
+
"""Register a new conversation template."""
|
| 320 |
+
if not override:
|
| 321 |
+
assert (
|
| 322 |
+
template.name not in conv_templates
|
| 323 |
+
), f'{template.name} has been registered.'
|
| 324 |
+
|
| 325 |
+
conv_templates[template.name] = template
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def get_conv_template(name: str) -> Conversation:
|
| 329 |
+
"""Get a conversation template."""
|
| 330 |
+
return conv_templates[name].copy()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# InternVL-Chat-V1-1 template
|
| 334 |
+
register_conv_template(
|
| 335 |
+
Conversation(
|
| 336 |
+
name='internvl_zh',
|
| 337 |
+
system_template='',
|
| 338 |
+
roles=('<human>', '<bot>'),
|
| 339 |
+
sep_style=SeparatorStyle.INTERNVL_ZH,
|
| 340 |
+
sep='</s>',
|
| 341 |
+
sep2=' ',
|
| 342 |
+
)
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
| 347 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
| 348 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
| 349 |
+
# Therefore, they are completely equivalent during inference.
|
| 350 |
+
register_conv_template(
|
| 351 |
+
Conversation(
|
| 352 |
+
name='Hermes-2',
|
| 353 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 354 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 355 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 356 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 357 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 358 |
+
sep_style=SeparatorStyle.MPT,
|
| 359 |
+
sep='<|im_end|>',
|
| 360 |
+
stop_token_ids=[
|
| 361 |
+
2,
|
| 362 |
+
6,
|
| 363 |
+
7,
|
| 364 |
+
8,
|
| 365 |
+
],
|
| 366 |
+
stop_str='<|endoftext|>',
|
| 367 |
+
)
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
register_conv_template(
|
| 371 |
+
Conversation(
|
| 372 |
+
name='Hermes-2-imgen',
|
| 373 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 374 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 375 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 376 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 377 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 378 |
+
sep_style=SeparatorStyle.MPT,
|
| 379 |
+
sep='<|im_end|>',
|
| 380 |
+
stop_token_ids=[
|
| 381 |
+
2,
|
| 382 |
+
6,
|
| 383 |
+
7,
|
| 384 |
+
8,
|
| 385 |
+
],
|
| 386 |
+
stop_str='<|endoftext|>',
|
| 387 |
+
)
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
register_conv_template(
|
| 391 |
+
Conversation(
|
| 392 |
+
name='internlm2-chat',
|
| 393 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 394 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 395 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 396 |
+
system_message='你���由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 397 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 398 |
+
sep_style=SeparatorStyle.MPT,
|
| 399 |
+
sep='<|im_end|>',
|
| 400 |
+
stop_token_ids=[
|
| 401 |
+
2,
|
| 402 |
+
92543,
|
| 403 |
+
92542
|
| 404 |
+
]
|
| 405 |
+
)
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
register_conv_template(
|
| 409 |
+
Conversation(
|
| 410 |
+
name='internlm2-chat-imgen',
|
| 411 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 412 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 413 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 414 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 415 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
| 416 |
+
sep_style=SeparatorStyle.MPT,
|
| 417 |
+
sep='<|im_end|>',
|
| 418 |
+
stop_token_ids=[
|
| 419 |
+
2,
|
| 420 |
+
92543,
|
| 421 |
+
92542
|
| 422 |
+
]
|
| 423 |
+
)
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
register_conv_template(
|
| 427 |
+
Conversation(
|
| 428 |
+
name='phi3-chat',
|
| 429 |
+
system_template='<|system|>\n{system_message}',
|
| 430 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 431 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 432 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 433 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
| 434 |
+
sep_style=SeparatorStyle.MPT,
|
| 435 |
+
sep='<|end|>',
|
| 436 |
+
stop_token_ids=[
|
| 437 |
+
2,
|
| 438 |
+
32000,
|
| 439 |
+
32007
|
| 440 |
+
]
|
| 441 |
+
)
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
register_conv_template(
|
| 445 |
+
Conversation(
|
| 446 |
+
name='qwen3-chat',
|
| 447 |
+
system_template='<|im_start|>system\n{system_message}',
|
| 448 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 449 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
| 450 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
| 451 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n<think>\n\n</think>\n\n'),
|
| 452 |
+
sep_style=SeparatorStyle.MPT,
|
| 453 |
+
sep='<|im_end|>',
|
| 454 |
+
stop_token_ids=[
|
| 455 |
+
2,
|
| 456 |
+
92543,
|
| 457 |
+
92542
|
| 458 |
+
]
|
| 459 |
+
)
|
| 460 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.51.0"
|
| 4 |
+
}
|
image_processing_qwen2_vl.py
ADDED
|
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""Image processor class for Qwen2-VL."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from typing import Dict, List, Optional, Union
|
| 24 |
+
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 28 |
+
from transformers.image_transforms import (
|
| 29 |
+
convert_to_rgb,
|
| 30 |
+
resize,
|
| 31 |
+
to_channel_dimension_format,
|
| 32 |
+
pad
|
| 33 |
+
)
|
| 34 |
+
from transformers.image_utils import (
|
| 35 |
+
OPENAI_CLIP_MEAN,
|
| 36 |
+
OPENAI_CLIP_STD,
|
| 37 |
+
ChannelDimension,
|
| 38 |
+
ImageInput,
|
| 39 |
+
PILImageResampling,
|
| 40 |
+
VideoInput,
|
| 41 |
+
get_image_size,
|
| 42 |
+
infer_channel_dimension_format,
|
| 43 |
+
is_scaled_image,
|
| 44 |
+
is_valid_image,
|
| 45 |
+
make_list_of_images,
|
| 46 |
+
to_numpy_array,
|
| 47 |
+
valid_images,
|
| 48 |
+
validate_preprocess_arguments,
|
| 49 |
+
)
|
| 50 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
logger = logging.get_logger(__name__)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if is_vision_available():
|
| 57 |
+
from PIL import Image
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 61 |
+
"""
|
| 62 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 66 |
+
The input image.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
list: A list of images.
|
| 70 |
+
"""
|
| 71 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 72 |
+
return [img for img_list in images for img in img_list]
|
| 73 |
+
|
| 74 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 75 |
+
return images
|
| 76 |
+
|
| 77 |
+
elif is_valid_image(images):
|
| 78 |
+
return [images]
|
| 79 |
+
|
| 80 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
|
| 84 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
| 85 |
+
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
| 86 |
+
return videos
|
| 87 |
+
|
| 88 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
| 89 |
+
if isinstance(videos[0], Image.Image):
|
| 90 |
+
return [videos]
|
| 91 |
+
elif len(videos[0].shape) == 4:
|
| 92 |
+
return [list(video) for video in videos]
|
| 93 |
+
|
| 94 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
| 95 |
+
return [list(videos)]
|
| 96 |
+
|
| 97 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def smart_resize(
|
| 101 |
+
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
|
| 102 |
+
):
|
| 103 |
+
"""Rescales the image so that the following conditions are met:
|
| 104 |
+
|
| 105 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 106 |
+
|
| 107 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 108 |
+
|
| 109 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 110 |
+
|
| 111 |
+
"""
|
| 112 |
+
if height < factor or width < factor:
|
| 113 |
+
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 114 |
+
elif max(height, width) / min(height, width) > 200:
|
| 115 |
+
raise ValueError(
|
| 116 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 117 |
+
)
|
| 118 |
+
h_bar = round(height / factor) * factor
|
| 119 |
+
w_bar = round(width / factor) * factor
|
| 120 |
+
if h_bar * w_bar > max_pixels:
|
| 121 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 122 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 123 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 124 |
+
elif h_bar * w_bar < min_pixels:
|
| 125 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 126 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 127 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 128 |
+
return h_bar, w_bar
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class Qwen2VLImageProcessor(BaseImageProcessor):
|
| 132 |
+
r"""
|
| 133 |
+
Constructs a Qwen2-VL image processor that dynamically resizes images based on the original images.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 137 |
+
Whether to resize the image's (height, width) dimensions.
|
| 138 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 139 |
+
Resampling filter to use when resizing the image.
|
| 140 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 141 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 142 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 143 |
+
Scale factor to use if rescaling the image.
|
| 144 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 145 |
+
Whether to normalize the image.
|
| 146 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 147 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 148 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 149 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 150 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 151 |
+
Whether to convert the image to RGB.
|
| 152 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
| 153 |
+
The min pixels of the image to resize the image.
|
| 154 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
| 155 |
+
The max pixels of the image to resize the image.
|
| 156 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 157 |
+
The spacial patch size of the vision encoder.
|
| 158 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
| 159 |
+
The temporal patch size of the vision encoder.
|
| 160 |
+
merge_size (`int`, *optional*, defaults to 2):
|
| 161 |
+
The merge size of the vision encoder to llm encoder.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
| 165 |
+
|
| 166 |
+
def __init__(
|
| 167 |
+
self,
|
| 168 |
+
do_resize: bool = True,
|
| 169 |
+
do_pad: bool = False,
|
| 170 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 171 |
+
do_rescale: bool = True,
|
| 172 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 173 |
+
do_normalize: bool = True,
|
| 174 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 175 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 176 |
+
do_convert_rgb: bool = True,
|
| 177 |
+
min_pixels: int = 56 * 56,
|
| 178 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 179 |
+
patch_size: int = 14,
|
| 180 |
+
temporal_patch_size: int = 2,
|
| 181 |
+
merge_size: int = 2,
|
| 182 |
+
**kwargs,
|
| 183 |
+
) -> None:
|
| 184 |
+
super().__init__(**kwargs)
|
| 185 |
+
self.do_resize = do_resize
|
| 186 |
+
self.do_pad = do_pad
|
| 187 |
+
self.resample = resample
|
| 188 |
+
self.do_rescale = do_rescale
|
| 189 |
+
self.rescale_factor = rescale_factor
|
| 190 |
+
self.do_normalize = do_normalize
|
| 191 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 192 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 193 |
+
self.min_pixels = min_pixels
|
| 194 |
+
self.max_pixels = max_pixels
|
| 195 |
+
self.patch_size = patch_size
|
| 196 |
+
self.temporal_patch_size = temporal_patch_size
|
| 197 |
+
self.merge_size = merge_size
|
| 198 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 199 |
+
self.do_convert_rgb = do_convert_rgb
|
| 200 |
+
|
| 201 |
+
def _preprocess(
|
| 202 |
+
self,
|
| 203 |
+
images: Union[ImageInput, VideoInput],
|
| 204 |
+
do_resize: bool = None,
|
| 205 |
+
do_pad: bool = None,
|
| 206 |
+
resample: PILImageResampling = None,
|
| 207 |
+
do_rescale: bool = None,
|
| 208 |
+
rescale_factor: float = None,
|
| 209 |
+
do_normalize: bool = None,
|
| 210 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 211 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 212 |
+
do_convert_rgb: bool = None,
|
| 213 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 214 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 215 |
+
min_pixels: int = None,
|
| 216 |
+
max_pixels: int = None,
|
| 217 |
+
):
|
| 218 |
+
"""
|
| 219 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
images (`ImageInput`):
|
| 223 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 224 |
+
vision_info (`List[Dict]`, *optional*):
|
| 225 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
| 226 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 227 |
+
Whether to resize the image.
|
| 228 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
| 229 |
+
Whether to pad the image.
|
| 230 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 231 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 232 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 233 |
+
Whether to rescale the image.
|
| 234 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 235 |
+
Scale factor to use if rescaling the image.
|
| 236 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 237 |
+
Whether to normalize the image.
|
| 238 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 239 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 240 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 241 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 242 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 243 |
+
Whether to convert the image to RGB.
|
| 244 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 245 |
+
The channel dimension format for the output image. Can be one of:
|
| 246 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 247 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 248 |
+
- Unset: Use the channel dimension format of the input image.
|
| 249 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 250 |
+
The channel dimension format for the input image. Can be one of:
|
| 251 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 252 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 253 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 254 |
+
"""
|
| 255 |
+
|
| 256 |
+
min_pixels = min_pixels if min_pixels is not None else self.min_pixels
|
| 257 |
+
max_pixels = max_pixels if max_pixels is not None else self.max_pixels
|
| 258 |
+
|
| 259 |
+
images = make_list_of_images(images)
|
| 260 |
+
|
| 261 |
+
if do_convert_rgb:
|
| 262 |
+
images = [convert_to_rgb(image) for image in images]
|
| 263 |
+
|
| 264 |
+
# All transformations expect numpy arrays.
|
| 265 |
+
images = [to_numpy_array(image) for image in images]
|
| 266 |
+
|
| 267 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 268 |
+
logger.warning_once(
|
| 269 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 270 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 271 |
+
)
|
| 272 |
+
if input_data_format is None:
|
| 273 |
+
# We assume that all images have the same channel dimension format.
|
| 274 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 275 |
+
|
| 276 |
+
assert not (do_resize and do_pad), "Only one of `do_resize` and `do_pad` can be set to `True`."
|
| 277 |
+
|
| 278 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 279 |
+
resized_height, resized_width = height, width
|
| 280 |
+
processed_images = []
|
| 281 |
+
for image in images:
|
| 282 |
+
if do_resize:
|
| 283 |
+
resized_height, resized_width = smart_resize(
|
| 284 |
+
height,
|
| 285 |
+
width,
|
| 286 |
+
factor=self.patch_size * self.merge_size,
|
| 287 |
+
min_pixels=min_pixels,
|
| 288 |
+
max_pixels=max_pixels,
|
| 289 |
+
)
|
| 290 |
+
image = resize(
|
| 291 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 292 |
+
)
|
| 293 |
+
elif do_pad:
|
| 294 |
+
# 1. resize the image s.t. the total number of pixels is within the range [min_pixels, max_pixels] while maintaining the aspect ratio
|
| 295 |
+
resized_height, resized_width = smart_resize(
|
| 296 |
+
height,
|
| 297 |
+
width,
|
| 298 |
+
factor=1,
|
| 299 |
+
min_pixels=min_pixels,
|
| 300 |
+
max_pixels=max_pixels,
|
| 301 |
+
)
|
| 302 |
+
image = resize(
|
| 303 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 304 |
+
)
|
| 305 |
+
# 2. pad the image to the nearest multiple of patch_size * merge_size
|
| 306 |
+
pad_height = math.ceil(resized_height / (self.patch_size * self.merge_size)) * self.patch_size * self.merge_size
|
| 307 |
+
pad_width = math.ceil(resized_width / (self.patch_size * self.merge_size)) * self.patch_size * self.merge_size
|
| 308 |
+
image = pad(
|
| 309 |
+
image,
|
| 310 |
+
padding=((0, pad_height - resized_height), (0, pad_width - resized_width)),
|
| 311 |
+
constant_values=0,
|
| 312 |
+
input_data_format=input_data_format,
|
| 313 |
+
data_format=input_data_format,
|
| 314 |
+
)
|
| 315 |
+
resized_height, resized_width = pad_height, pad_width
|
| 316 |
+
|
| 317 |
+
if do_rescale:
|
| 318 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 319 |
+
|
| 320 |
+
if do_normalize:
|
| 321 |
+
image = self.normalize(
|
| 322 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 326 |
+
processed_images.append(image)
|
| 327 |
+
|
| 328 |
+
patches = np.array(processed_images)
|
| 329 |
+
if data_format == ChannelDimension.LAST:
|
| 330 |
+
patches = patches.transpose(0, 3, 1, 2)
|
| 331 |
+
if patches.shape[0] == 1:
|
| 332 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
| 333 |
+
channel = patches.shape[1]
|
| 334 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
| 335 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
| 336 |
+
patches = patches.reshape(
|
| 337 |
+
grid_t,
|
| 338 |
+
self.temporal_patch_size,
|
| 339 |
+
channel,
|
| 340 |
+
grid_h // self.merge_size,
|
| 341 |
+
self.merge_size,
|
| 342 |
+
self.patch_size,
|
| 343 |
+
grid_w // self.merge_size,
|
| 344 |
+
self.merge_size,
|
| 345 |
+
self.patch_size,
|
| 346 |
+
)
|
| 347 |
+
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
| 348 |
+
flatten_patches = patches.reshape(
|
| 349 |
+
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
| 353 |
+
|
| 354 |
+
def preprocess(
|
| 355 |
+
self,
|
| 356 |
+
images: ImageInput,
|
| 357 |
+
videos: VideoInput = None,
|
| 358 |
+
do_resize: bool = None,
|
| 359 |
+
do_pad: bool = None,
|
| 360 |
+
size: Dict[str, int] = None,
|
| 361 |
+
resample: PILImageResampling = None,
|
| 362 |
+
do_rescale: bool = None,
|
| 363 |
+
rescale_factor: float = None,
|
| 364 |
+
do_normalize: bool = None,
|
| 365 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 366 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 367 |
+
do_convert_rgb: bool = None,
|
| 368 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 369 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 370 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 371 |
+
min_pixels: int = None,
|
| 372 |
+
max_pixels: int = None,
|
| 373 |
+
):
|
| 374 |
+
"""
|
| 375 |
+
Args:
|
| 376 |
+
images (`ImageInput`):
|
| 377 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 378 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 379 |
+
videos (`VideoInput`):
|
| 380 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
| 381 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
| 382 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 383 |
+
Whether to resize the image.
|
| 384 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
| 385 |
+
Whether to pad the image.
|
| 386 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 387 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 388 |
+
the longest edge resized to keep the input aspect ratio.
|
| 389 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 390 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 391 |
+
has an effect if `do_resize` is set to `True`.
|
| 392 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 393 |
+
Whether to rescale the image.
|
| 394 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 395 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 396 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 397 |
+
Whether to normalize the image.
|
| 398 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 399 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 400 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 401 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 402 |
+
`True`.
|
| 403 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 404 |
+
Whether to convert the image to RGB.
|
| 405 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 406 |
+
The type of tensors to return. Can be one of:
|
| 407 |
+
- Unset: Return a list of `np.ndarray`.
|
| 408 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 409 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 410 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 411 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 412 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 413 |
+
The channel dimension format for the output image. Can be one of:
|
| 414 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 415 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 416 |
+
- Unset: Use the channel dimension format of the input image.
|
| 417 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 418 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 419 |
+
from the input image. Can be one of:
|
| 420 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 421 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 422 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 423 |
+
|
| 424 |
+
"""
|
| 425 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 426 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
| 427 |
+
size = size if size is not None else self.size
|
| 428 |
+
resample = resample if resample is not None else self.resample
|
| 429 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 430 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 431 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 432 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 433 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 434 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 435 |
+
min_pixels = min_pixels if min_pixels is not None else self.min_pixels
|
| 436 |
+
max_pixels = max_pixels if max_pixels is not None else self.max_pixels
|
| 437 |
+
|
| 438 |
+
if images is not None:
|
| 439 |
+
images = make_batched_images(images)
|
| 440 |
+
if videos is not None:
|
| 441 |
+
videos = make_batched_videos(videos)
|
| 442 |
+
|
| 443 |
+
if images is not None and not valid_images(images):
|
| 444 |
+
raise ValueError(
|
| 445 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 446 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
validate_preprocess_arguments(
|
| 450 |
+
rescale_factor=rescale_factor,
|
| 451 |
+
do_normalize=do_normalize,
|
| 452 |
+
image_mean=image_mean,
|
| 453 |
+
image_std=image_std,
|
| 454 |
+
do_resize=do_resize,
|
| 455 |
+
# do_pad=do_pad,
|
| 456 |
+
size=size,
|
| 457 |
+
resample=resample,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
if images is not None:
|
| 461 |
+
pixel_values, vision_grid_thws = [], []
|
| 462 |
+
for image in images:
|
| 463 |
+
patches, image_grid_thw = self._preprocess(
|
| 464 |
+
image,
|
| 465 |
+
do_resize=do_resize,
|
| 466 |
+
resample=resample,
|
| 467 |
+
do_rescale=do_rescale,
|
| 468 |
+
do_pad=do_pad,
|
| 469 |
+
rescale_factor=rescale_factor,
|
| 470 |
+
do_normalize=do_normalize,
|
| 471 |
+
image_mean=image_mean,
|
| 472 |
+
image_std=image_std,
|
| 473 |
+
data_format=data_format,
|
| 474 |
+
do_convert_rgb=do_convert_rgb,
|
| 475 |
+
input_data_format=input_data_format,
|
| 476 |
+
min_pixels=min_pixels,
|
| 477 |
+
max_pixels=max_pixels,
|
| 478 |
+
)
|
| 479 |
+
pixel_values.extend(patches)
|
| 480 |
+
vision_grid_thws.append(image_grid_thw)
|
| 481 |
+
pixel_values = np.array(pixel_values)
|
| 482 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 483 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
| 484 |
+
|
| 485 |
+
if videos is not None:
|
| 486 |
+
pixel_values, vision_grid_thws = [], []
|
| 487 |
+
for images in videos:
|
| 488 |
+
patches, video_grid_thw = self._preprocess(
|
| 489 |
+
images,
|
| 490 |
+
do_resize=do_resize,
|
| 491 |
+
do_pad=do_pad,
|
| 492 |
+
resample=resample,
|
| 493 |
+
do_rescale=do_rescale,
|
| 494 |
+
rescale_factor=rescale_factor,
|
| 495 |
+
do_normalize=do_normalize,
|
| 496 |
+
image_mean=image_mean,
|
| 497 |
+
image_std=image_std,
|
| 498 |
+
data_format=data_format,
|
| 499 |
+
do_convert_rgb=do_convert_rgb,
|
| 500 |
+
input_data_format=input_data_format,
|
| 501 |
+
min_pixels=min_pixels,
|
| 502 |
+
max_pixels=max_pixels,
|
| 503 |
+
)
|
| 504 |
+
pixel_values.extend(patches)
|
| 505 |
+
vision_grid_thws.append(video_grid_thw)
|
| 506 |
+
pixel_values = np.array(pixel_values)
|
| 507 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 508 |
+
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
| 509 |
+
|
| 510 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9bbf7885e7752468f4299e694ca938d90fb9e8885bbf03e25d5bf162ef956a7e
|
| 3 |
+
size 4954887984
|
model-00002-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4025923f43ac16c4eeaf66362b5f77fbf92ac1f45345bb0ff36a3ecb2c771c24
|
| 3 |
+
size 4982970768
|
model-00003-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa090d1a6cbba8af0778567458b81fef489f01aebb6f84bbd8f07719384482ab
|
| 3 |
+
size 4949401448
|
model-00004-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e44246a62e6fdec97b8e2cfd4caf5459198be25e394f762a55813a2a2f58563
|
| 3 |
+
size 4932622216
|
model-00005-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2e744af620121041b1b1026a9967b5ba3698c29e081822d40a66b5ccef4a296
|
| 3 |
+
size 4999750184
|
model-00006-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f32342820a24f9c69cb5ecd7f2feaf349bdcaf71b61bb7cd8e1270bf92f5d8c6
|
| 3 |
+
size 4932622208
|
model-00007-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5033d4a84e2aaf665e8d17fda3b2a8c778c704f033b0e6ebe1090109fbca358
|
| 3 |
+
size 3079885360
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_navil_chat.py
ADDED
|
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# NaViL
|
| 3 |
+
# Copyright (c) 2025 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import warnings
|
| 9 |
+
from typing import Any, List, Optional, Tuple, Union
|
| 10 |
+
import copy
|
| 11 |
+
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.distributed as dist
|
| 16 |
+
from torch import nn
|
| 17 |
+
from torch.nn import CrossEntropyLoss
|
| 18 |
+
|
| 19 |
+
import transformers
|
| 20 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 21 |
+
LlamaTokenizer, Qwen2ForCausalLM)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.utils import ModelOutput, logging
|
| 24 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm
|
| 25 |
+
|
| 26 |
+
from .configuration_navil_chat import NaViLChatConfig
|
| 27 |
+
from .modeling_navil_vit_anyres import NaViLVisionModelAnyRes
|
| 28 |
+
|
| 29 |
+
from .conversation import get_conv_template
|
| 30 |
+
# from navil.model.internlm2.modeling_internlm2_ve import InternLM2VEForCausalLM
|
| 31 |
+
from .modeling_qwen3_ve import Qwen3VEForCausalLM
|
| 32 |
+
# from navil.model.internlm2.modeling_internlm2_ve import InternLM2RMSNorm
|
| 33 |
+
from .image_processing_qwen2_vl import Qwen2VLImageProcessor
|
| 34 |
+
from .constants import (
|
| 35 |
+
SPECIAL_TOKEN_LIST,
|
| 36 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN, IMG_UNCOND_TOKEN,
|
| 37 |
+
VAE_MEAN, VAE_STD,
|
| 38 |
+
)
|
| 39 |
+
from .modular_intern_vit import (
|
| 40 |
+
InternVisionFlashAttention2,
|
| 41 |
+
InternVisionSdpaAttention,
|
| 42 |
+
InternMLP,
|
| 43 |
+
NORM2FN,
|
| 44 |
+
InternVisionRotaryEmbedding,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__)
|
| 48 |
+
logger.setLevel(logging.INFO)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def version_cmp(v1, v2, op='eq'):
|
| 52 |
+
import operator
|
| 53 |
+
|
| 54 |
+
from packaging import version
|
| 55 |
+
op_func = getattr(operator, op)
|
| 56 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@dataclass
|
| 61 |
+
class CausalLMOutputWithPast(ModelOutput):
|
| 62 |
+
"""
|
| 63 |
+
Base class for causal language model (or autoregressive) outputs.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 67 |
+
Language modeling loss (for next-token prediction).
|
| 68 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 69 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 70 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 71 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 72 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 73 |
+
|
| 74 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 75 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 76 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 77 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 78 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 79 |
+
|
| 80 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 81 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 82 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 83 |
+
sequence_length)`.
|
| 84 |
+
|
| 85 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 86 |
+
heads.
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
loss: Optional[torch.FloatTensor] = None
|
| 90 |
+
logits: torch.FloatTensor = None
|
| 91 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 92 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 93 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 94 |
+
|
| 95 |
+
log_dict: Optional[dict] = None
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class NaViL(PreTrainedModel):
|
| 99 |
+
config_class = NaViLChatConfig
|
| 100 |
+
main_input_name = 'pixel_values'
|
| 101 |
+
_no_split_modules = ['NaViLVisionModelAnyRes', 'InternLM2DecoderLayer', 'Qwen3DecoderLayer']
|
| 102 |
+
_supports_flash_attn_2 = True
|
| 103 |
+
|
| 104 |
+
def __init__(self, config: NaViLChatConfig, vision_model=None, language_model=None):
|
| 105 |
+
super().__init__(config)
|
| 106 |
+
self.config = config
|
| 107 |
+
|
| 108 |
+
assert version_cmp(transformers.__version__, '4.51.0', 'ge')
|
| 109 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 110 |
+
patch_size = config.vision_config.patch_size
|
| 111 |
+
self.patch_size = patch_size
|
| 112 |
+
self.select_layer = config.select_layer
|
| 113 |
+
self.template = config.template
|
| 114 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 115 |
+
self.downsample_ratio = config.downsample_ratio
|
| 116 |
+
self.patch_aspect_ratio = 1.0
|
| 117 |
+
self.ps_version = config.ps_version
|
| 118 |
+
self.llm_arch_name = config.llm_config.architectures[0]
|
| 119 |
+
|
| 120 |
+
logger.info(f'init - image_size: {image_size}, patch_size: {patch_size}, num_image_token: {self.num_image_token}')
|
| 121 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 122 |
+
if vision_model is not None:
|
| 123 |
+
self.vision_model = vision_model
|
| 124 |
+
else:
|
| 125 |
+
self.vision_model = NaViLVisionModelAnyRes(config.vision_config)
|
| 126 |
+
if language_model is not None:
|
| 127 |
+
self.language_model = language_model
|
| 128 |
+
else:
|
| 129 |
+
llm_config = config.llm_config
|
| 130 |
+
if config.llm_config.architectures[0] == 'Qwen3VEForCausalLM':
|
| 131 |
+
self.language_model = Qwen3VEForCausalLM(llm_config)
|
| 132 |
+
else:
|
| 133 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 134 |
+
|
| 135 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 136 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 137 |
+
|
| 138 |
+
self.mlp1 = nn.Sequential(
|
| 139 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 140 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 141 |
+
nn.GELU(),
|
| 142 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
self.img_context_token_id = None
|
| 146 |
+
self.img_start_token_id = None
|
| 147 |
+
self.img_end_token_id = None
|
| 148 |
+
self.img_uncond_token_id = None
|
| 149 |
+
self.img_line_break_token_id = None
|
| 150 |
+
self.img_frame_break_token_id = None
|
| 151 |
+
self.pad_token_id = None
|
| 152 |
+
self.conv_template = get_conv_template(self.template)
|
| 153 |
+
if hasattr(config, 'system_message'):
|
| 154 |
+
self.system_message = config.system_message
|
| 155 |
+
else:
|
| 156 |
+
self.system_message = self.conv_template.system_message
|
| 157 |
+
|
| 158 |
+
min_pixels = config.min_dynamic_patch * (patch_size ** 2)
|
| 159 |
+
max_pixels = config.max_dynamic_patch * (patch_size ** 2)
|
| 160 |
+
down_sample_ratio = config.vision_config.downsample_ratio
|
| 161 |
+
self.image_processor = Qwen2VLImageProcessor(
|
| 162 |
+
do_resize=False,
|
| 163 |
+
do_pad=True,
|
| 164 |
+
do_rescale=True,
|
| 165 |
+
do_normalize=True,
|
| 166 |
+
image_mean=VAE_MEAN,
|
| 167 |
+
image_std=VAE_STD,
|
| 168 |
+
min_pixels=min_pixels,
|
| 169 |
+
max_pixels=max_pixels,
|
| 170 |
+
patch_size=patch_size,
|
| 171 |
+
temporal_patch_size=1,
|
| 172 |
+
merge_size=int(1.0 / down_sample_ratio),
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
##### ---- Special token embeddings ---- #####
|
| 176 |
+
self.special_token_embedding = nn.Embedding(len(SPECIAL_TOKEN_LIST), config.llm_config.hidden_size)
|
| 177 |
+
self.special_token_list = copy.deepcopy(SPECIAL_TOKEN_LIST)
|
| 178 |
+
self.special_token_id_list = None # Remember to initialize this in the training script after tokenizer is loaded
|
| 179 |
+
|
| 180 |
+
self.group = None # Distributed group. Remember to set this in the training script
|
| 181 |
+
|
| 182 |
+
def init_special_token_ids(self, tokenizer):
|
| 183 |
+
special_token_id_list = []
|
| 184 |
+
for token in SPECIAL_TOKEN_LIST:
|
| 185 |
+
special_token_id_list.append(tokenizer.convert_tokens_to_ids(token))
|
| 186 |
+
self.special_token_id_list = special_token_id_list
|
| 187 |
+
|
| 188 |
+
self.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 189 |
+
self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
|
| 190 |
+
self.img_end_token_id = tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
| 191 |
+
self.img_uncond_token_id = tokenizer.convert_tokens_to_ids(IMG_UNCOND_TOKEN)
|
| 192 |
+
|
| 193 |
+
def replace_img_special_tokens(self, input_embeds, input_ids):
|
| 194 |
+
assert self.special_token_id_list is not None, "model's special_token_id_list is not initialized"
|
| 195 |
+
for i, token_id in enumerate(self.special_token_id_list):
|
| 196 |
+
token_pos = input_ids == token_id
|
| 197 |
+
input_embeds[token_pos] = input_embeds[token_pos] * 0.0 + self.special_token_embedding.weight[i]
|
| 198 |
+
|
| 199 |
+
return input_embeds
|
| 200 |
+
|
| 201 |
+
def _init_weights(self, module):
|
| 202 |
+
if isinstance(module, nn.Linear):
|
| 203 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 204 |
+
if module.bias is not None:
|
| 205 |
+
module.bias.data.zero_()
|
| 206 |
+
elif isinstance(module, nn.Embedding):
|
| 207 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 208 |
+
elif isinstance(module, (nn.LayerNorm, Qwen2RMSNorm)):
|
| 209 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
| 210 |
+
module.bias.data.zero_()
|
| 211 |
+
if module.weight is not None:
|
| 212 |
+
module.weight.data.fill_(1.0)
|
| 213 |
+
|
| 214 |
+
def forward(
|
| 215 |
+
self,
|
| 216 |
+
pixel_values: torch.FloatTensor,
|
| 217 |
+
input_ids: torch.LongTensor = None,
|
| 218 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 219 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 220 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 221 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 222 |
+
labels: Optional[torch.LongTensor] = None,
|
| 223 |
+
use_cache: Optional[bool] = None,
|
| 224 |
+
output_attentions: Optional[bool] = None,
|
| 225 |
+
output_hidden_states: Optional[bool] = None,
|
| 226 |
+
return_dict: Optional[bool] = None,
|
| 227 |
+
generation_modality: Optional[int] = 0,
|
| 228 |
+
statistics: Optional[torch.LongTensor] = None,
|
| 229 |
+
loss_weight: Optional[List] = None,
|
| 230 |
+
loss_reduction_all_gather: Optional[bool] = False,
|
| 231 |
+
padding_type: Optional[str] = None,
|
| 232 |
+
type_ids: Optional[torch.LongTensor] = None,
|
| 233 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 234 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 235 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 236 |
+
# cache_position: Optional[torch.LongTensor] = None,
|
| 237 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
| 238 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 239 |
+
ignore_flag = False
|
| 240 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 241 |
+
|
| 242 |
+
image_flags = image_flags.squeeze(-1)
|
| 243 |
+
|
| 244 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
| 245 |
+
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
|
| 246 |
+
|
| 247 |
+
if video_grid_thw is not None:
|
| 248 |
+
grid_thw = video_grid_thw
|
| 249 |
+
else:
|
| 250 |
+
grid_thw = image_grid_thw
|
| 251 |
+
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
|
| 252 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 253 |
+
vit_embeds_ori = vit_embeds_ori[image_flags == 1]
|
| 254 |
+
vit_batch_size = image_flags.sum().item()
|
| 255 |
+
|
| 256 |
+
log_dict_keys = [
|
| 257 |
+
"text_loss", "text_acc1",
|
| 258 |
+
]
|
| 259 |
+
log_dict = {k: torch.tensor(0.0, device=self.device) for k in log_dict_keys}
|
| 260 |
+
return_feature_scale = True
|
| 261 |
+
|
| 262 |
+
B, N, C = input_embeds.shape
|
| 263 |
+
selected = (input_ids == self.img_context_token_id)
|
| 264 |
+
try:
|
| 265 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
| 266 |
+
# ignore_flag = False
|
| 267 |
+
except Exception as e:
|
| 268 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 269 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
| 270 |
+
f'vit_embeds.shape={vit_embeds.shape}', force=True)
|
| 271 |
+
n_token = selected.sum()
|
| 272 |
+
if n_token > vit_embeds.shape[0]:
|
| 273 |
+
selected = selected.view(-1, selected.shape[-1]) # 确保是 [B, N] 形状
|
| 274 |
+
batch_size = selected.shape[0]
|
| 275 |
+
max_visual_tokens = vit_embeds.shape[0] // batch_size # 每个批次可用的视觉特征数量
|
| 276 |
+
for i in range(batch_size):
|
| 277 |
+
# 获取当前批次中的图像标记位置
|
| 278 |
+
curr_selected = selected[i]
|
| 279 |
+
# 只保留前 max_visual_tokens 个标记位置
|
| 280 |
+
curr_indices = torch.where(curr_selected)[0][:max_visual_tokens]
|
| 281 |
+
# 更新选择标记
|
| 282 |
+
selected[i] = False
|
| 283 |
+
selected[i, curr_indices] = True
|
| 284 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
| 285 |
+
ignore_flag = True
|
| 286 |
+
|
| 287 |
+
# input_embeds = input_embeds.reshape(B, N, C)
|
| 288 |
+
visual_token_mask = (selected + (input_ids == self.img_start_token_id))
|
| 289 |
+
|
| 290 |
+
outputs = self.language_model(
|
| 291 |
+
inputs_embeds=input_embeds,
|
| 292 |
+
attention_mask=attention_mask,
|
| 293 |
+
position_ids=position_ids,
|
| 294 |
+
past_key_values=past_key_values,
|
| 295 |
+
use_cache=use_cache,
|
| 296 |
+
output_attentions=output_attentions,
|
| 297 |
+
output_hidden_states=output_hidden_states,
|
| 298 |
+
return_dict=return_dict,
|
| 299 |
+
visual_token_mask=visual_token_mask,
|
| 300 |
+
generation_modality=generation_modality,
|
| 301 |
+
padding_type=padding_type, # or self.train_padding_type,
|
| 302 |
+
skip_lm_head=False, # imgen
|
| 303 |
+
return_feature_scale=return_feature_scale,
|
| 304 |
+
)
|
| 305 |
+
logits = outputs.logits # B, N, C
|
| 306 |
+
|
| 307 |
+
if labels is not None and loss_weight is not None:
|
| 308 |
+
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
|
| 309 |
+
# Shift so that tokens < n predict n
|
| 310 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 311 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 312 |
+
shift_weights = loss_weight[..., 1:].contiguous()
|
| 313 |
+
# Flatten the tokens
|
| 314 |
+
loss_fct = CrossEntropyLoss(reduction='none')
|
| 315 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 316 |
+
shift_labels = shift_labels.view(-1)
|
| 317 |
+
shift_weights = shift_weights.view(-1)
|
| 318 |
+
# Enable model parallelism
|
| 319 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 320 |
+
shift_weights = shift_weights.to(shift_logits.device)
|
| 321 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 322 |
+
|
| 323 |
+
shift_weights_sum = shift_weights.sum()
|
| 324 |
+
if loss_reduction_all_gather:
|
| 325 |
+
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG, group=self.group)
|
| 326 |
+
|
| 327 |
+
pred_ids = shift_logits.argmax(dim=-1)
|
| 328 |
+
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
|
| 329 |
+
|
| 330 |
+
log_dict.update({
|
| 331 |
+
"text_loss": ((loss * shift_weights).sum() / shift_weights_sum).detach(),
|
| 332 |
+
"text_acc1": pred_acc
|
| 333 |
+
})
|
| 334 |
+
|
| 335 |
+
loss = loss * shift_weights
|
| 336 |
+
loss = loss.sum() / shift_weights_sum
|
| 337 |
+
|
| 338 |
+
if ignore_flag:
|
| 339 |
+
loss = loss * 0.0
|
| 340 |
+
|
| 341 |
+
elif labels is not None:
|
| 342 |
+
# To reduce gpu memory, remove the image parts of the logits and labels
|
| 343 |
+
shift_selected = (input_ids == self.img_context_token_id)[..., :-1]
|
| 344 |
+
shift_logits = logits[..., :-1, :][~shift_selected]
|
| 345 |
+
shift_labels = labels[..., 1:][~shift_selected]
|
| 346 |
+
|
| 347 |
+
# Shift so that tokens < n predict n
|
| 348 |
+
# shift_logits = logits[..., :-1, :].contiguous()
|
| 349 |
+
# shift_labels = labels[..., 1:].contiguous()
|
| 350 |
+
# Flatten the tokens
|
| 351 |
+
loss_fct = CrossEntropyLoss()
|
| 352 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 353 |
+
shift_labels = shift_labels.view(-1)
|
| 354 |
+
# Enable model parallelism
|
| 355 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 356 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 357 |
+
|
| 358 |
+
pred_ids = shift_logits.argmax(dim=-1)
|
| 359 |
+
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
|
| 360 |
+
|
| 361 |
+
log_dict.update({
|
| 362 |
+
"text_loss": loss.mean().detach(),
|
| 363 |
+
"text_acc1": pred_acc
|
| 364 |
+
})
|
| 365 |
+
|
| 366 |
+
if ignore_flag:
|
| 367 |
+
loss = loss * 0.0
|
| 368 |
+
|
| 369 |
+
if not return_dict:
|
| 370 |
+
output = (logits,) + outputs[1:]
|
| 371 |
+
return (loss,) + output if loss is not None else output
|
| 372 |
+
|
| 373 |
+
if return_feature_scale:
|
| 374 |
+
log_dict["feature_scale"] = {
|
| 375 |
+
"image": outputs.feature_scale[0],
|
| 376 |
+
"text": outputs.feature_scale[1],
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
return CausalLMOutputWithPast(
|
| 380 |
+
loss=loss,
|
| 381 |
+
logits=logits,
|
| 382 |
+
past_key_values=outputs.past_key_values,
|
| 383 |
+
hidden_states=outputs.hidden_states,
|
| 384 |
+
attentions=outputs.attentions,
|
| 385 |
+
log_dict=log_dict
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
def extract_feature(self, pixel_values, grid_thw=None):
|
| 389 |
+
|
| 390 |
+
if grid_thw is not None:
|
| 391 |
+
grid_thw = grid_thw.to(pixel_values.device)
|
| 392 |
+
|
| 393 |
+
vit_embeds = self.vision_model(
|
| 394 |
+
pixel_values=pixel_values,
|
| 395 |
+
output_hidden_states=False,
|
| 396 |
+
return_dict=True,
|
| 397 |
+
grid_thw=grid_thw
|
| 398 |
+
).last_hidden_state
|
| 399 |
+
|
| 400 |
+
vit_embeds = pixel_shuffle_v2(vit_embeds, scale_factor=self.downsample_ratio, patch_aspect_ratio=self.patch_aspect_ratio)
|
| 401 |
+
|
| 402 |
+
vit_embeds_after_mlp = self.mlp1(vit_embeds)
|
| 403 |
+
|
| 404 |
+
return vit_embeds_after_mlp, vit_embeds
|
| 405 |
+
|
| 406 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
| 407 |
+
num_patches_list=None, num_scales: list = [2],
|
| 408 |
+
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
| 409 |
+
IMG_LINE_BREAK_TOKEN='<IMG_LINE_BREAK>', IMG_FRAME_BREAK_TOKEN='<IMG_FRAME_BREAK>',
|
| 410 |
+
anyres_image_size=True,
|
| 411 |
+
verbose=False,
|
| 412 |
+
):
|
| 413 |
+
|
| 414 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
| 415 |
+
question = '<image>\n' * len(num_scales) + question
|
| 416 |
+
|
| 417 |
+
if num_patches_list is None:
|
| 418 |
+
assert not anyres_image_size, "Please provide `num_patches_list` when anyres_image_size is True."
|
| 419 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 420 |
+
assert pixel_values is None or anyres_image_size or len(pixel_values) == sum(num_patches_list)
|
| 421 |
+
|
| 422 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 423 |
+
self.img_context_token_id = img_context_token_id
|
| 424 |
+
img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
|
| 425 |
+
self.img_start_token_id = img_start_token_id
|
| 426 |
+
self.img_line_break_token_id = tokenizer.convert_tokens_to_ids(IMG_LINE_BREAK_TOKEN)
|
| 427 |
+
self.img_frame_break_token_id = tokenizer.convert_tokens_to_ids(IMG_FRAME_BREAK_TOKEN)
|
| 428 |
+
|
| 429 |
+
template = get_conv_template(self.template)
|
| 430 |
+
template.system_message = self.system_message
|
| 431 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
| 432 |
+
|
| 433 |
+
history = [] if history is None else history
|
| 434 |
+
for (old_question, old_answer) in history:
|
| 435 |
+
template.append_message(template.roles[0], old_question)
|
| 436 |
+
template.append_message(template.roles[1], old_answer)
|
| 437 |
+
template.append_message(template.roles[0], question)
|
| 438 |
+
template.append_message(template.roles[1], None)
|
| 439 |
+
query = template.get_prompt()
|
| 440 |
+
|
| 441 |
+
if verbose and pixel_values is not None:
|
| 442 |
+
image_bs = pixel_values.shape[0]
|
| 443 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 444 |
+
|
| 445 |
+
if anyres_image_size:
|
| 446 |
+
merge_size = int(1.0 / self.downsample_ratio)
|
| 447 |
+
for image_idx in range(len(num_scales)):
|
| 448 |
+
num_scales_prev = sum(num_scales[:image_idx])
|
| 449 |
+
num_scale = num_scales[image_idx]
|
| 450 |
+
_num_image_token_list = num_patches_list[num_scales_prev:num_scales_prev + num_scale]
|
| 451 |
+
image_tokens = f"{IMG_START_TOKEN}"
|
| 452 |
+
for i in range(len(_num_image_token_list)):
|
| 453 |
+
_image_tokens = ""
|
| 454 |
+
t, h, w = _num_image_token_list[i][0], _num_image_token_list[i][1] // merge_size, _num_image_token_list[i][2] // merge_size
|
| 455 |
+
for _ in range(t):
|
| 456 |
+
for _ in range(h):
|
| 457 |
+
_image_tokens += f"{IMG_CONTEXT_TOKEN * w}{IMG_LINE_BREAK_TOKEN}"
|
| 458 |
+
_image_tokens += f"{IMG_FRAME_BREAK_TOKEN}"
|
| 459 |
+
image_tokens += _image_tokens
|
| 460 |
+
image_tokens += f"{IMG_END_TOKEN}"
|
| 461 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 462 |
+
else:
|
| 463 |
+
for num_patches in num_patches_list:
|
| 464 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 465 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 466 |
+
|
| 467 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
| 468 |
+
input_ids = model_inputs['input_ids'].cuda()
|
| 469 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
| 470 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 471 |
+
generation_output = self.generate(
|
| 472 |
+
pixel_values=pixel_values,
|
| 473 |
+
input_ids=input_ids,
|
| 474 |
+
attention_mask=attention_mask,
|
| 475 |
+
image_grid_thw=num_patches_list,
|
| 476 |
+
**generation_config
|
| 477 |
+
)
|
| 478 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 479 |
+
response = response.split(template.sep)[0].strip()
|
| 480 |
+
# fix for InternLM2-base (textvqa)
|
| 481 |
+
response = response.replace("<|im_end|", "")
|
| 482 |
+
response = response.replace("<|im_end", "")
|
| 483 |
+
response = response.replace("<|im", "")
|
| 484 |
+
history.append((question, response))
|
| 485 |
+
if return_history:
|
| 486 |
+
return response, history
|
| 487 |
+
else:
|
| 488 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
| 489 |
+
query_to_print = query_to_print.replace(IMG_LINE_BREAK_TOKEN, '')
|
| 490 |
+
query_to_print = query_to_print.replace(IMG_FRAME_BREAK_TOKEN, '')
|
| 491 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
| 492 |
+
if verbose:
|
| 493 |
+
print(query_to_print, response)
|
| 494 |
+
|
| 495 |
+
return response
|
| 496 |
+
|
| 497 |
+
@torch.no_grad()
|
| 498 |
+
def generate(
|
| 499 |
+
self,
|
| 500 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 501 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 502 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 503 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 504 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 505 |
+
output_hidden_states: Optional[bool] = None,
|
| 506 |
+
return_dict: Optional[bool] = None,
|
| 507 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 508 |
+
**generate_kwargs,
|
| 509 |
+
) -> torch.LongTensor:
|
| 510 |
+
|
| 511 |
+
assert self.img_context_token_id is not None
|
| 512 |
+
|
| 513 |
+
grid_thw = image_grid_thw
|
| 514 |
+
|
| 515 |
+
if pixel_values is not None:
|
| 516 |
+
if visual_features is not None:
|
| 517 |
+
vit_embeds = visual_features
|
| 518 |
+
else:
|
| 519 |
+
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
|
| 520 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 521 |
+
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
|
| 522 |
+
B, N, C = input_embeds.shape
|
| 523 |
+
# input_embeds = input_embeds.reshape(B * N, C)
|
| 524 |
+
|
| 525 |
+
# input_ids = input_ids.reshape(B * N)
|
| 526 |
+
selected = (input_ids == self.img_context_token_id) # B, N
|
| 527 |
+
assert selected.sum() != 0
|
| 528 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 529 |
+
|
| 530 |
+
# input_embeds = input_embeds.reshape(B, N, C)
|
| 531 |
+
else:
|
| 532 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 533 |
+
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
|
| 534 |
+
selected = None
|
| 535 |
+
|
| 536 |
+
# input_embeds = self.replace_special_tokens(input_embeds, input_ids)
|
| 537 |
+
visual_token_mask = selected + (input_ids == self.img_start_token_id) if selected is not None else None
|
| 538 |
+
|
| 539 |
+
position_ids = None
|
| 540 |
+
generate_kwargs['position_ids'] = position_ids
|
| 541 |
+
|
| 542 |
+
outputs = self.language_model.generate(
|
| 543 |
+
inputs_embeds=input_embeds,
|
| 544 |
+
attention_mask=attention_mask,
|
| 545 |
+
generation_config=generation_config,
|
| 546 |
+
output_hidden_states=output_hidden_states,
|
| 547 |
+
# return_dict=return_dict,
|
| 548 |
+
use_cache=True,
|
| 549 |
+
visual_token_mask=visual_token_mask,
|
| 550 |
+
**generate_kwargs,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
return outputs
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def pixel_shuffle_v2(x, scale_factor=0.5, patch_aspect_ratio=1.0):
|
| 557 |
+
# input shape: N, L, C or N, H, W, C
|
| 558 |
+
# output shape: N, L * (scale_factor ** 2), C / (scale_factor ** 2)
|
| 559 |
+
|
| 560 |
+
if x.ndim == 3:
|
| 561 |
+
n, l, c = x.size()
|
| 562 |
+
h = w = int(l ** 0.5)
|
| 563 |
+
# N, L, C --> N, H, W, C
|
| 564 |
+
x = x.reshape(n, h, w, c)
|
| 565 |
+
|
| 566 |
+
n, h, w, c = x.size()
|
| 567 |
+
|
| 568 |
+
h_scale_factor = scale_factor * (patch_aspect_ratio ** 0.5)
|
| 569 |
+
w_scale_factor = scale_factor / (patch_aspect_ratio ** 0.5)
|
| 570 |
+
|
| 571 |
+
# N, H, W, C --> N, H, W * w_scale_factor, C // w_scale_factor
|
| 572 |
+
x = x.reshape(n, h, int(w * w_scale_factor), int(c / w_scale_factor))
|
| 573 |
+
# N, H, W * w_scale_factor, C // w_scale_factor --> N, W * w_scale_factor, H, C // w_scale_factor
|
| 574 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 575 |
+
# N, W * w_scale_factor, H, C // w_scale_factor --> N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor)
|
| 576 |
+
x = x.reshape(n, int(w * w_scale_factor), int(h * h_scale_factor), int(c / (w_scale_factor * h_scale_factor)))
|
| 577 |
+
# N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor)
|
| 578 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 579 |
+
# N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, L * (scale_factor ** 2), C // (scale_factor ** 2)
|
| 580 |
+
x = x.reshape(n, int(h * h_scale_factor * w * w_scale_factor), int(c / (h_scale_factor * w_scale_factor)))
|
| 581 |
+
|
| 582 |
+
return x
|
modeling_navil_vit_anyres.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# NaViL
|
| 3 |
+
# Copyright (c) 2025 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
from typing import Optional, Tuple, Union
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from timm.models.layers import DropPath
|
| 15 |
+
from torch import nn
|
| 16 |
+
from transformers.activations import ACT2FN
|
| 17 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 18 |
+
BaseModelOutputWithPooling)
|
| 19 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
from .configuration_navil_vit import NaViLVisionConfig
|
| 23 |
+
from .modular_intern_vit import (
|
| 24 |
+
InternVisionFlashAttention2,
|
| 25 |
+
InternVisionSdpaAttention,
|
| 26 |
+
InternMLP,
|
| 27 |
+
NORM2FN,
|
| 28 |
+
InternVisionRotaryEmbedding,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
# from .flash_attention import FlashAttention
|
| 33 |
+
from flash_attn import flash_attn_varlen_func
|
| 34 |
+
from flash_attn.layers.rotary import apply_rotary_emb
|
| 35 |
+
has_flash_attn = True
|
| 36 |
+
except:
|
| 37 |
+
print('FlashAttention is not installed.')
|
| 38 |
+
has_flash_attn = False
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class NaViLVisionEmbeddingsAnyRes(nn.Module):
|
| 44 |
+
def __init__(self, config: NaViLVisionConfig):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.config = config
|
| 47 |
+
self.embed_dim = config.hidden_size
|
| 48 |
+
self.image_size = config.image_size
|
| 49 |
+
self.patch_size = config.patch_size
|
| 50 |
+
self.merge_size = int(1.0 / config.downsample_ratio)
|
| 51 |
+
|
| 52 |
+
self.patch_embedding = nn.Conv2d(
|
| 53 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 57 |
+
self.num_positions = self.num_patches + 1
|
| 58 |
+
|
| 59 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 60 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 61 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 62 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 63 |
+
|
| 64 |
+
return patch_embeds.flatten(1)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class NaViLVisionEncoderLayerAnyRes(nn.Module):
|
| 68 |
+
def __init__(self, config: NaViLVisionConfig, drop_path_rate: float):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.embed_dim = config.hidden_size
|
| 71 |
+
self.intermediate_size = config.intermediate_size
|
| 72 |
+
self.norm_type = config.norm_type
|
| 73 |
+
|
| 74 |
+
if has_flash_attn:
|
| 75 |
+
self.attn = InternVisionFlashAttention2(config)
|
| 76 |
+
else:
|
| 77 |
+
self.attn = InternVisionSdpaAttention(config)
|
| 78 |
+
self.mlp = InternMLP(config)
|
| 79 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 80 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 81 |
+
|
| 82 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 83 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 84 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 85 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 86 |
+
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
hidden_states: torch.Tensor,
|
| 90 |
+
cu_seqlens,
|
| 91 |
+
rotary_pos_emb
|
| 92 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 93 |
+
"""
|
| 94 |
+
Args:
|
| 95 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 96 |
+
"""
|
| 97 |
+
hidden_states = hidden_states + self.drop_path1(
|
| 98 |
+
self.attn(
|
| 99 |
+
self.norm1(hidden_states),
|
| 100 |
+
cu_seqlens=cu_seqlens,
|
| 101 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 102 |
+
) * self.ls1)
|
| 103 |
+
|
| 104 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
| 105 |
+
|
| 106 |
+
return hidden_states
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class NaViLVisionEncoderAnyRes(nn.Module):
|
| 110 |
+
"""
|
| 111 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 112 |
+
[`InternEncoderLayer`].
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
config (`InternConfig`):
|
| 116 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
def __init__(self, config: NaViLVisionConfig):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.config = config
|
| 122 |
+
# stochastic depth decay rule
|
| 123 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 124 |
+
self.layers = nn.ModuleList([
|
| 125 |
+
NaViLVisionEncoderLayerAnyRes(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 126 |
+
self.gradient_checkpointing = True
|
| 127 |
+
|
| 128 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 129 |
+
self.rotary_pos_emb = InternVisionRotaryEmbedding(head_dim // 2)
|
| 130 |
+
|
| 131 |
+
self.merge_size = int(1.0 / config.downsample_ratio)
|
| 132 |
+
self.merge_unit = self.merge_size * self.merge_size
|
| 133 |
+
self.patch_size = config.patch_size
|
| 134 |
+
self.fullatt_block_indexes = config.fullatt_block_indexes
|
| 135 |
+
self.window_size = config.window_size
|
| 136 |
+
|
| 137 |
+
def rot_pos_emb(self, grid_thw):
|
| 138 |
+
pos_ids = []
|
| 139 |
+
for t, h, w in grid_thw:
|
| 140 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
| 141 |
+
hpos_ids = hpos_ids.reshape(
|
| 142 |
+
h // self.merge_size,
|
| 143 |
+
self.merge_size,
|
| 144 |
+
w // self.merge_size,
|
| 145 |
+
self.merge_size,
|
| 146 |
+
)
|
| 147 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
| 148 |
+
hpos_ids = hpos_ids.flatten()
|
| 149 |
+
|
| 150 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
| 151 |
+
wpos_ids = wpos_ids.reshape(
|
| 152 |
+
h // self.merge_size,
|
| 153 |
+
self.merge_size,
|
| 154 |
+
w // self.merge_size,
|
| 155 |
+
self.merge_size,
|
| 156 |
+
)
|
| 157 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
| 158 |
+
wpos_ids = wpos_ids.flatten()
|
| 159 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
| 160 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
| 161 |
+
max_grid_size = grid_thw[:, 1:].max()
|
| 162 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
| 163 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
| 164 |
+
return rotary_pos_emb
|
| 165 |
+
|
| 166 |
+
def get_window_index(self, grid_thw):
|
| 167 |
+
window_index: list = []
|
| 168 |
+
cu_window_seqlens: list = [0]
|
| 169 |
+
window_index_id = 0
|
| 170 |
+
vit_merger_window_size = self.window_size // self.merge_size
|
| 171 |
+
assert vit_merger_window_size > 0
|
| 172 |
+
|
| 173 |
+
for grid_t, grid_h, grid_w in grid_thw:
|
| 174 |
+
llm_grid_h, llm_grid_w = (
|
| 175 |
+
grid_h // self.merge_size,
|
| 176 |
+
grid_w // self.merge_size,
|
| 177 |
+
)
|
| 178 |
+
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
|
| 179 |
+
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
| 180 |
+
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
| 181 |
+
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
| 182 |
+
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
| 183 |
+
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
|
| 184 |
+
index_padded = index_padded.reshape(
|
| 185 |
+
grid_t,
|
| 186 |
+
num_windows_h,
|
| 187 |
+
vit_merger_window_size,
|
| 188 |
+
num_windows_w,
|
| 189 |
+
vit_merger_window_size,
|
| 190 |
+
)
|
| 191 |
+
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
| 192 |
+
grid_t,
|
| 193 |
+
num_windows_h * num_windows_w,
|
| 194 |
+
vit_merger_window_size,
|
| 195 |
+
vit_merger_window_size,
|
| 196 |
+
)
|
| 197 |
+
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
| 198 |
+
index_padded = index_padded.reshape(-1)
|
| 199 |
+
index_new = index_padded[index_padded != -100]
|
| 200 |
+
window_index.append(index_new + window_index_id)
|
| 201 |
+
cu_seqlens_tmp = seqlens.cumsum(0) * self.merge_unit + cu_window_seqlens[-1]
|
| 202 |
+
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
| 203 |
+
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
| 204 |
+
window_index = torch.cat(window_index, dim=0)
|
| 205 |
+
|
| 206 |
+
return window_index, cu_window_seqlens
|
| 207 |
+
|
| 208 |
+
def forward(
|
| 209 |
+
self,
|
| 210 |
+
inputs_embeds,
|
| 211 |
+
output_hidden_states: Optional[bool] = None,
|
| 212 |
+
return_dict: Optional[bool] = None,
|
| 213 |
+
grid_thw: Optional[torch.Tensor] = None,
|
| 214 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 215 |
+
r"""
|
| 216 |
+
Args:
|
| 217 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 218 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 219 |
+
output_hidden_states (`bool`, *optional*):
|
| 220 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 221 |
+
for more detail.
|
| 222 |
+
return_dict (`bool`, *optional*):
|
| 223 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 224 |
+
"""
|
| 225 |
+
output_hidden_states = (
|
| 226 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 227 |
+
)
|
| 228 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 229 |
+
|
| 230 |
+
encoder_states = () if output_hidden_states else None
|
| 231 |
+
hidden_states = inputs_embeds
|
| 232 |
+
|
| 233 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 234 |
+
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
| 235 |
+
cu_window_seqlens = torch.tensor(
|
| 236 |
+
cu_window_seqlens,
|
| 237 |
+
device=hidden_states.device,
|
| 238 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 239 |
+
)
|
| 240 |
+
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
| 241 |
+
|
| 242 |
+
seq_len, _ = hidden_states.size()
|
| 243 |
+
hidden_states = hidden_states.reshape(seq_len // self.merge_unit, self.merge_unit, -1)
|
| 244 |
+
hidden_states = hidden_states[window_index, :, :]
|
| 245 |
+
hidden_states = hidden_states.reshape(seq_len, -1)
|
| 246 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.merge_unit, self.merge_unit, -1)
|
| 247 |
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
| 248 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
| 249 |
+
|
| 250 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
| 251 |
+
dim=0,
|
| 252 |
+
# Select dtype based on the following factors:
|
| 253 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
| 254 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
| 255 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
| 256 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 257 |
+
)
|
| 258 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 262 |
+
if (self.fullatt_block_indexes is None) or (idx in self.fullatt_block_indexes):
|
| 263 |
+
cu_seqlens_now = cu_seqlens
|
| 264 |
+
else:
|
| 265 |
+
cu_seqlens_now = cu_window_seqlens
|
| 266 |
+
if output_hidden_states:
|
| 267 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 268 |
+
if self.gradient_checkpointing and self.training:
|
| 269 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 270 |
+
partial(encoder_layer, cu_seqlens=cu_seqlens_now, rotary_pos_emb=rotary_pos_emb),
|
| 271 |
+
hidden_states)
|
| 272 |
+
else:
|
| 273 |
+
layer_outputs = encoder_layer(
|
| 274 |
+
hidden_states,
|
| 275 |
+
cu_seqlens=cu_seqlens_now,
|
| 276 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 277 |
+
)
|
| 278 |
+
hidden_states = layer_outputs
|
| 279 |
+
|
| 280 |
+
if output_hidden_states:
|
| 281 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 282 |
+
|
| 283 |
+
if not return_dict:
|
| 284 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 285 |
+
return BaseModelOutput(
|
| 286 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class NaViLVisionModelAnyRes(PreTrainedModel):
|
| 291 |
+
main_input_name = 'pixel_values'
|
| 292 |
+
config_class = NaViLVisionConfig
|
| 293 |
+
_no_split_modules = ['NaViLVisionEncoderLayerAnyRes']
|
| 294 |
+
|
| 295 |
+
def __init__(self, config: NaViLVisionConfig):
|
| 296 |
+
super().__init__(config)
|
| 297 |
+
self.config = config
|
| 298 |
+
|
| 299 |
+
self.merge_size = int(1.0 / config.downsample_ratio)
|
| 300 |
+
self.embeddings = NaViLVisionEmbeddingsAnyRes(config)
|
| 301 |
+
self.encoder = NaViLVisionEncoderAnyRes(config)
|
| 302 |
+
|
| 303 |
+
def get_input_embeddings(self):
|
| 304 |
+
return self.embeddings
|
| 305 |
+
|
| 306 |
+
def forward(
|
| 307 |
+
self,
|
| 308 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 309 |
+
output_hidden_states: Optional[bool] = None,
|
| 310 |
+
return_dict: Optional[bool] = None,
|
| 311 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 312 |
+
grid_thw: Optional[torch.Tensor] = None,
|
| 313 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 314 |
+
output_hidden_states = (
|
| 315 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 316 |
+
)
|
| 317 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 318 |
+
|
| 319 |
+
if pixel_values is None and pixel_embeds is None:
|
| 320 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 321 |
+
|
| 322 |
+
if pixel_embeds is not None:
|
| 323 |
+
hidden_states = pixel_embeds
|
| 324 |
+
else:
|
| 325 |
+
if len(pixel_values.shape) == 4:
|
| 326 |
+
hidden_states = self.embeddings(pixel_values)
|
| 327 |
+
else:
|
| 328 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 329 |
+
|
| 330 |
+
encoder_outputs = self.encoder(
|
| 331 |
+
inputs_embeds=hidden_states,
|
| 332 |
+
output_hidden_states=output_hidden_states,
|
| 333 |
+
return_dict=return_dict,
|
| 334 |
+
grid_thw=grid_thw
|
| 335 |
+
)
|
| 336 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 337 |
+
# pooled_output = last_hidden_state[:, 0, :]
|
| 338 |
+
|
| 339 |
+
last_hidden_state = last_hidden_state.unsqueeze(1).reshape(-1, self.merge_size, self.merge_size, last_hidden_state.shape[-1])
|
| 340 |
+
|
| 341 |
+
if not return_dict:
|
| 342 |
+
return (last_hidden_state, ) + encoder_outputs[1:]
|
| 343 |
+
|
| 344 |
+
return BaseModelOutputWithPooling(
|
| 345 |
+
last_hidden_state=last_hidden_state,
|
| 346 |
+
pooler_output=None,
|
| 347 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 348 |
+
attentions=encoder_outputs.attentions,
|
| 349 |
+
)
|
modeling_qwen3_ve.py
ADDED
|
@@ -0,0 +1,1629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/qwen3/modular_qwen3.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_qwen3.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
+
# coding=utf-8
|
| 8 |
+
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
|
| 22 |
+
from functools import partial
|
| 23 |
+
from typing import Callable, Optional, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
from torch import logit, nn
|
| 27 |
+
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
| 30 |
+
from transformers.generation import GenerationMixin
|
| 31 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 32 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 33 |
+
from transformers.modeling_outputs import (
|
| 34 |
+
BaseModelOutputWithPast,
|
| 35 |
+
CausalLMOutputWithPast,
|
| 36 |
+
QuestionAnsweringModelOutput,
|
| 37 |
+
SequenceClassifierOutputWithPast,
|
| 38 |
+
TokenClassifierOutput,
|
| 39 |
+
)
|
| 40 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 41 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 42 |
+
from transformers.processing_utils import Unpack
|
| 43 |
+
from transformers.utils import (
|
| 44 |
+
LossKwargs,
|
| 45 |
+
add_code_sample_docstrings,
|
| 46 |
+
add_start_docstrings,
|
| 47 |
+
add_start_docstrings_to_model_forward,
|
| 48 |
+
can_return_tuple,
|
| 49 |
+
logging,
|
| 50 |
+
replace_return_docstrings,
|
| 51 |
+
)
|
| 52 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 53 |
+
from .configuration_qwen3 import Qwen3VEConfig
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
logger = logging.get_logger(__name__)
|
| 57 |
+
|
| 58 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen3-8B"
|
| 59 |
+
_CONFIG_FOR_DOC = "Qwen3VEConfig"
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class Qwen3RMSNorm(nn.Module):
|
| 63 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 64 |
+
"""
|
| 65 |
+
Qwen3RMSNorm is equivalent to T5LayerNorm
|
| 66 |
+
"""
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 69 |
+
self.variance_epsilon = eps
|
| 70 |
+
|
| 71 |
+
def forward(self, hidden_states):
|
| 72 |
+
input_dtype = hidden_states.dtype
|
| 73 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 74 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 75 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 76 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 77 |
+
|
| 78 |
+
def extra_repr(self):
|
| 79 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Qwen3MLP(nn.Module):
|
| 83 |
+
def __init__(self, config):
|
| 84 |
+
super().__init__()
|
| 85 |
+
self.config = config
|
| 86 |
+
self.hidden_size = config.hidden_size
|
| 87 |
+
self.intermediate_size = config.intermediate_size
|
| 88 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 89 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 90 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 91 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 95 |
+
return down_proj
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def rotate_half(x):
|
| 99 |
+
"""Rotates half the hidden dims of the input."""
|
| 100 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 101 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 102 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 106 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
q (`torch.Tensor`): The query tensor.
|
| 110 |
+
k (`torch.Tensor`): The key tensor.
|
| 111 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 112 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 113 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 114 |
+
Deprecated and unused.
|
| 115 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 116 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 117 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 118 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 119 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 120 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 121 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 122 |
+
Returns:
|
| 123 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 124 |
+
"""
|
| 125 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 126 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 127 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 128 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 129 |
+
return q_embed, k_embed
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 133 |
+
"""
|
| 134 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 135 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 136 |
+
"""
|
| 137 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 138 |
+
if n_rep == 1:
|
| 139 |
+
return hidden_states
|
| 140 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 141 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def eager_attention_forward(
|
| 145 |
+
module: nn.Module,
|
| 146 |
+
query: torch.Tensor,
|
| 147 |
+
key: torch.Tensor,
|
| 148 |
+
value: torch.Tensor,
|
| 149 |
+
attention_mask: Optional[torch.Tensor],
|
| 150 |
+
scaling: float,
|
| 151 |
+
dropout: float = 0.0,
|
| 152 |
+
**kwargs,
|
| 153 |
+
):
|
| 154 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 155 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 156 |
+
|
| 157 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 158 |
+
if attention_mask is not None:
|
| 159 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 160 |
+
attn_weights = attn_weights + causal_mask
|
| 161 |
+
|
| 162 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 163 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 164 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 165 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 166 |
+
|
| 167 |
+
return attn_output, attn_weights
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class Qwen3Attention(nn.Module):
|
| 171 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 172 |
+
|
| 173 |
+
def __init__(self, config: Qwen3VEConfig, layer_idx: int):
|
| 174 |
+
super().__init__()
|
| 175 |
+
self.config = config
|
| 176 |
+
self.layer_idx = layer_idx
|
| 177 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 178 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 179 |
+
self.scaling = self.head_dim**-0.5
|
| 180 |
+
self.attention_dropout = config.attention_dropout
|
| 181 |
+
self.is_causal = True
|
| 182 |
+
|
| 183 |
+
self.q_proj = nn.Linear(
|
| 184 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 185 |
+
)
|
| 186 |
+
self.k_proj = nn.Linear(
|
| 187 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 188 |
+
)
|
| 189 |
+
self.v_proj = nn.Linear(
|
| 190 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 191 |
+
)
|
| 192 |
+
self.o_proj = nn.Linear(
|
| 193 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 194 |
+
)
|
| 195 |
+
self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
| 196 |
+
self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
|
| 197 |
+
|
| 198 |
+
self.q_proj_ve = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias)
|
| 199 |
+
self.k_proj_ve = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 200 |
+
self.v_proj_ve = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 201 |
+
self.o_proj_ve = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias)
|
| 202 |
+
self.q_norm_ve = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
| 203 |
+
self.k_norm_ve = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
|
| 204 |
+
|
| 205 |
+
self.sliding_window = config.sliding_window
|
| 206 |
+
if not (
|
| 207 |
+
self.config.use_sliding_window
|
| 208 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 209 |
+
and self.layer_idx >= self.config.max_window_layers
|
| 210 |
+
):
|
| 211 |
+
self.sliding_window = None
|
| 212 |
+
|
| 213 |
+
def forward(
|
| 214 |
+
self,
|
| 215 |
+
hidden_states: torch.Tensor,
|
| 216 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 217 |
+
attention_mask: Optional[torch.Tensor],
|
| 218 |
+
past_key_value: Optional[Cache] = None,
|
| 219 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 220 |
+
visual_token_mask: Optional[torch.Tensor] = None,
|
| 221 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 222 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 223 |
+
input_shape = hidden_states.shape[:-1]
|
| 224 |
+
hidden_shape = (*input_shape, -1, self.head_dim) # [B, L, -1, D]
|
| 225 |
+
|
| 226 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape))
|
| 227 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape))
|
| 228 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape)
|
| 229 |
+
|
| 230 |
+
if visual_token_mask is not None:
|
| 231 |
+
# NOTE visual token mask can be None when evaluating with kv_cache
|
| 232 |
+
visual_token_mask = visual_token_mask.bool() # B, L
|
| 233 |
+
if visual_token_mask.any():
|
| 234 |
+
query_states[visual_token_mask] = self.q_norm_ve(self.q_proj_ve(hidden_states).view(hidden_shape))[visual_token_mask]
|
| 235 |
+
key_states[visual_token_mask] = self.k_norm_ve(self.k_proj_ve(hidden_states).view(hidden_shape))[visual_token_mask]
|
| 236 |
+
value_states[visual_token_mask] = self.v_proj_ve(hidden_states).view(hidden_shape)[visual_token_mask]
|
| 237 |
+
|
| 238 |
+
query_states = query_states.transpose(1, 2)
|
| 239 |
+
key_states = key_states.transpose(1, 2)
|
| 240 |
+
value_states = value_states.transpose(1, 2)
|
| 241 |
+
|
| 242 |
+
cos, sin = position_embeddings
|
| 243 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 244 |
+
|
| 245 |
+
if past_key_value is not None:
|
| 246 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 247 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 248 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 249 |
+
|
| 250 |
+
attention_interface: Callable = eager_attention_forward
|
| 251 |
+
if self.config._attn_implementation != "eager":
|
| 252 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
| 253 |
+
logger.warning_once(
|
| 254 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 255 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 256 |
+
)
|
| 257 |
+
else:
|
| 258 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 259 |
+
|
| 260 |
+
attn_output, attn_weights = attention_interface(
|
| 261 |
+
self,
|
| 262 |
+
query_states,
|
| 263 |
+
key_states,
|
| 264 |
+
value_states,
|
| 265 |
+
attention_mask,
|
| 266 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 267 |
+
scaling=self.scaling,
|
| 268 |
+
sliding_window=self.sliding_window, # diff with Llama
|
| 269 |
+
**kwargs,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 273 |
+
attn_output_prev = attn_output.clone()
|
| 274 |
+
attn_output = self.o_proj(attn_output_prev)
|
| 275 |
+
|
| 276 |
+
if visual_token_mask is not None:
|
| 277 |
+
if visual_token_mask.any():
|
| 278 |
+
attn_output[visual_token_mask] = self.o_proj_ve(attn_output_prev[visual_token_mask])
|
| 279 |
+
|
| 280 |
+
return attn_output, attn_weights
|
| 281 |
+
|
| 282 |
+
import torch.nn.functional as F
|
| 283 |
+
from transformers.utils import (
|
| 284 |
+
add_start_docstrings,
|
| 285 |
+
add_start_docstrings_to_model_forward,
|
| 286 |
+
is_flash_attn_2_available,
|
| 287 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 288 |
+
logging,
|
| 289 |
+
replace_return_docstrings,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
import inspect
|
| 293 |
+
if is_flash_attn_2_available():
|
| 294 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 295 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 296 |
+
|
| 297 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
| 298 |
+
|
| 299 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 300 |
+
def _get_unpad_data(attention_mask):
|
| 301 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 302 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 303 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 304 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 305 |
+
return (
|
| 306 |
+
indices,
|
| 307 |
+
cu_seqlens,
|
| 308 |
+
max_seqlen_in_batch,
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class Qwen3FlashAttention2(Qwen3Attention):
|
| 313 |
+
"""
|
| 314 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
| 315 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
| 316 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
| 317 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
| 318 |
+
config.max_window_layers layers.
|
| 319 |
+
"""
|
| 320 |
+
|
| 321 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 322 |
+
def __init__(self, *args, **kwargs):
|
| 323 |
+
super().__init__(*args, **kwargs)
|
| 324 |
+
|
| 325 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 326 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 327 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 328 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 329 |
+
|
| 330 |
+
def forward(
|
| 331 |
+
self,
|
| 332 |
+
hidden_states: torch.Tensor,
|
| 333 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 334 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 335 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 336 |
+
past_key_value: Optional[Cache] = None,
|
| 337 |
+
output_attentions: bool = False,
|
| 338 |
+
use_cache: bool = False,
|
| 339 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 340 |
+
padding_type: str = "pad",
|
| 341 |
+
visual_token_mask: Optional[torch.Tensor] = None,
|
| 342 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 343 |
+
):
|
| 344 |
+
bsz, q_len, _ = hidden_states.size()
|
| 345 |
+
input_shape = hidden_states.shape[:-1]
|
| 346 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 347 |
+
|
| 348 |
+
# print(f"{hidden_states.dtype=}")
|
| 349 |
+
# print(f"{self.q_proj.weight.dtype=}")
|
| 350 |
+
|
| 351 |
+
# query_states = self.q_proj(hidden_states)
|
| 352 |
+
# key_states = self.k_proj(hidden_states)
|
| 353 |
+
# value_states = self.v_proj(hidden_states)
|
| 354 |
+
|
| 355 |
+
# query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 356 |
+
# key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 357 |
+
# value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 358 |
+
|
| 359 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape))
|
| 360 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape))
|
| 361 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape)
|
| 362 |
+
|
| 363 |
+
if visual_token_mask is not None:
|
| 364 |
+
# NOTE visual token mask can be None when evaluating with kv_cache
|
| 365 |
+
visual_token_mask = visual_token_mask.bool() # B, L
|
| 366 |
+
if visual_token_mask.any():
|
| 367 |
+
query_states[visual_token_mask] = self.q_norm_ve(self.q_proj_ve(hidden_states).view(hidden_shape))[visual_token_mask]
|
| 368 |
+
key_states[visual_token_mask] = self.k_norm_ve(self.k_proj_ve(hidden_states).view(hidden_shape))[visual_token_mask]
|
| 369 |
+
value_states[visual_token_mask] = self.v_proj_ve(hidden_states).view(hidden_shape)[visual_token_mask]
|
| 370 |
+
|
| 371 |
+
query_states = query_states.transpose(1, 2)
|
| 372 |
+
key_states = key_states.transpose(1, 2)
|
| 373 |
+
value_states = value_states.transpose(1, 2)
|
| 374 |
+
|
| 375 |
+
kv_seq_len = key_states.shape[-2]
|
| 376 |
+
if past_key_value is not None:
|
| 377 |
+
if self.layer_idx is None:
|
| 378 |
+
raise ValueError(
|
| 379 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 380 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 381 |
+
"with a layer index."
|
| 382 |
+
)
|
| 383 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 384 |
+
|
| 385 |
+
# # Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 386 |
+
# rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
| 387 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
| 388 |
+
|
| 389 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 390 |
+
|
| 391 |
+
cos, sin = position_embeddings
|
| 392 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 393 |
+
|
| 394 |
+
use_sliding_windows = (
|
| 395 |
+
_flash_supports_window_size
|
| 396 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 397 |
+
and kv_seq_len > self.config.sliding_window
|
| 398 |
+
and self.config.use_sliding_window
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
if not _flash_supports_window_size:
|
| 402 |
+
logger.warning_once(
|
| 403 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
| 404 |
+
" make sure to upgrade flash-attn library."
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
if past_key_value is not None:
|
| 408 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
| 409 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
| 410 |
+
if (
|
| 411 |
+
getattr(self.config, "sliding_window", None) is not None
|
| 412 |
+
and kv_seq_len > self.config.sliding_window
|
| 413 |
+
and cache_has_contents
|
| 414 |
+
):
|
| 415 |
+
slicing_tokens = 1 - self.config.sliding_window
|
| 416 |
+
|
| 417 |
+
past_key = past_key_value[self.layer_idx][0]
|
| 418 |
+
past_value = past_key_value[self.layer_idx][1]
|
| 419 |
+
|
| 420 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
| 421 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
| 422 |
+
|
| 423 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
| 424 |
+
raise ValueError(
|
| 425 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
| 426 |
+
f" {past_key.shape}"
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
if attention_mask is not None:
|
| 430 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
| 431 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
| 432 |
+
|
| 433 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 434 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 435 |
+
|
| 436 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 437 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 438 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 439 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
| 440 |
+
|
| 441 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 442 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 443 |
+
# cast them back in float16 just to be sure everything works as expected.
|
| 444 |
+
input_dtype = query_states.dtype
|
| 445 |
+
if input_dtype == torch.float32:
|
| 446 |
+
if torch.is_autocast_enabled():
|
| 447 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 448 |
+
# Handle the case where the model is quantized
|
| 449 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 450 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 451 |
+
else:
|
| 452 |
+
target_dtype = self.q_proj.weight.dtype
|
| 453 |
+
|
| 454 |
+
logger.warning_once(
|
| 455 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 456 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 457 |
+
f" {target_dtype}."
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
query_states = query_states.to(target_dtype)
|
| 461 |
+
key_states = key_states.to(target_dtype)
|
| 462 |
+
value_states = value_states.to(target_dtype)
|
| 463 |
+
|
| 464 |
+
# Reashape to the expected shape for Flash Attention
|
| 465 |
+
query_states = query_states.transpose(1, 2)
|
| 466 |
+
key_states = key_states.transpose(1, 2)
|
| 467 |
+
value_states = value_states.transpose(1, 2)
|
| 468 |
+
|
| 469 |
+
attn_output = self._flash_attention_forward(
|
| 470 |
+
query_states,
|
| 471 |
+
key_states,
|
| 472 |
+
value_states,
|
| 473 |
+
attention_mask,
|
| 474 |
+
q_len,
|
| 475 |
+
dropout=dropout_rate,
|
| 476 |
+
use_sliding_windows=use_sliding_windows,
|
| 477 |
+
padding_type=padding_type,
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 481 |
+
|
| 482 |
+
attn_output_prev = attn_output.clone()
|
| 483 |
+
attn_output = self.o_proj(attn_output_prev)
|
| 484 |
+
|
| 485 |
+
if visual_token_mask is not None:
|
| 486 |
+
if visual_token_mask.any():
|
| 487 |
+
attn_output[visual_token_mask] = self.o_proj_ve(attn_output_prev[visual_token_mask])
|
| 488 |
+
|
| 489 |
+
if not output_attentions:
|
| 490 |
+
attn_weights = None
|
| 491 |
+
|
| 492 |
+
return attn_output, attn_weights
|
| 493 |
+
|
| 494 |
+
def _flash_attention_forward(
|
| 495 |
+
self,
|
| 496 |
+
query_states,
|
| 497 |
+
key_states,
|
| 498 |
+
value_states,
|
| 499 |
+
attention_mask,
|
| 500 |
+
query_length,
|
| 501 |
+
dropout=0.0,
|
| 502 |
+
softmax_scale=None,
|
| 503 |
+
use_sliding_windows=False,
|
| 504 |
+
padding_type="pad"
|
| 505 |
+
):
|
| 506 |
+
"""
|
| 507 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 508 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 509 |
+
|
| 510 |
+
Args:
|
| 511 |
+
query_states (`torch.Tensor`):
|
| 512 |
+
Input query states to be passed to Flash Attention API
|
| 513 |
+
key_states (`torch.Tensor`):
|
| 514 |
+
Input key states to be passed to Flash Attention API
|
| 515 |
+
value_states (`torch.Tensor`):
|
| 516 |
+
Input value states to be passed to Flash Attention API
|
| 517 |
+
attention_mask (`torch.Tensor`):
|
| 518 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 519 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 520 |
+
dropout (`int`, *optional*):
|
| 521 |
+
Attention dropout
|
| 522 |
+
softmax_scale (`float`, *optional*):
|
| 523 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 524 |
+
use_sliding_windows (`bool`, *optional*):
|
| 525 |
+
Whether to activate sliding window attention.
|
| 526 |
+
"""
|
| 527 |
+
if padding_type == "pad":
|
| 528 |
+
attn_output = self._flash_attention_forward_pad(
|
| 529 |
+
query_states,
|
| 530 |
+
key_states,
|
| 531 |
+
value_states,
|
| 532 |
+
attention_mask,
|
| 533 |
+
query_length,
|
| 534 |
+
dropout=dropout,
|
| 535 |
+
softmax_scale=softmax_scale,
|
| 536 |
+
use_sliding_windows=use_sliding_windows,
|
| 537 |
+
)
|
| 538 |
+
elif padding_type == "pack":
|
| 539 |
+
attn_output = self._flash_attention_forward_pack(
|
| 540 |
+
query_states,
|
| 541 |
+
key_states,
|
| 542 |
+
value_states,
|
| 543 |
+
attention_mask,
|
| 544 |
+
query_length,
|
| 545 |
+
dropout=dropout,
|
| 546 |
+
softmax_scale=softmax_scale,
|
| 547 |
+
use_sliding_windows=use_sliding_windows,
|
| 548 |
+
)
|
| 549 |
+
else:
|
| 550 |
+
raise ValueError(f"padding_type should be either `pad` or `pack`, got {padding_type}")
|
| 551 |
+
return attn_output
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
def _flash_attention_forward_pad(
|
| 555 |
+
self,
|
| 556 |
+
query_states,
|
| 557 |
+
key_states,
|
| 558 |
+
value_states,
|
| 559 |
+
attention_mask,
|
| 560 |
+
query_length,
|
| 561 |
+
dropout=0.0,
|
| 562 |
+
softmax_scale=None,
|
| 563 |
+
use_sliding_windows=False,
|
| 564 |
+
):
|
| 565 |
+
"""
|
| 566 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 567 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 568 |
+
|
| 569 |
+
Args:
|
| 570 |
+
query_states (`torch.Tensor`):
|
| 571 |
+
Input query states to be passed to Flash Attention API
|
| 572 |
+
key_states (`torch.Tensor`):
|
| 573 |
+
Input key states to be passed to Flash Attention API
|
| 574 |
+
value_states (`torch.Tensor`):
|
| 575 |
+
Input value states to be passed to Flash Attention API
|
| 576 |
+
attention_mask (`torch.Tensor`):
|
| 577 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 578 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 579 |
+
dropout (`float`):
|
| 580 |
+
Attention dropout
|
| 581 |
+
softmax_scale (`float`, *optional*):
|
| 582 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 583 |
+
use_sliding_windows (`bool`, *optional*):
|
| 584 |
+
Whether to activate sliding window attention.
|
| 585 |
+
"""
|
| 586 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 587 |
+
causal = self.is_causal
|
| 588 |
+
else:
|
| 589 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 590 |
+
causal = self.is_causal and query_length != 1
|
| 591 |
+
|
| 592 |
+
# Decide whether to use SWA or not by layer index.
|
| 593 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
| 594 |
+
use_sliding_windows = False
|
| 595 |
+
|
| 596 |
+
# Contains at least one padding token in the sequence
|
| 597 |
+
if attention_mask is not None:
|
| 598 |
+
batch_size = query_states.shape[0]
|
| 599 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 600 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 604 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 605 |
+
|
| 606 |
+
if not use_sliding_windows:
|
| 607 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 608 |
+
query_states,
|
| 609 |
+
key_states,
|
| 610 |
+
value_states,
|
| 611 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 612 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 613 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 614 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 615 |
+
dropout_p=dropout,
|
| 616 |
+
softmax_scale=softmax_scale,
|
| 617 |
+
causal=causal,
|
| 618 |
+
)
|
| 619 |
+
else:
|
| 620 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 621 |
+
query_states,
|
| 622 |
+
key_states,
|
| 623 |
+
value_states,
|
| 624 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 625 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 626 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 627 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 628 |
+
dropout_p=dropout,
|
| 629 |
+
softmax_scale=softmax_scale,
|
| 630 |
+
causal=causal,
|
| 631 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 635 |
+
else:
|
| 636 |
+
if not use_sliding_windows:
|
| 637 |
+
attn_output = flash_attn_func(
|
| 638 |
+
query_states,
|
| 639 |
+
key_states,
|
| 640 |
+
value_states,
|
| 641 |
+
dropout,
|
| 642 |
+
softmax_scale=softmax_scale,
|
| 643 |
+
causal=causal,
|
| 644 |
+
)
|
| 645 |
+
else:
|
| 646 |
+
attn_output = flash_attn_func(
|
| 647 |
+
query_states,
|
| 648 |
+
key_states,
|
| 649 |
+
value_states,
|
| 650 |
+
dropout,
|
| 651 |
+
softmax_scale=softmax_scale,
|
| 652 |
+
causal=causal,
|
| 653 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
return attn_output
|
| 657 |
+
|
| 658 |
+
def _flash_attention_forward_pack(
|
| 659 |
+
self,
|
| 660 |
+
query_states,
|
| 661 |
+
key_states,
|
| 662 |
+
value_states,
|
| 663 |
+
attention_mask,
|
| 664 |
+
query_length,
|
| 665 |
+
dropout=0.0,
|
| 666 |
+
softmax_scale=None,
|
| 667 |
+
use_sliding_windows=False,
|
| 668 |
+
):
|
| 669 |
+
"""
|
| 670 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 671 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 672 |
+
|
| 673 |
+
Args:
|
| 674 |
+
query_states (`torch.Tensor`):
|
| 675 |
+
Input query states to be passed to Flash Attention API
|
| 676 |
+
key_states (`torch.Tensor`):
|
| 677 |
+
Input key states to be passed to Flash Attention API
|
| 678 |
+
value_states (`torch.Tensor`):
|
| 679 |
+
Input value states to be passed to Flash Attention API
|
| 680 |
+
attention_mask (`torch.Tensor`):
|
| 681 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 682 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 683 |
+
dropout (`int`, *optional*):
|
| 684 |
+
Attention dropout
|
| 685 |
+
softmax_scale (`float`, *optional*):
|
| 686 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 687 |
+
use_sliding_windows (`bool`, *optional*):
|
| 688 |
+
Whether to activate sliding window attention.
|
| 689 |
+
"""
|
| 690 |
+
assert query_states.size(0) == key_states.size(0) == value_states.size(0) == 1
|
| 691 |
+
query_states = query_states.squeeze(0)
|
| 692 |
+
key_states = key_states.squeeze(0)
|
| 693 |
+
value_states = value_states.squeeze(0)
|
| 694 |
+
cu_seqlens = attention_mask.squeeze(0)
|
| 695 |
+
|
| 696 |
+
with torch.no_grad():
|
| 697 |
+
max_seqlen = max([
|
| 698 |
+
cu_seqlens[idx+1] - cu_seqlens[idx]
|
| 699 |
+
for idx in range(cu_seqlens.size(0) - 1)
|
| 700 |
+
]).item()
|
| 701 |
+
|
| 702 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 703 |
+
causal = self.is_causal
|
| 704 |
+
else:
|
| 705 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 706 |
+
causal = self.is_causal and query_length != 1
|
| 707 |
+
|
| 708 |
+
# Decide whether to use SWA or not by layer index.
|
| 709 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
| 710 |
+
use_sliding_windows = False
|
| 711 |
+
|
| 712 |
+
if not use_sliding_windows:
|
| 713 |
+
attn_output = flash_attn_varlen_func(
|
| 714 |
+
q=query_states,
|
| 715 |
+
k=key_states,
|
| 716 |
+
v=value_states,
|
| 717 |
+
cu_seqlens_q=cu_seqlens,
|
| 718 |
+
cu_seqlens_k=cu_seqlens,
|
| 719 |
+
max_seqlen_q=max_seqlen,
|
| 720 |
+
max_seqlen_k=max_seqlen,
|
| 721 |
+
dropout_p=dropout,
|
| 722 |
+
softmax_scale=softmax_scale,
|
| 723 |
+
causal=causal,
|
| 724 |
+
)
|
| 725 |
+
else:
|
| 726 |
+
attn_output = flash_attn_varlen_func(
|
| 727 |
+
q=query_states,
|
| 728 |
+
k=key_states,
|
| 729 |
+
v=value_states,
|
| 730 |
+
cu_seqlens_q=cu_seqlens,
|
| 731 |
+
cu_seqlens_k=cu_seqlens,
|
| 732 |
+
max_seqlen_q=max_seqlen,
|
| 733 |
+
max_seqlen_k=max_seqlen,
|
| 734 |
+
dropout_p=dropout,
|
| 735 |
+
softmax_scale=softmax_scale,
|
| 736 |
+
causal=causal,
|
| 737 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
query_states = query_states.unsqueeze(0)
|
| 741 |
+
key_states = key_states.unsqueeze(0)
|
| 742 |
+
value_states = value_states.unsqueeze(0)
|
| 743 |
+
return attn_output
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
| 747 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 748 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
| 749 |
+
|
| 750 |
+
# On the first iteration we need to properly re-create the padding mask
|
| 751 |
+
# by slicing it on the proper place
|
| 752 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
| 753 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
| 754 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
| 755 |
+
|
| 756 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 757 |
+
|
| 758 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 759 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 760 |
+
|
| 761 |
+
if query_length == kv_seq_len:
|
| 762 |
+
query_layer = index_first_axis(
|
| 763 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
| 764 |
+
)
|
| 765 |
+
cu_seqlens_q = cu_seqlens_k
|
| 766 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 767 |
+
indices_q = indices_k
|
| 768 |
+
elif query_length == 1:
|
| 769 |
+
max_seqlen_in_batch_q = 1
|
| 770 |
+
cu_seqlens_q = torch.arange(
|
| 771 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 772 |
+
) # There is a memcpy here, that is very bad.
|
| 773 |
+
indices_q = cu_seqlens_q[:-1]
|
| 774 |
+
query_layer = query_layer.squeeze(1)
|
| 775 |
+
else:
|
| 776 |
+
# The -q_len: slice assumes left padding.
|
| 777 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 778 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 779 |
+
|
| 780 |
+
return (
|
| 781 |
+
query_layer,
|
| 782 |
+
key_layer,
|
| 783 |
+
value_layer,
|
| 784 |
+
indices_q,
|
| 785 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 786 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
QWEN3_ATTENTION_CLASSES = {
|
| 790 |
+
"eager": Qwen3Attention,
|
| 791 |
+
"flash_attention_2": Qwen3FlashAttention2,
|
| 792 |
+
"sdpa": Qwen3Attention,
|
| 793 |
+
}
|
| 794 |
+
|
| 795 |
+
class Qwen3DecoderLayer(nn.Module):
|
| 796 |
+
def __init__(self, config: Qwen3VEConfig, layer_idx: int):
|
| 797 |
+
super().__init__()
|
| 798 |
+
self.hidden_size = config.hidden_size
|
| 799 |
+
self.self_attn = QWEN3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 800 |
+
self.mlp = Qwen3MLP(config)
|
| 801 |
+
self.mlp_ve = Qwen3MLP(config)
|
| 802 |
+
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 803 |
+
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 804 |
+
if (
|
| 805 |
+
config.sliding_window and config._attn_implementation != "flash_attention_2"
|
| 806 |
+
): # diff with Llama is this warning
|
| 807 |
+
logger.warning_once(
|
| 808 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 809 |
+
"unexpected results may be encountered."
|
| 810 |
+
)
|
| 811 |
+
|
| 812 |
+
def forward(
|
| 813 |
+
self,
|
| 814 |
+
hidden_states: torch.Tensor,
|
| 815 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 816 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 817 |
+
past_key_value: Optional[Cache] = None,
|
| 818 |
+
output_attentions: Optional[bool] = False,
|
| 819 |
+
use_cache: Optional[bool] = False,
|
| 820 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 821 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 822 |
+
padding_type: Optional[str] = "pad",
|
| 823 |
+
visual_token_mask: Optional[torch.Tensor] = None,
|
| 824 |
+
layer_idx: Optional[int] = -1,
|
| 825 |
+
return_feature_scale: Optional[bool] = False,
|
| 826 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 827 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 828 |
+
residual = hidden_states
|
| 829 |
+
|
| 830 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 831 |
+
|
| 832 |
+
# Self Attention
|
| 833 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 834 |
+
hidden_states=hidden_states,
|
| 835 |
+
attention_mask=attention_mask,
|
| 836 |
+
position_ids=position_ids,
|
| 837 |
+
past_key_value=past_key_value,
|
| 838 |
+
output_attentions=output_attentions,
|
| 839 |
+
use_cache=use_cache,
|
| 840 |
+
cache_position=cache_position,
|
| 841 |
+
position_embeddings=position_embeddings,
|
| 842 |
+
padding_type=padding_type,
|
| 843 |
+
visual_token_mask=visual_token_mask,
|
| 844 |
+
**kwargs,
|
| 845 |
+
)
|
| 846 |
+
hidden_states = residual + hidden_states
|
| 847 |
+
|
| 848 |
+
# Fully Connected
|
| 849 |
+
residual = hidden_states
|
| 850 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 851 |
+
|
| 852 |
+
if visual_token_mask is None:
|
| 853 |
+
hidden_states = self.mlp(hidden_states)
|
| 854 |
+
else:
|
| 855 |
+
visual_token_mask = visual_token_mask.bool() # B, L
|
| 856 |
+
hidden_states_prev = hidden_states.clone()
|
| 857 |
+
if visual_token_mask.any():
|
| 858 |
+
hidden_states[visual_token_mask] = self.mlp_ve(hidden_states_prev[visual_token_mask])
|
| 859 |
+
if (~visual_token_mask).any():
|
| 860 |
+
hidden_states[~visual_token_mask] = self.mlp(hidden_states_prev[~visual_token_mask])
|
| 861 |
+
hidden_states = residual + hidden_states
|
| 862 |
+
|
| 863 |
+
outputs = (hidden_states,)
|
| 864 |
+
if output_attentions:
|
| 865 |
+
outputs += (self_attn_weights,)
|
| 866 |
+
|
| 867 |
+
if return_feature_scale:
|
| 868 |
+
assert visual_token_mask is not None, "visual_token_mask must be provided when return_feature_scale is True"
|
| 869 |
+
outputs += ((hidden_states[visual_token_mask].abs().mean(-1).std(), hidden_states[~visual_token_mask].abs().mean(-1).std()),)
|
| 870 |
+
|
| 871 |
+
return outputs
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
class Qwen3RotaryEmbedding(nn.Module):
|
| 875 |
+
def __init__(self, config: Qwen3VEConfig, device=None):
|
| 876 |
+
super().__init__()
|
| 877 |
+
# BC: "rope_type" was originally "type"
|
| 878 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 879 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 880 |
+
else:
|
| 881 |
+
self.rope_type = "default"
|
| 882 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 883 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 884 |
+
|
| 885 |
+
self.config = config
|
| 886 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 887 |
+
|
| 888 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 889 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 890 |
+
self.original_inv_freq = self.inv_freq
|
| 891 |
+
|
| 892 |
+
@torch.no_grad()
|
| 893 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 894 |
+
def forward(self, x, position_ids):
|
| 895 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 896 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 897 |
+
|
| 898 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 899 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 900 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 901 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 902 |
+
cos = emb.cos() * self.attention_scaling
|
| 903 |
+
sin = emb.sin() * self.attention_scaling
|
| 904 |
+
|
| 905 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
QWEN3_START_DOCSTRING = r"""
|
| 909 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 910 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 911 |
+
etc.)
|
| 912 |
+
|
| 913 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 914 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 915 |
+
and behavior.
|
| 916 |
+
|
| 917 |
+
Parameters:
|
| 918 |
+
config ([`Qwen3VEConfig`]):
|
| 919 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 920 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 921 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 922 |
+
"""
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
@add_start_docstrings(
|
| 926 |
+
"The bare Qwen3 Model outputting raw hidden-states without any specific head on top.",
|
| 927 |
+
QWEN3_START_DOCSTRING,
|
| 928 |
+
)
|
| 929 |
+
class Qwen3PreTrainedModel(PreTrainedModel):
|
| 930 |
+
config_class = Qwen3VEConfig
|
| 931 |
+
base_model_prefix = "model"
|
| 932 |
+
supports_gradient_checkpointing = True
|
| 933 |
+
_no_split_modules = ["Qwen3DecoderLayer"]
|
| 934 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 935 |
+
_supports_flash_attn_2 = True
|
| 936 |
+
_supports_sdpa = True
|
| 937 |
+
_supports_flex_attn = True
|
| 938 |
+
_supports_cache_class = True
|
| 939 |
+
_supports_quantized_cache = True
|
| 940 |
+
_supports_static_cache = True
|
| 941 |
+
_supports_attention_backend = True
|
| 942 |
+
|
| 943 |
+
def _init_weights(self, module):
|
| 944 |
+
std = self.config.initializer_range
|
| 945 |
+
if isinstance(module, nn.Linear):
|
| 946 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 947 |
+
if module.bias is not None:
|
| 948 |
+
module.bias.data.zero_()
|
| 949 |
+
elif isinstance(module, nn.Embedding):
|
| 950 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 951 |
+
if module.padding_idx is not None:
|
| 952 |
+
module.weight.data[module.padding_idx].zero_()
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
QWEN3_INPUTS_DOCSTRING = r"""
|
| 956 |
+
Args:
|
| 957 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 958 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 959 |
+
it.
|
| 960 |
+
|
| 961 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 962 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 963 |
+
|
| 964 |
+
[What are input IDs?](../glossary#input-ids)
|
| 965 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 966 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 967 |
+
|
| 968 |
+
- 1 for tokens that are **not masked**,
|
| 969 |
+
- 0 for tokens that are **masked**.
|
| 970 |
+
|
| 971 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 972 |
+
|
| 973 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 974 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 975 |
+
|
| 976 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 977 |
+
`past_key_values`).
|
| 978 |
+
|
| 979 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 980 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 981 |
+
information on the default strategy.
|
| 982 |
+
|
| 983 |
+
- 1 indicates the head is **not masked**,
|
| 984 |
+
- 0 indicates the head is **masked**.
|
| 985 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 986 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 987 |
+
config.n_positions - 1]`.
|
| 988 |
+
|
| 989 |
+
[What are position IDs?](../glossary#position-ids)
|
| 990 |
+
past_key_values (`Cache`, *optional*):
|
| 991 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 992 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 993 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 994 |
+
|
| 995 |
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
| 996 |
+
|
| 997 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 998 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 999 |
+
of shape `(batch_size, sequence_length)`.
|
| 1000 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1001 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1002 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1003 |
+
model's internal embedding lookup matrix.
|
| 1004 |
+
use_cache (`bool`, *optional*):
|
| 1005 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1006 |
+
`past_key_values`).
|
| 1007 |
+
output_attentions (`bool`, *optional*):
|
| 1008 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1009 |
+
tensors for more detail.
|
| 1010 |
+
output_hidden_states (`bool`, *optional*):
|
| 1011 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1012 |
+
more detail.
|
| 1013 |
+
return_dict (`bool`, *optional*):
|
| 1014 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1015 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1016 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 1017 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 1018 |
+
the complete sequence length.
|
| 1019 |
+
"""
|
| 1020 |
+
|
| 1021 |
+
|
| 1022 |
+
@add_start_docstrings(
|
| 1023 |
+
"The bare Qwen3 Model outputting raw hidden-states without any specific head on top.",
|
| 1024 |
+
QWEN3_START_DOCSTRING,
|
| 1025 |
+
)
|
| 1026 |
+
class Qwen3Model(Qwen3PreTrainedModel):
|
| 1027 |
+
"""
|
| 1028 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3DecoderLayer`]
|
| 1029 |
+
|
| 1030 |
+
Args:
|
| 1031 |
+
config: Qwen3VEConfig
|
| 1032 |
+
"""
|
| 1033 |
+
|
| 1034 |
+
def __init__(self, config: Qwen3VEConfig):
|
| 1035 |
+
super().__init__(config)
|
| 1036 |
+
self.padding_idx = config.pad_token_id
|
| 1037 |
+
self.vocab_size = config.vocab_size
|
| 1038 |
+
|
| 1039 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1040 |
+
self.layers = nn.ModuleList(
|
| 1041 |
+
[Qwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1042 |
+
)
|
| 1043 |
+
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1044 |
+
self.rotary_emb = Qwen3RotaryEmbedding(config=config)
|
| 1045 |
+
self.gradient_checkpointing = False
|
| 1046 |
+
|
| 1047 |
+
# Initialize weights and apply final processing
|
| 1048 |
+
self.post_init()
|
| 1049 |
+
|
| 1050 |
+
def get_input_embeddings(self):
|
| 1051 |
+
return self.embed_tokens
|
| 1052 |
+
|
| 1053 |
+
def set_input_embeddings(self, value):
|
| 1054 |
+
self.embed_tokens = value
|
| 1055 |
+
|
| 1056 |
+
@can_return_tuple
|
| 1057 |
+
@add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
|
| 1058 |
+
def forward(
|
| 1059 |
+
self,
|
| 1060 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1061 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1062 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1063 |
+
past_key_values: Optional[Cache] = None,
|
| 1064 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1065 |
+
use_cache: Optional[bool] = None,
|
| 1066 |
+
output_attentions: Optional[bool] = None,
|
| 1067 |
+
output_hidden_states: Optional[bool] = None,
|
| 1068 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1069 |
+
padding_type: Optional[str] = "pad",
|
| 1070 |
+
visual_token_mask: Optional[torch.Tensor] = None,
|
| 1071 |
+
generation_modality: Optional[int] = 0,
|
| 1072 |
+
return_feature_scale: Optional[bool] = False,
|
| 1073 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 1074 |
+
) -> BaseModelOutputWithPast:
|
| 1075 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1076 |
+
output_hidden_states = (
|
| 1077 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1078 |
+
)
|
| 1079 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1080 |
+
|
| 1081 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1082 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1083 |
+
|
| 1084 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1085 |
+
logger.warning_once(
|
| 1086 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 1087 |
+
)
|
| 1088 |
+
use_cache = False
|
| 1089 |
+
|
| 1090 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
| 1091 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
| 1092 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
| 1093 |
+
|
| 1094 |
+
if inputs_embeds is None:
|
| 1095 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1096 |
+
|
| 1097 |
+
if use_cache and past_key_values is None:
|
| 1098 |
+
past_key_values = DynamicCache()
|
| 1099 |
+
|
| 1100 |
+
if cache_position is None:
|
| 1101 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1102 |
+
cache_position = torch.arange(
|
| 1103 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
if position_ids is None:
|
| 1107 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1108 |
+
|
| 1109 |
+
causal_mask = self._update_causal_mask(
|
| 1110 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 1111 |
+
)
|
| 1112 |
+
|
| 1113 |
+
if generation_modality == 0 and use_cache and past_key_values.get_seq_length() > 0:
|
| 1114 |
+
# Indicating we are generating text and is not pre-filling. This is an ugly hack to make the model work
|
| 1115 |
+
visual_token_mask = None
|
| 1116 |
+
|
| 1117 |
+
hidden_states = inputs_embeds
|
| 1118 |
+
|
| 1119 |
+
# create position embeddings to be shared across the decoder layers
|
| 1120 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1121 |
+
|
| 1122 |
+
# decoder layers
|
| 1123 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1124 |
+
all_self_attns = () if output_attentions else None
|
| 1125 |
+
|
| 1126 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 1127 |
+
if output_hidden_states:
|
| 1128 |
+
all_hidden_states += (hidden_states,)
|
| 1129 |
+
|
| 1130 |
+
if self.gradient_checkpointing and self.training:
|
| 1131 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1132 |
+
partial(decoder_layer.__call__,
|
| 1133 |
+
padding_type=padding_type,
|
| 1134 |
+
visual_token_mask=visual_token_mask,
|
| 1135 |
+
return_feature_scale=return_feature_scale,
|
| 1136 |
+
**flash_attn_kwargs),
|
| 1137 |
+
hidden_states,
|
| 1138 |
+
causal_mask,
|
| 1139 |
+
position_ids,
|
| 1140 |
+
past_key_values,
|
| 1141 |
+
output_attentions,
|
| 1142 |
+
use_cache,
|
| 1143 |
+
cache_position,
|
| 1144 |
+
position_embeddings,
|
| 1145 |
+
)
|
| 1146 |
+
else:
|
| 1147 |
+
layer_outputs = decoder_layer(
|
| 1148 |
+
hidden_states,
|
| 1149 |
+
attention_mask=causal_mask,
|
| 1150 |
+
position_ids=position_ids,
|
| 1151 |
+
past_key_value=past_key_values,
|
| 1152 |
+
output_attentions=output_attentions,
|
| 1153 |
+
use_cache=use_cache,
|
| 1154 |
+
cache_position=cache_position,
|
| 1155 |
+
position_embeddings=position_embeddings,
|
| 1156 |
+
padding_type=padding_type,
|
| 1157 |
+
visual_token_mask=visual_token_mask,
|
| 1158 |
+
return_feature_scale=return_feature_scale,
|
| 1159 |
+
**flash_attn_kwargs,
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
hidden_states = layer_outputs[0]
|
| 1163 |
+
|
| 1164 |
+
if output_attentions:
|
| 1165 |
+
all_self_attns += (layer_outputs[1],)
|
| 1166 |
+
|
| 1167 |
+
hidden_states = self.norm(hidden_states)
|
| 1168 |
+
|
| 1169 |
+
# add hidden states from the last decoder layer
|
| 1170 |
+
if output_hidden_states:
|
| 1171 |
+
all_hidden_states += (hidden_states,)
|
| 1172 |
+
|
| 1173 |
+
ret = BaseModelOutputWithPast(
|
| 1174 |
+
last_hidden_state=hidden_states,
|
| 1175 |
+
past_key_values=past_key_values if use_cache else None,
|
| 1176 |
+
hidden_states=all_hidden_states,
|
| 1177 |
+
attentions=all_self_attns,
|
| 1178 |
+
)
|
| 1179 |
+
if return_feature_scale:
|
| 1180 |
+
ret["feature_scale"] = layer_outputs[-1]
|
| 1181 |
+
return ret
|
| 1182 |
+
|
| 1183 |
+
def _update_causal_mask(
|
| 1184 |
+
self,
|
| 1185 |
+
attention_mask: torch.Tensor,
|
| 1186 |
+
input_tensor: torch.Tensor,
|
| 1187 |
+
cache_position: torch.Tensor,
|
| 1188 |
+
past_key_values: Cache,
|
| 1189 |
+
output_attentions: bool = False,
|
| 1190 |
+
):
|
| 1191 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1192 |
+
if attention_mask is not None and past_key_values is not None:
|
| 1193 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
| 1194 |
+
if is_padding_right:
|
| 1195 |
+
raise ValueError(
|
| 1196 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 1197 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
|
| 1198 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1199 |
+
)
|
| 1200 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1201 |
+
return attention_mask
|
| 1202 |
+
return None
|
| 1203 |
+
|
| 1204 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1205 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1206 |
+
# to infer the attention mask.
|
| 1207 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1208 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1209 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
| 1210 |
+
|
| 1211 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1212 |
+
if (
|
| 1213 |
+
self.config._attn_implementation == "sdpa"
|
| 1214 |
+
and not (using_static_cache or using_sliding_window_cache)
|
| 1215 |
+
and not output_attentions
|
| 1216 |
+
):
|
| 1217 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1218 |
+
attention_mask,
|
| 1219 |
+
inputs_embeds=input_tensor,
|
| 1220 |
+
past_key_values_length=past_seen_tokens,
|
| 1221 |
+
sliding_window=self.config.sliding_window,
|
| 1222 |
+
is_training=self.training,
|
| 1223 |
+
):
|
| 1224 |
+
return None
|
| 1225 |
+
|
| 1226 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1227 |
+
min_dtype = torch.finfo(dtype).min
|
| 1228 |
+
sequence_length = input_tensor.shape[1]
|
| 1229 |
+
# SlidingWindowCache or StaticCache
|
| 1230 |
+
if using_sliding_window_cache or using_static_cache:
|
| 1231 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1232 |
+
# DynamicCache or no cache
|
| 1233 |
+
else:
|
| 1234 |
+
target_length = (
|
| 1235 |
+
attention_mask.shape[-1]
|
| 1236 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1237 |
+
else past_seen_tokens + sequence_length + 1
|
| 1238 |
+
)
|
| 1239 |
+
|
| 1240 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1241 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1242 |
+
attention_mask,
|
| 1243 |
+
sequence_length=sequence_length,
|
| 1244 |
+
target_length=target_length,
|
| 1245 |
+
dtype=dtype,
|
| 1246 |
+
device=device,
|
| 1247 |
+
cache_position=cache_position,
|
| 1248 |
+
batch_size=input_tensor.shape[0],
|
| 1249 |
+
config=self.config,
|
| 1250 |
+
past_key_values=past_key_values,
|
| 1251 |
+
)
|
| 1252 |
+
|
| 1253 |
+
if (
|
| 1254 |
+
self.config._attn_implementation == "sdpa"
|
| 1255 |
+
and attention_mask is not None
|
| 1256 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
| 1257 |
+
and not output_attentions
|
| 1258 |
+
):
|
| 1259 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1260 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1261 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1262 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1263 |
+
|
| 1264 |
+
return causal_mask
|
| 1265 |
+
|
| 1266 |
+
@staticmethod
|
| 1267 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1268 |
+
attention_mask: torch.Tensor,
|
| 1269 |
+
sequence_length: int,
|
| 1270 |
+
target_length: int,
|
| 1271 |
+
dtype: torch.dtype,
|
| 1272 |
+
device: torch.device,
|
| 1273 |
+
cache_position: torch.Tensor,
|
| 1274 |
+
batch_size: int,
|
| 1275 |
+
config: Qwen3VEConfig,
|
| 1276 |
+
past_key_values: Cache,
|
| 1277 |
+
):
|
| 1278 |
+
"""
|
| 1279 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1280 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1281 |
+
|
| 1282 |
+
Args:
|
| 1283 |
+
attention_mask (`torch.Tensor`):
|
| 1284 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 1285 |
+
sequence_length (`int`):
|
| 1286 |
+
The sequence length being processed.
|
| 1287 |
+
target_length (`int`):
|
| 1288 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1289 |
+
dtype (`torch.dtype`):
|
| 1290 |
+
The dtype to use for the 4D attention mask.
|
| 1291 |
+
device (`torch.device`):
|
| 1292 |
+
The device to place the 4D attention mask on.
|
| 1293 |
+
cache_position (`torch.Tensor`):
|
| 1294 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1295 |
+
batch_size (`torch.Tensor`):
|
| 1296 |
+
Batch size.
|
| 1297 |
+
config (`Qwen3VEConfig`):
|
| 1298 |
+
The model's configuration class
|
| 1299 |
+
past_key_values (`Cache`):
|
| 1300 |
+
The cache class that is being used currently to generate
|
| 1301 |
+
"""
|
| 1302 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1303 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1304 |
+
causal_mask = attention_mask
|
| 1305 |
+
else:
|
| 1306 |
+
min_dtype = torch.finfo(dtype).min
|
| 1307 |
+
causal_mask = torch.full(
|
| 1308 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 1309 |
+
)
|
| 1310 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1311 |
+
if config.sliding_window is not None:
|
| 1312 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
| 1313 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
| 1314 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
| 1315 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
| 1316 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
| 1317 |
+
)
|
| 1318 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
| 1319 |
+
causal_mask *= diagonal_attend_mask
|
| 1320 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1321 |
+
if attention_mask is not None:
|
| 1322 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1323 |
+
if attention_mask.shape[-1] > target_length:
|
| 1324 |
+
attention_mask = attention_mask[:, :target_length]
|
| 1325 |
+
mask_length = attention_mask.shape[-1]
|
| 1326 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 1327 |
+
causal_mask.device
|
| 1328 |
+
)
|
| 1329 |
+
padding_mask = padding_mask == 0
|
| 1330 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1331 |
+
padding_mask, min_dtype
|
| 1332 |
+
)
|
| 1333 |
+
return causal_mask
|
| 1334 |
+
|
| 1335 |
+
|
| 1336 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
| 1337 |
+
|
| 1338 |
+
|
| 1339 |
+
class Qwen3VEForCausalLM(Qwen3PreTrainedModel, GenerationMixin):
|
| 1340 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1341 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 1342 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 1343 |
+
|
| 1344 |
+
def __init__(self, config):
|
| 1345 |
+
super().__init__(config)
|
| 1346 |
+
self.model = Qwen3Model(config)
|
| 1347 |
+
self.vocab_size = config.vocab_size
|
| 1348 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1349 |
+
|
| 1350 |
+
# Initialize weights and apply final processing
|
| 1351 |
+
self.post_init()
|
| 1352 |
+
|
| 1353 |
+
def get_input_embeddings(self):
|
| 1354 |
+
return self.model.embed_tokens
|
| 1355 |
+
|
| 1356 |
+
def set_input_embeddings(self, value):
|
| 1357 |
+
self.model.embed_tokens = value
|
| 1358 |
+
|
| 1359 |
+
def get_output_embeddings(self):
|
| 1360 |
+
return self.lm_head
|
| 1361 |
+
|
| 1362 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1363 |
+
self.lm_head = new_embeddings
|
| 1364 |
+
|
| 1365 |
+
def set_decoder(self, decoder):
|
| 1366 |
+
self.model = decoder
|
| 1367 |
+
|
| 1368 |
+
def get_decoder(self):
|
| 1369 |
+
return self.model
|
| 1370 |
+
|
| 1371 |
+
@can_return_tuple
|
| 1372 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
| 1373 |
+
@add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
|
| 1374 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1375 |
+
def forward(
|
| 1376 |
+
self,
|
| 1377 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1378 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1379 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1380 |
+
past_key_values: Optional[Cache] = None,
|
| 1381 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1382 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1383 |
+
use_cache: Optional[bool] = None,
|
| 1384 |
+
output_attentions: Optional[bool] = None,
|
| 1385 |
+
output_hidden_states: Optional[bool] = None,
|
| 1386 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1387 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1388 |
+
padding_type: Optional[str] = "pad",
|
| 1389 |
+
visual_token_mask: Optional[torch.Tensor] = None,
|
| 1390 |
+
generation_modality: Optional[int] = 0,
|
| 1391 |
+
skip_lm_head: Optional[bool] = False,
|
| 1392 |
+
return_feature_scale: Optional[bool] = False,
|
| 1393 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 1394 |
+
) -> CausalLMOutputWithPast:
|
| 1395 |
+
r"""
|
| 1396 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1397 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1398 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1399 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1400 |
+
|
| 1401 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
| 1402 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1403 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1404 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1405 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
| 1406 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
| 1407 |
+
|
| 1408 |
+
Returns:
|
| 1409 |
+
|
| 1410 |
+
Example:
|
| 1411 |
+
|
| 1412 |
+
```python
|
| 1413 |
+
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
|
| 1414 |
+
|
| 1415 |
+
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
|
| 1416 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
| 1417 |
+
|
| 1418 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1419 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1420 |
+
|
| 1421 |
+
>>> # Generate
|
| 1422 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1423 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1424 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1425 |
+
```"""
|
| 1426 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1427 |
+
output_hidden_states = (
|
| 1428 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1429 |
+
)
|
| 1430 |
+
|
| 1431 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1432 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 1433 |
+
input_ids=input_ids,
|
| 1434 |
+
attention_mask=attention_mask,
|
| 1435 |
+
position_ids=position_ids,
|
| 1436 |
+
past_key_values=past_key_values,
|
| 1437 |
+
inputs_embeds=inputs_embeds,
|
| 1438 |
+
use_cache=use_cache,
|
| 1439 |
+
output_attentions=output_attentions,
|
| 1440 |
+
output_hidden_states=output_hidden_states,
|
| 1441 |
+
cache_position=cache_position,
|
| 1442 |
+
padding_type=padding_type,
|
| 1443 |
+
visual_token_mask=visual_token_mask,
|
| 1444 |
+
generation_modality=generation_modality,
|
| 1445 |
+
return_feature_scale=return_feature_scale,
|
| 1446 |
+
**kwargs,
|
| 1447 |
+
)
|
| 1448 |
+
|
| 1449 |
+
hidden_states = outputs.last_hidden_state
|
| 1450 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1451 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1452 |
+
|
| 1453 |
+
logits = None
|
| 1454 |
+
if not skip_lm_head:
|
| 1455 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1456 |
+
|
| 1457 |
+
import os
|
| 1458 |
+
if os.environ.get("LOGGING_GRAD_NORM_ALL", "0") == "1":
|
| 1459 |
+
import torch.distributed as dist
|
| 1460 |
+
print(f"{self.config.vocab_size=} {self.loss_function.__class__.__name__=}")
|
| 1461 |
+
print(f"{kwargs=}")
|
| 1462 |
+
iter_step = int(os.environ["ITER_STEP"])
|
| 1463 |
+
if iter_step == 1:
|
| 1464 |
+
save_dict = {
|
| 1465 |
+
"weight": self.lm_head.weight.detach().cpu(),
|
| 1466 |
+
"hidden_states": hidden_states.detach().cpu(),
|
| 1467 |
+
"logits": logits.detach().cpu(),
|
| 1468 |
+
# "labels": labels.detach().cpu(),
|
| 1469 |
+
}
|
| 1470 |
+
torch.save(save_dict, f"./OUTPUT/debug_nan/debug_lm_head_{dist.get_rank():03d}_{iter_step}.pt")
|
| 1471 |
+
|
| 1472 |
+
loss = None
|
| 1473 |
+
if labels is not None:
|
| 1474 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 1475 |
+
|
| 1476 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1477 |
+
output = CausalLMOutputWithPast(
|
| 1478 |
+
loss=loss,
|
| 1479 |
+
logits=logits,
|
| 1480 |
+
past_key_values=outputs.past_key_values,
|
| 1481 |
+
hidden_states=outputs.hidden_states,
|
| 1482 |
+
attentions=outputs.attentions,
|
| 1483 |
+
)
|
| 1484 |
+
|
| 1485 |
+
if return_feature_scale:
|
| 1486 |
+
output["feature_scale"] = outputs["feature_scale"]
|
| 1487 |
+
if not skip_lm_head:
|
| 1488 |
+
output['logits'] = output['logits'].to(device)
|
| 1489 |
+
return output
|
| 1490 |
+
|
| 1491 |
+
def prepare_inputs_for_generation(
|
| 1492 |
+
self,
|
| 1493 |
+
input_ids: torch.LongTensor,
|
| 1494 |
+
past_key_values: Optional[Cache] = None,
|
| 1495 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 1496 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1497 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1498 |
+
**kwargs,
|
| 1499 |
+
):
|
| 1500 |
+
"""
|
| 1501 |
+
Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or
|
| 1502 |
+
slicing inputs given the existing cache.
|
| 1503 |
+
|
| 1504 |
+
See the forward pass in the model documentation for expected arguments (different models might have different
|
| 1505 |
+
requirements for e.g. `past_key_values`). This function should work as is for most LLMs.
|
| 1506 |
+
"""
|
| 1507 |
+
|
| 1508 |
+
# 1. Handle BC:
|
| 1509 |
+
model_inputs = {}
|
| 1510 |
+
# - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
|
| 1511 |
+
if self._supports_cache_class:
|
| 1512 |
+
model_inputs["cache_position"] = cache_position
|
| 1513 |
+
# - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
|
| 1514 |
+
# function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
|
| 1515 |
+
# (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
|
| 1516 |
+
elif cache_position is None:
|
| 1517 |
+
past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 1518 |
+
cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
| 1519 |
+
|
| 1520 |
+
# 2. Generic cache-dependent input preparation
|
| 1521 |
+
if past_key_values is not None:
|
| 1522 |
+
model_inputs["past_key_values"] = past_key_values
|
| 1523 |
+
inputs_embeds, input_ids = self._cache_dependant_input_preparation(
|
| 1524 |
+
input_ids, inputs_embeds, cache_position
|
| 1525 |
+
)
|
| 1526 |
+
|
| 1527 |
+
# 3. Prepare base model inputs
|
| 1528 |
+
input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
| 1529 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step for every prompt.
|
| 1530 |
+
if not self.config.is_encoder_decoder:
|
| 1531 |
+
if inputs_embeds is not None and len(cache_position) == inputs_embeds.shape[1]:
|
| 1532 |
+
model_inputs[input_ids_key] = None
|
| 1533 |
+
model_inputs["inputs_embeds"] = inputs_embeds
|
| 1534 |
+
else:
|
| 1535 |
+
# `clone` calls in this function ensure a consistent stride. See #32227
|
| 1536 |
+
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
|
| 1537 |
+
model_inputs["inputs_embeds"] = None
|
| 1538 |
+
else:
|
| 1539 |
+
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
|
| 1540 |
+
|
| 1541 |
+
# 4. Create missing `position_ids` on the fly
|
| 1542 |
+
encoder_attention_mask = attention_mask if self.config.is_encoder_decoder else None
|
| 1543 |
+
attention_mask = (
|
| 1544 |
+
kwargs.pop("decoder_attention_mask", None) if self.config.is_encoder_decoder else attention_mask
|
| 1545 |
+
)
|
| 1546 |
+
attention_mask_key = "decoder_attention_mask" if self.config.is_encoder_decoder else "attention_mask"
|
| 1547 |
+
position_ids_key = "decoder_position_ids" if self.config.is_encoder_decoder else "position_ids"
|
| 1548 |
+
if (
|
| 1549 |
+
attention_mask is not None
|
| 1550 |
+
and kwargs.get(position_ids_key) is None
|
| 1551 |
+
and position_ids_key in set(inspect.signature(self.forward).parameters.keys())
|
| 1552 |
+
):
|
| 1553 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1554 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1555 |
+
kwargs[position_ids_key] = position_ids # placed in kwargs for further processing (see below)
|
| 1556 |
+
|
| 1557 |
+
# 5. Slice model inputs if it's an input that should have the same length as `input_ids`
|
| 1558 |
+
for model_input_name in ["position_ids", "token_type_ids", "decoder_position_ids"]:
|
| 1559 |
+
model_input = kwargs.get(model_input_name)
|
| 1560 |
+
if model_input is not None:
|
| 1561 |
+
if past_key_values is not None:
|
| 1562 |
+
current_input_length = (
|
| 1563 |
+
model_inputs["inputs_embeds"].shape[1]
|
| 1564 |
+
if model_inputs.get("inputs_embeds") is not None
|
| 1565 |
+
else model_inputs[input_ids_key].shape[1]
|
| 1566 |
+
)
|
| 1567 |
+
model_input = model_input[:, -current_input_length:]
|
| 1568 |
+
model_input = model_input.clone(memory_format=torch.contiguous_format)
|
| 1569 |
+
model_inputs[model_input_name] = model_input
|
| 1570 |
+
|
| 1571 |
+
# 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass)
|
| 1572 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
| 1573 |
+
if model_inputs["inputs_embeds"] is not None:
|
| 1574 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
| 1575 |
+
device = model_inputs["inputs_embeds"].device
|
| 1576 |
+
else:
|
| 1577 |
+
batch_size, sequence_length = model_inputs[input_ids_key].shape
|
| 1578 |
+
device = model_inputs[input_ids_key].device
|
| 1579 |
+
|
| 1580 |
+
# Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
|
| 1581 |
+
# the 4D causal mask exists, it should be present in the base model (XXXModel class).
|
| 1582 |
+
base_model = getattr(self, self.base_model_prefix, None)
|
| 1583 |
+
if base_model is None:
|
| 1584 |
+
causal_mask_creation_function = getattr(
|
| 1585 |
+
self, "_prepare_4d_causal_attention_mask_with_cache_position", None
|
| 1586 |
+
)
|
| 1587 |
+
else:
|
| 1588 |
+
causal_mask_creation_function = getattr(
|
| 1589 |
+
base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None
|
| 1590 |
+
)
|
| 1591 |
+
if causal_mask_creation_function is None:
|
| 1592 |
+
logger.warning_once(
|
| 1593 |
+
f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method "
|
| 1594 |
+
"defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
|
| 1595 |
+
"writing code, see Llama for an example implementation. If you're a user, please report this "
|
| 1596 |
+
"issue on GitHub."
|
| 1597 |
+
)
|
| 1598 |
+
else:
|
| 1599 |
+
attention_mask = causal_mask_creation_function(
|
| 1600 |
+
attention_mask,
|
| 1601 |
+
sequence_length=sequence_length,
|
| 1602 |
+
target_length=past_key_values.get_max_cache_shape(),
|
| 1603 |
+
dtype=self.dtype,
|
| 1604 |
+
device=device,
|
| 1605 |
+
cache_position=cache_position,
|
| 1606 |
+
batch_size=batch_size,
|
| 1607 |
+
config=self.config,
|
| 1608 |
+
past_key_values=past_key_values,
|
| 1609 |
+
)
|
| 1610 |
+
if attention_mask is not None:
|
| 1611 |
+
model_inputs[attention_mask_key] = attention_mask
|
| 1612 |
+
|
| 1613 |
+
if encoder_attention_mask is not None:
|
| 1614 |
+
model_inputs["attention_mask"] = encoder_attention_mask
|
| 1615 |
+
|
| 1616 |
+
# 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
|
| 1617 |
+
for key, value in kwargs.items():
|
| 1618 |
+
if key not in model_inputs:
|
| 1619 |
+
model_inputs[key] = value
|
| 1620 |
+
|
| 1621 |
+
# 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
|
| 1622 |
+
model_inputs.pop("labels", None)
|
| 1623 |
+
return model_inputs
|
| 1624 |
+
|
| 1625 |
+
__all__ = [
|
| 1626 |
+
"Qwen3VEForCausalLM",
|
| 1627 |
+
"Qwen3Model",
|
| 1628 |
+
"Qwen3PreTrainedModel",
|
| 1629 |
+
]
|
modular_intern_vit.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from torch import nn
|
| 12 |
+
from transformers.activations import ACT2FN
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
|
| 15 |
+
from .configuration_navil_vit import NaViLVisionConfig
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
# from .flash_attention import FlashAttention
|
| 19 |
+
from flash_attn import flash_attn_varlen_func
|
| 20 |
+
from flash_attn.layers.rotary import apply_rotary_emb
|
| 21 |
+
has_flash_attn = True
|
| 22 |
+
except:
|
| 23 |
+
print('FlashAttention is not installed.')
|
| 24 |
+
has_flash_attn = False
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class InternRMSNorm(nn.Module):
|
| 30 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 33 |
+
self.variance_epsilon = eps
|
| 34 |
+
|
| 35 |
+
def forward(self, hidden_states):
|
| 36 |
+
input_dtype = hidden_states.dtype
|
| 37 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 38 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 39 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 40 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
from apex.normalization import FusedRMSNorm
|
| 45 |
+
|
| 46 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 47 |
+
|
| 48 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 49 |
+
except ImportError:
|
| 50 |
+
# using the normal InternRMSNorm
|
| 51 |
+
pass
|
| 52 |
+
except Exception:
|
| 53 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
NORM2FN = {
|
| 58 |
+
'rms_norm': InternRMSNorm,
|
| 59 |
+
'layer_norm': nn.LayerNorm,
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class InternVisionRotaryEmbedding(nn.Module):
|
| 64 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 65 |
+
super().__init__()
|
| 66 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 67 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 68 |
+
|
| 69 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 70 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 71 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 72 |
+
return freqs
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class InternAttention(nn.Module):
|
| 76 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, config: NaViLVisionConfig):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.config = config
|
| 81 |
+
self.embed_dim = config.hidden_size
|
| 82 |
+
self.num_heads = config.num_attention_heads
|
| 83 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 84 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 85 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 86 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 87 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 88 |
+
raise ValueError(
|
| 89 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 90 |
+
f' {self.num_heads}).'
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
self.scale = self.head_dim ** -0.5
|
| 94 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 95 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 96 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 97 |
+
|
| 98 |
+
self.qk_normalization = config.qk_normalization
|
| 99 |
+
|
| 100 |
+
if self.qk_normalization:
|
| 101 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 102 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 103 |
+
|
| 104 |
+
if self.use_flash_attn:
|
| 105 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 106 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 107 |
+
|
| 108 |
+
def _naive_attn(self, x):
|
| 109 |
+
B, N, C = x.shape
|
| 110 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 111 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 112 |
+
|
| 113 |
+
if self.qk_normalization:
|
| 114 |
+
B_, H_, N_, D_ = q.shape
|
| 115 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 116 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 117 |
+
|
| 118 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 119 |
+
attn = attn.softmax(dim=-1)
|
| 120 |
+
attn = self.attn_drop(attn)
|
| 121 |
+
|
| 122 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 123 |
+
x = self.proj(x)
|
| 124 |
+
x = self.proj_drop(x)
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 128 |
+
qkv = self.qkv(x)
|
| 129 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 130 |
+
|
| 131 |
+
if self.qk_normalization:
|
| 132 |
+
q, k, v = qkv.unbind(2)
|
| 133 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 134 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 135 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 136 |
+
|
| 137 |
+
context, _ = self.inner_attn(
|
| 138 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 139 |
+
)
|
| 140 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 141 |
+
outs = self.proj_drop(outs)
|
| 142 |
+
return outs
|
| 143 |
+
|
| 144 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 145 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 146 |
+
return x
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def rotate_half(x):
|
| 150 |
+
"""Rotates half the hidden dims of the input."""
|
| 151 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 152 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 153 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 154 |
+
|
| 155 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
| 156 |
+
orig_dtype = tensor.dtype
|
| 157 |
+
tensor = tensor.float()
|
| 158 |
+
cos = freqs.cos()
|
| 159 |
+
sin = freqs.sin()
|
| 160 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 161 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 162 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
| 163 |
+
output = output.to(orig_dtype)
|
| 164 |
+
return output
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class InternVisionSdpaAttention(nn.Module):
|
| 168 |
+
def __init__(self, config: NaViLVisionConfig) -> None:
|
| 169 |
+
super().__init__()
|
| 170 |
+
|
| 171 |
+
self.config = config
|
| 172 |
+
|
| 173 |
+
dim = config.hidden_size
|
| 174 |
+
num_heads = config.num_attention_heads
|
| 175 |
+
self.num_heads = num_heads
|
| 176 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
| 177 |
+
self.proj = nn.Linear(dim, dim)
|
| 178 |
+
|
| 179 |
+
self.qk_normalization = config.qk_normalization
|
| 180 |
+
|
| 181 |
+
if self.qk_normalization:
|
| 182 |
+
self.q_norm = InternRMSNorm(dim, eps=config.layer_norm_eps)
|
| 183 |
+
self.k_norm = InternRMSNorm(dim, eps=config.layer_norm_eps)
|
| 184 |
+
|
| 185 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 186 |
+
|
| 187 |
+
def forward(
|
| 188 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
| 189 |
+
) -> torch.Tensor:
|
| 190 |
+
seq_length = hidden_states.shape[0]
|
| 191 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 192 |
+
|
| 193 |
+
if self.qk_normalization:
|
| 194 |
+
q = self.q_norm(q.flatten(1).view(q.shape))
|
| 195 |
+
k = self.k_norm(k.flatten(1).view(k.shape))
|
| 196 |
+
|
| 197 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 198 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 199 |
+
|
| 200 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
| 201 |
+
for i in range(1, len(cu_seqlens)):
|
| 202 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 203 |
+
q = q.transpose(0, 1)
|
| 204 |
+
k = k.transpose(0, 1)
|
| 205 |
+
v = v.transpose(0, 1)
|
| 206 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
| 207 |
+
attn_output = attn_output.transpose(0, 1)
|
| 208 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 209 |
+
attn_output = self.proj(attn_output)
|
| 210 |
+
attn_output = self.proj_drop(attn_output)
|
| 211 |
+
return attn_output
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def apply_rotary_pos_emb_flashatt(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
| 215 |
+
tensor_ = tensor.float()
|
| 216 |
+
cos = freqs.cos().float()
|
| 217 |
+
sin = freqs.sin().float()
|
| 218 |
+
output = apply_rotary_emb(tensor_, cos, sin).type_as(tensor)
|
| 219 |
+
return output
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class InternVisionFlashAttention2(nn.Module):
|
| 223 |
+
def __init__(self, config: NaViLVisionConfig) -> None:
|
| 224 |
+
super().__init__()
|
| 225 |
+
self.config = config
|
| 226 |
+
|
| 227 |
+
dim = config.hidden_size
|
| 228 |
+
num_heads = config.num_attention_heads
|
| 229 |
+
|
| 230 |
+
self.num_heads = num_heads
|
| 231 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
| 232 |
+
self.proj = nn.Linear(dim, dim)
|
| 233 |
+
|
| 234 |
+
self.qk_normalization = config.qk_normalization
|
| 235 |
+
|
| 236 |
+
if self.qk_normalization:
|
| 237 |
+
self.q_norm = InternRMSNorm(dim, eps=config.layer_norm_eps)
|
| 238 |
+
self.k_norm = InternRMSNorm(dim, eps=config.layer_norm_eps)
|
| 239 |
+
|
| 240 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 241 |
+
|
| 242 |
+
def forward(
|
| 243 |
+
self,
|
| 244 |
+
hidden_states: torch.Tensor,
|
| 245 |
+
cu_seqlens: torch.Tensor,
|
| 246 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 247 |
+
) -> torch.Tensor:
|
| 248 |
+
seq_length = hidden_states.shape[0]
|
| 249 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 250 |
+
|
| 251 |
+
if self.qk_normalization:
|
| 252 |
+
q = self.q_norm(q.flatten(1).view(q.shape))
|
| 253 |
+
k = self.k_norm(k.flatten(1).view(k.shape))
|
| 254 |
+
|
| 255 |
+
q = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 256 |
+
k = apply_rotary_pos_emb_flashatt(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 257 |
+
|
| 258 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
| 259 |
+
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
| 260 |
+
seq_length, -1
|
| 261 |
+
)
|
| 262 |
+
attn_output = self.proj(attn_output)
|
| 263 |
+
attn_output = self.proj_drop(attn_output)
|
| 264 |
+
return attn_output
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
class InternMLP(nn.Module):
|
| 268 |
+
def __init__(self, config: NaViLVisionConfig):
|
| 269 |
+
super().__init__()
|
| 270 |
+
self.config = config
|
| 271 |
+
self.act = ACT2FN[config.hidden_act]
|
| 272 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 273 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 274 |
+
|
| 275 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 276 |
+
hidden_states = self.fc1(hidden_states)
|
| 277 |
+
hidden_states = self.act(hidden_states)
|
| 278 |
+
hidden_states = self.fc2(hidden_states)
|
| 279 |
+
return hidden_states
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>",
|
| 16 |
+
{
|
| 17 |
+
"content": "</box>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"content": "<box>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"content": "<IMG_CONTEXT>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"content": "</img>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"content": "<img>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"content": "</quad>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"content": "<quad>",
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"normalized": false,
|
| 62 |
+
"rstrip": false,
|
| 63 |
+
"single_word": false
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"content": "</ref>",
|
| 67 |
+
"lstrip": false,
|
| 68 |
+
"normalized": false,
|
| 69 |
+
"rstrip": false,
|
| 70 |
+
"single_word": false
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"content": "<ref>",
|
| 74 |
+
"lstrip": false,
|
| 75 |
+
"normalized": false,
|
| 76 |
+
"rstrip": false,
|
| 77 |
+
"single_word": false
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"content": "<img_uncond>",
|
| 81 |
+
"lstrip": false,
|
| 82 |
+
"normalized": false,
|
| 83 |
+
"rstrip": false,
|
| 84 |
+
"single_word": false
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"content": "<IMG_LINE_BREAK>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"content": "<IMG_FRAME_BREAK>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false
|
| 99 |
+
}
|
| 100 |
+
],
|
| 101 |
+
"eos_token": {
|
| 102 |
+
"content": "<|im_end|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false
|
| 107 |
+
},
|
| 108 |
+
"pad_token": {
|
| 109 |
+
"content": "<|endoftext|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false
|
| 114 |
+
}
|
| 115 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"151643": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"151644": {
|
| 15 |
+
"content": "<|im_start|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"151645": {
|
| 23 |
+
"content": "<|im_end|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"151646": {
|
| 31 |
+
"content": "<|object_ref_start|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"151647": {
|
| 39 |
+
"content": "<|object_ref_end|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"151648": {
|
| 47 |
+
"content": "<|box_start|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"151649": {
|
| 55 |
+
"content": "<|box_end|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"151650": {
|
| 63 |
+
"content": "<|quad_start|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"151651": {
|
| 71 |
+
"content": "<|quad_end|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"151652": {
|
| 79 |
+
"content": "<|vision_start|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"151653": {
|
| 87 |
+
"content": "<|vision_end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"151654": {
|
| 95 |
+
"content": "<|vision_pad|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"151655": {
|
| 103 |
+
"content": "<|image_pad|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"151656": {
|
| 111 |
+
"content": "<|video_pad|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"151657": {
|
| 119 |
+
"content": "<tool_call>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"151658": {
|
| 127 |
+
"content": "</tool_call>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"151659": {
|
| 135 |
+
"content": "<|fim_prefix|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"151660": {
|
| 143 |
+
"content": "<|fim_middle|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"151661": {
|
| 151 |
+
"content": "<|fim_suffix|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"151662": {
|
| 159 |
+
"content": "<|fim_pad|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"151663": {
|
| 167 |
+
"content": "<|repo_name|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"151664": {
|
| 175 |
+
"content": "<|file_sep|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"151665": {
|
| 183 |
+
"content": "<tool_response>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"151666": {
|
| 191 |
+
"content": "</tool_response>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"151667": {
|
| 199 |
+
"content": "<think>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"151668": {
|
| 207 |
+
"content": "</think>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
},
|
| 214 |
+
"151669": {
|
| 215 |
+
"content": "</box>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"151670": {
|
| 223 |
+
"content": "<box>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"151671": {
|
| 231 |
+
"content": "<IMG_CONTEXT>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"151672": {
|
| 239 |
+
"content": "</img>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"151673": {
|
| 247 |
+
"content": "<img>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
},
|
| 254 |
+
"151674": {
|
| 255 |
+
"content": "</quad>",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": true
|
| 261 |
+
},
|
| 262 |
+
"151675": {
|
| 263 |
+
"content": "<quad>",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": true
|
| 269 |
+
},
|
| 270 |
+
"151676": {
|
| 271 |
+
"content": "</ref>",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": true
|
| 277 |
+
},
|
| 278 |
+
"151677": {
|
| 279 |
+
"content": "<ref>",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": true
|
| 285 |
+
},
|
| 286 |
+
"151678": {
|
| 287 |
+
"content": "<img_uncond>",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": true
|
| 293 |
+
},
|
| 294 |
+
"151679": {
|
| 295 |
+
"content": "<IMG_LINE_BREAK>",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": true
|
| 301 |
+
},
|
| 302 |
+
"151680": {
|
| 303 |
+
"content": "<IMG_FRAME_BREAK>",
|
| 304 |
+
"lstrip": false,
|
| 305 |
+
"normalized": false,
|
| 306 |
+
"rstrip": false,
|
| 307 |
+
"single_word": false,
|
| 308 |
+
"special": true
|
| 309 |
+
}
|
| 310 |
+
},
|
| 311 |
+
"additional_special_tokens": [
|
| 312 |
+
"<|im_start|>",
|
| 313 |
+
"<|im_end|>",
|
| 314 |
+
"<|object_ref_start|>",
|
| 315 |
+
"<|object_ref_end|>",
|
| 316 |
+
"<|box_start|>",
|
| 317 |
+
"<|box_end|>",
|
| 318 |
+
"<|quad_start|>",
|
| 319 |
+
"<|quad_end|>",
|
| 320 |
+
"<|vision_start|>",
|
| 321 |
+
"<|vision_end|>",
|
| 322 |
+
"<|vision_pad|>",
|
| 323 |
+
"<|image_pad|>",
|
| 324 |
+
"<|video_pad|>",
|
| 325 |
+
"</box>",
|
| 326 |
+
"<box>",
|
| 327 |
+
"<IMG_CONTEXT>",
|
| 328 |
+
"</img>",
|
| 329 |
+
"<img>",
|
| 330 |
+
"</quad>",
|
| 331 |
+
"<quad>",
|
| 332 |
+
"</ref>",
|
| 333 |
+
"<ref>",
|
| 334 |
+
"<img_uncond>",
|
| 335 |
+
"<IMG_LINE_BREAK>",
|
| 336 |
+
"<IMG_FRAME_BREAK>"
|
| 337 |
+
],
|
| 338 |
+
"bos_token": null,
|
| 339 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
| 340 |
+
"clean_up_tokenization_spaces": false,
|
| 341 |
+
"eos_token": "<|im_end|>",
|
| 342 |
+
"errors": "replace",
|
| 343 |
+
"extra_special_tokens": {},
|
| 344 |
+
"model_max_length": 16384,
|
| 345 |
+
"pad_token": "<|endoftext|>",
|
| 346 |
+
"split_special_tokens": false,
|
| 347 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 348 |
+
"unk_token": null
|
| 349 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|