File size: 6,701 Bytes
9d43dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
#!/usr/bin/env python3
"""
BIT-LEVEL TRANSFORMER - The Ultimate Zero-Overhead Model
Vocab = 2 (just 0 and 1)
No tokenization. No bytes. Pure binary.
Each byte becomes 8 tokens (bits).
Model learns ALL structure from raw bits.
"""
import sys
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
# BIT-LEVEL CONFIG - ABSOLUTE UNIT
CONFIG = {
"d": 768, # GPT-2 small size
"layers": 12, # DEEP for bit pattern learning
"heads": 12,
"vocab": 2, # JUST 0 AND 1!
"ctx": 4096, # 512 bytes of context
}
LR = 3e-4 # learning rate
UPDATE_EVERY = 2048 # bits between updates (256 bytes worth) - BIGGER BATCHES
PRINT_EVERY = 100000 # bits
class BitAttention(nn.Module):
def __init__(self, d, h):
super().__init__()
self.h, self.dk = h, d // h
self.qkv = nn.Linear(d, 3 * d, bias=False)
self.proj = nn.Linear(d, d, bias=False)
def forward(self, x, mask=None):
B, N, D = x.shape
qkv = self.qkv(x).view(B, N, 3, self.h, self.dk).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
if mask is not None:
att = att + mask
return self.proj((F.softmax(att, -1) @ v).transpose(1, 2).reshape(B, N, D))
class BitBlock(nn.Module):
def __init__(self, d, h):
super().__init__()
self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d)
self.attn = BitAttention(d, h)
self.ff = nn.Sequential(nn.Linear(d, 4*d), nn.GELU(), nn.Linear(4*d, d))
def forward(self, x, mask):
x = x + self.attn(self.ln1(x), mask)
return x + self.ff(self.ln2(x))
class BitTransformer(nn.Module):
"""Transformer with vocab=2 (just 0 and 1)"""
def __init__(self, cfg):
super().__init__()
d, L, h = cfg["d"], cfg["layers"], cfg["heads"]
self.emb = nn.Embedding(2, d) # ONLY 2 EMBEDDINGS!
self.blocks = nn.ModuleList([BitBlock(d, h) for _ in range(L)])
self.ln = nn.LayerNorm(d)
self.head = nn.Linear(d, 2, bias=False) # predict 0 or 1
def forward(self, x):
B, N = x.shape
mask = torch.triu(torch.ones(N, N, device=x.device), 1) * -1e9
h = self.emb(x)
for block in self.blocks:
h = block(h, mask)
return self.head(self.ln(h))
def count_params(self):
return sum(p.numel() for p in self.parameters())
def byte_to_bits(byte_val):
"""Convert byte to 8 bits (MSB first)"""
return [(byte_val >> (7 - i)) & 1 for i in range(8)]
def bits_to_byte(bits):
"""Convert 8 bits back to byte"""
val = 0
for i, b in enumerate(bits[:8]):
val |= (b << (7 - i))
return val
class BitTrainer:
def __init__(self, model, lr=LR):
self.model = model.to(DEVICE)
self.opt = torch.optim.AdamW(model.parameters(), lr=lr)
self.ctx_size = CONFIG["ctx"]
self.buffer = deque(maxlen=self.ctx_size + 1)
self.bits_seen = 0
self.bytes_seen = 0
self.total_loss = 0.0
self.updates = 0
self.start_time = time.time()
def ingest_byte(self, byte_val):
"""Convert byte to 8 bits and absorb"""
bits = byte_to_bits(byte_val)
for bit in bits:
self.buffer.append(bit)
self.bits_seen += 1
if len(self.buffer) >= UPDATE_EVERY + 1 and self.bits_seen % UPDATE_EVERY == 0:
self._update()
self.bytes_seen += 1
if self.bits_seen % PRINT_EVERY == 0:
self._print_stats()
if self.bytes_seen % 500000 == 0 and self.bytes_seen > 0:
self._save()
def _update(self):
bits = list(self.buffer)
x = torch.tensor(bits[:-1], device=DEVICE, dtype=torch.long).unsqueeze(0)
y = torch.tensor(bits[1:], device=DEVICE, dtype=torch.long).unsqueeze(0)
self.model.train()
logits = self.model(x)
loss = F.cross_entropy(
logits[:, -UPDATE_EVERY:].reshape(-1, 2),
y[:, -UPDATE_EVERY:].reshape(-1)
)
self.opt.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.opt.step()
self.total_loss += loss.item()
self.updates += 1
def _print_stats(self):
elapsed = time.time() - self.start_time
bits_per_sec = self.bits_seen / elapsed if elapsed > 0 else 0
bytes_per_sec = self.bytes_seen / elapsed if elapsed > 0 else 0
avg_loss = self.total_loss / max(1, self.updates)
# For bits: random is 1.0 (coin flip), lower = learning
# Entropy in bits per bit
entropy = avg_loss / math.log(2)
compression = (1.0 - entropy) * 100 # % compression vs random
print(f"[{elapsed:.0f}s] {self.bytes_seen/1000:.1f}KB | {bytes_per_sec/1000:.1f} KB/s | "
f"loss={avg_loss:.4f} | entropy={entropy:.3f} bit/bit | "
f"compression={compression:.1f}%", flush=True)
def _save(self):
avg_loss = self.total_loss / max(1, self.updates)
kb = self.bytes_seen // 1000
ckpt = {
"model": self.model.state_dict(),
"bits": self.bits_seen,
"bytes": self.bytes_seen,
"loss": avg_loss,
}
torch.save(ckpt, f"/workspace/bit_ckpt_{kb}kb.pt")
print(f"[SAVED] bit_ckpt_{kb}kb.pt", flush=True)
def main():
print(f"BIT-LEVEL TRANSFORMER - Vocab = 2 (just 0 and 1)", flush=True)
print(f"Config: {CONFIG}", flush=True)
print(f"Device: {DEVICE}", flush=True)
model = BitTransformer(CONFIG)
params = model.count_params()
print(f"Parameters: {params:,} ({params/1e6:.2f}M)", flush=True)
print(f"Vocab: 2 (literally just 0 and 1)", flush=True)
print(f"Each byte = 8 bit tokens", flush=True)
trainer = BitTrainer(model)
print(f"Listening for bytes (FAST batch mode)...", flush=True)
# Read in large chunks for speed
CHUNK_SIZE = 8192 # 8KB chunks = 65536 bits
while True:
chunk = sys.stdin.buffer.read(CHUNK_SIZE)
if not chunk:
break
for byte in chunk:
trainer.ingest_byte(byte)
print(f"Stream ended. Total: {trainer.bytes_seen:,} bytes = {trainer.bits_seen:,} bits", flush=True)
if __name__ == "__main__":
main()
|