Update README.md
Browse files
README.md
CHANGED
|
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
| 36 |
-
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
@@ -136,6 +136,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
| 136 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 137 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
| 138 |
|
|
|
|
|
|
|
| 139 |
### Accuracy
|
| 140 |
|
| 141 |
#### Open LLM Leaderboard evaluation scores
|
|
@@ -153,9 +155,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 153 |
<tr>
|
| 154 |
<td>MMLU (5-shot)
|
| 155 |
</td>
|
| 156 |
-
<td>83.
|
| 157 |
</td>
|
| 158 |
-
<td>83.
|
| 159 |
</td>
|
| 160 |
<td>99.7%
|
| 161 |
</td>
|
|
@@ -163,71 +165,71 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 163 |
<tr>
|
| 164 |
<td>MMLU (CoT, 0-shot)
|
| 165 |
</td>
|
| 166 |
-
<td>
|
| 167 |
</td>
|
| 168 |
-
<td>85.
|
| 169 |
</td>
|
| 170 |
-
<td>99.
|
| 171 |
</td>
|
| 172 |
</tr>
|
| 173 |
<tr>
|
| 174 |
<td>ARC Challenge (0-shot)
|
| 175 |
</td>
|
| 176 |
-
<td>93.
|
| 177 |
</td>
|
| 178 |
-
<td>93.
|
| 179 |
</td>
|
| 180 |
-
<td>
|
| 181 |
</td>
|
| 182 |
</tr>
|
| 183 |
<tr>
|
| 184 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
| 185 |
</td>
|
| 186 |
-
<td>
|
| 187 |
</td>
|
| 188 |
-
<td>
|
| 189 |
</td>
|
| 190 |
-
<td>
|
| 191 |
</td>
|
| 192 |
</tr>
|
| 193 |
<tr>
|
| 194 |
<td>Hellaswag (10-shot)
|
| 195 |
</td>
|
| 196 |
-
<td>86.
|
| 197 |
</td>
|
| 198 |
-
<td>86.
|
| 199 |
</td>
|
| 200 |
-
<td>99.
|
| 201 |
</td>
|
| 202 |
</tr>
|
| 203 |
<tr>
|
| 204 |
<td>Winogrande (5-shot)
|
| 205 |
</td>
|
| 206 |
-
<td>85.
|
| 207 |
</td>
|
| 208 |
<td>85.00
|
| 209 |
</td>
|
| 210 |
-
<td>
|
| 211 |
</td>
|
| 212 |
</tr>
|
| 213 |
<tr>
|
| 214 |
<td>TruthfulQA (0-shot, mc2)
|
| 215 |
</td>
|
| 216 |
-
<td>
|
| 217 |
</td>
|
| 218 |
-
<td>60.
|
| 219 |
</td>
|
| 220 |
-
<td>
|
| 221 |
</td>
|
| 222 |
</tr>
|
| 223 |
<tr>
|
| 224 |
<td><strong>Average</strong>
|
| 225 |
</td>
|
| 226 |
-
<td><strong>
|
| 227 |
</td>
|
| 228 |
-
<td><strong>
|
| 229 |
</td>
|
| 230 |
-
<td><strong>
|
| 231 |
</td>
|
| 232 |
</tr>
|
| 233 |
</table>
|
|
@@ -240,7 +242,7 @@ The results were obtained using the following commands:
|
|
| 240 |
```
|
| 241 |
lm_eval \
|
| 242 |
--model vllm \
|
| 243 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,
|
| 244 |
--tasks mmlu_llama_3.1_instruct \
|
| 245 |
--fewshot_as_multiturn \
|
| 246 |
--apply_chat_template \
|
|
@@ -252,7 +254,7 @@ lm_eval \
|
|
| 252 |
```
|
| 253 |
lm_eval \
|
| 254 |
--model vllm \
|
| 255 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,
|
| 256 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 257 |
--apply_chat_template \
|
| 258 |
--num_fewshot 0 \
|
|
@@ -263,7 +265,7 @@ lm_eval \
|
|
| 263 |
```
|
| 264 |
lm_eval \
|
| 265 |
--model vllm \
|
| 266 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,
|
| 267 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 268 |
--apply_chat_template \
|
| 269 |
--num_fewshot 0 \
|
|
@@ -274,7 +276,7 @@ lm_eval \
|
|
| 274 |
```
|
| 275 |
lm_eval \
|
| 276 |
--model vllm \
|
| 277 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,
|
| 278 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 279 |
--fewshot_as_multiturn \
|
| 280 |
--apply_chat_template \
|
|
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
| 36 |
+
It achieves scores within 1.2% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
|
|
| 136 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 137 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
| 138 |
|
| 139 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
| 140 |
+
|
| 141 |
### Accuracy
|
| 142 |
|
| 143 |
#### Open LLM Leaderboard evaluation scores
|
|
|
|
| 155 |
<tr>
|
| 156 |
<td>MMLU (5-shot)
|
| 157 |
</td>
|
| 158 |
+
<td>83.94
|
| 159 |
</td>
|
| 160 |
+
<td>83.71
|
| 161 |
</td>
|
| 162 |
<td>99.7%
|
| 163 |
</td>
|
|
|
|
| 165 |
<tr>
|
| 166 |
<td>MMLU (CoT, 0-shot)
|
| 167 |
</td>
|
| 168 |
+
<td>86.23
|
| 169 |
</td>
|
| 170 |
+
<td>85.81
|
| 171 |
</td>
|
| 172 |
+
<td>99.5%
|
| 173 |
</td>
|
| 174 |
</tr>
|
| 175 |
<tr>
|
| 176 |
<td>ARC Challenge (0-shot)
|
| 177 |
</td>
|
| 178 |
+
<td>93.34
|
| 179 |
</td>
|
| 180 |
+
<td>93.09
|
| 181 |
</td>
|
| 182 |
+
<td>99.7%
|
| 183 |
</td>
|
| 184 |
</tr>
|
| 185 |
<tr>
|
| 186 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
| 187 |
</td>
|
| 188 |
+
<td>95.38
|
| 189 |
</td>
|
| 190 |
+
<td>94.24
|
| 191 |
</td>
|
| 192 |
+
<td>98.8%
|
| 193 |
</td>
|
| 194 |
</tr>
|
| 195 |
<tr>
|
| 196 |
<td>Hellaswag (10-shot)
|
| 197 |
</td>
|
| 198 |
+
<td>86.66
|
| 199 |
</td>
|
| 200 |
+
<td>86.19
|
| 201 |
</td>
|
| 202 |
+
<td>99.5%
|
| 203 |
</td>
|
| 204 |
</tr>
|
| 205 |
<tr>
|
| 206 |
<td>Winogrande (5-shot)
|
| 207 |
</td>
|
| 208 |
+
<td>85.32
|
| 209 |
</td>
|
| 210 |
<td>85.00
|
| 211 |
</td>
|
| 212 |
+
<td>99.6%
|
| 213 |
</td>
|
| 214 |
</tr>
|
| 215 |
<tr>
|
| 216 |
<td>TruthfulQA (0-shot, mc2)
|
| 217 |
</td>
|
| 218 |
+
<td>60.65
|
| 219 |
</td>
|
| 220 |
+
<td>60.69
|
| 221 |
</td>
|
| 222 |
+
<td>100.1%
|
| 223 |
</td>
|
| 224 |
</tr>
|
| 225 |
<tr>
|
| 226 |
<td><strong>Average</strong>
|
| 227 |
</td>
|
| 228 |
+
<td><strong>84.50</strong>
|
| 229 |
</td>
|
| 230 |
+
<td><strong>84.10</strong>
|
| 231 |
</td>
|
| 232 |
+
<td><strong>99.6%</strong>
|
| 233 |
</td>
|
| 234 |
</tr>
|
| 235 |
</table>
|
|
|
|
| 242 |
```
|
| 243 |
lm_eval \
|
| 244 |
--model vllm \
|
| 245 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
| 246 |
--tasks mmlu_llama_3.1_instruct \
|
| 247 |
--fewshot_as_multiturn \
|
| 248 |
--apply_chat_template \
|
|
|
|
| 254 |
```
|
| 255 |
lm_eval \
|
| 256 |
--model vllm \
|
| 257 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 258 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 259 |
--apply_chat_template \
|
| 260 |
--num_fewshot 0 \
|
|
|
|
| 265 |
```
|
| 266 |
lm_eval \
|
| 267 |
--model vllm \
|
| 268 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
| 269 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 270 |
--apply_chat_template \
|
| 271 |
--num_fewshot 0 \
|
|
|
|
| 276 |
```
|
| 277 |
lm_eval \
|
| 278 |
--model vllm \
|
| 279 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 280 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 281 |
--fewshot_as_multiturn \
|
| 282 |
--apply_chat_template \
|