File size: 40,825 Bytes
bdd5464
 
 
13d4fa0
bdd5464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d4fa0
bdd5464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
#!/usr/bin/env python3
"""
Dual-head multi-label PyTorch training script for mmBERT-base.
Two classification heads: onderwerp (topic) and beleving (experience) with dynamic label counts.
Uses combined F1+BCE loss with weight α (configurable balance).
Features: learnable thresholds, warmup + cosine LR, gradient clipping.
mmBERT: Modern multilingual encoder (1800+ languages, 2x faster than XLM-R).
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import LinearLR, CosineAnnealingLR, SequentialLR
from transformers import AutoTokenizer, AutoModel
import os
import json
import numpy as np
import random
import wandb
from rd_dataset_loader import load_rd_wim_dataset


# Threshold helpers: logit ↔ probability conversions
def prob_to_logit(p: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
    """Convert probabilities to logits (inverse sigmoid). Numerically stable."""
    p = torch.clamp(p, eps, 1 - eps)
    return torch.log(p / (1 - p))


def logit_to_prob(l: torch.Tensor) -> torch.Tensor:
    """Convert logits to probabilities using sigmoid."""
    return torch.sigmoid(l)


# Set device - MPS for Apple Silicon, fallback to CPU
def get_device():
    if torch.backends.mps.is_available():
        device = torch.device("mps")
        print("Using MPS (Apple Silicon) for acceleration")
    elif torch.cuda.is_available():
        device = torch.device("cuda")
        print("Using CUDA GPU")
    else:
        device = torch.device("cpu")
        print("Using CPU")
    return device


def set_seed(seed):
    """Set random seeds for reproducibility across torch, numpy, and Python random."""
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


class mmBERTDualHead(nn.Module):
    """
    mmBERT with two classification heads for multi-task learning.
    Shared encoder with separate heads for onderwerp and beleving.
    Optionally includes learnable thresholds for each head.
    """
    def __init__(self, model_name, num_onderwerp, num_beleving, dropout, initial_threshold, use_thresholds: bool = True):
        super().__init__()
        self.use_thresholds = use_thresholds

        # Shared mmBERT encoder (22 layers, 768 hidden, supports up to 8192 tokens)
        self.encoder = AutoModel.from_pretrained(model_name)
        hidden_size = self.encoder.config.hidden_size  # 768 for mmBERT-base

        # Classification head for onderwerp (topics)
        self.onderwerp_head = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(hidden_size, num_onderwerp)
        )

        # Classification head for beleving (experiences)
        self.beleving_head = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(hidden_size, num_beleving)
        )

        # Thresholds are optionally parameterized in **logit space** (tau_logit).
        # Why: (1) avoids prob clamping and keeps grads healthy, (2) matches the space of logits,
        # (3) lets Soft-F1 express per-class decision boundaries independent of BCE calibration.
        self.onderwerp_tau_logit = None
        self.beleving_tau_logit = None
        if self.use_thresholds:
            init_logit = prob_to_logit(torch.tensor(initial_threshold))
            self.onderwerp_tau_logit = nn.Parameter(torch.full((num_onderwerp,), init_logit))
            self.beleving_tau_logit = nn.Parameter(torch.full((num_beleving,), init_logit))

    def forward(self, input_ids, attention_mask):
        # Get shared representation from mmBERT encoder
        outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask
        )

        # mmBERT doesn't have pooler_output, use CLS token from last_hidden_state
        # Extract [CLS] token representation (first token in sequence)
        pooled_output = outputs.last_hidden_state[:, 0, :]

        # Generate predictions from both heads
        onderwerp_logits = self.onderwerp_head(pooled_output)
        beleving_logits = self.beleving_head(pooled_output)

        return onderwerp_logits, beleving_logits


class DutchDualLabelDataset(Dataset):
    """Dataset for dual-label classification (onderwerp + beleving)."""

    def __init__(self, texts, onderwerp_labels, beleving_labels, tokenizer, max_length):
        self.texts = texts
        self.onderwerp_labels = onderwerp_labels
        self.beleving_labels = beleving_labels
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]

        # Tokenize text
        encoding = self.tokenizer(
            text,
            truncation=True,
            padding='max_length',
            max_length=self.max_length,
            return_tensors='pt'
        )

        return {
            'input_ids': encoding['input_ids'].squeeze(),
            'attention_mask': encoding['attention_mask'].squeeze(),
            'onderwerp_labels': torch.tensor(self.onderwerp_labels[idx], dtype=torch.float),
            'beleving_labels': torch.tensor(self.beleving_labels[idx], dtype=torch.float)
        }


def calculate_soft_f1(logits, labels, logit_threshold=None, temperature=1.0):
    """
    Calculate differentiable F1 score using sigmoid approximation.

    If logit_threshold is None: y_soft = sigmoid(logits * T)
    Else:                       y_soft = sigmoid((logits - logit_threshold) * T)

    Rationale:
      - With thresholds ON, Soft-F1 learns per-class decision boundaries in logit space.
      - With thresholds OFF, we follow POLA: a single, obvious source (head logits).

    Args:
        logits: Model predictions (before sigmoid)
        labels: True labels (multi-hot encoded)
        logit_threshold: Optional decision threshold in LOGIT space (None = no shift)
        temperature: Sharpness of sigmoid approximation

    Returns:
        soft_f1: Differentiable F1 score
    """
    # Compute shifted logits (or raw logits if threshold is None)
    if logit_threshold is None:
        shifted = logits * temperature
    else:
        shifted = (logits - logit_threshold) * temperature

    # Soft predictions using sigmoid
    y_pred_soft = torch.sigmoid(shifted)

    # Soft confusion matrix elements
    TP = (y_pred_soft * labels).sum(dim=-1)  # True Positives
    FP = (y_pred_soft * (1 - labels)).sum(dim=-1)  # False Positives
    FN = ((1 - y_pred_soft) * labels).sum(dim=-1)  # False Negatives

    # Differentiable F1 score
    eps = 1e-8
    precision = TP / (TP + FP + eps)
    recall = TP / (TP + FN + eps)
    f1 = 2 * precision * recall / (precision + recall + eps)

    return f1.mean()  # Average across batch


def evaluate(model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
             onderwerp_names, beleving_names, num_samples, max_length):
    """
    Evaluate model on validation set and return metrics.

    Args:
        model: The trained model
        val_texts: List of validation texts
        val_onderwerp: Validation onderwerp labels
        val_beleving: Validation beleving labels
        tokenizer: Tokenizer for encoding text
        device: Device to run evaluation on
        onderwerp_names: List of onderwerp label names
        beleving_names: List of beleving label names
        num_samples: Number of samples to evaluate (None = all)
        max_length: Max sequence length

    Returns:
        dict: Dictionary containing all evaluation metrics
    """
    model.eval()

    # Determine number of samples to evaluate
    if num_samples is None:
        num_samples = len(val_texts)
    else:
        num_samples = min(num_samples, len(val_texts))

    # Track metrics
    onderwerp_correct = np.zeros(len(onderwerp_names))
    onderwerp_total = np.zeros(len(onderwerp_names))
    beleving_correct = np.zeros(len(beleving_names))
    beleving_total = np.zeros(len(beleving_names))

    # Track F1 components
    onderwerp_tp = 0
    onderwerp_fp = 0
    onderwerp_fn = 0
    beleving_tp = 0
    beleving_fp = 0
    beleving_fn = 0

    with torch.inference_mode():
        for i in range(num_samples):
            # Tokenize
            encoding = tokenizer(
                val_texts[i],
                truncation=True,
                padding='max_length',
                max_length=max_length,
                return_tensors='pt'
            )

            # Move to device
            input_ids = encoding['input_ids'].to(device)
            attention_mask = encoding['attention_mask'].to(device)

            # Get predictions
            onderwerp_logits, beleving_logits = model(input_ids, attention_mask)

            # Convert to probabilities
            onderwerp_probs = torch.sigmoid(onderwerp_logits)
            beleving_probs = torch.sigmoid(beleving_logits)

            # Apply learned per-class thresholds (if enabled) or fixed 0.5 cutoff
            if model.use_thresholds:
                tau_on = logit_to_prob(model.onderwerp_tau_logit)  # [C1]
                tau_be = logit_to_prob(model.beleving_tau_logit)   # [C2]
            else:
                # Fixed probability cutoff (POLA-friendly)
                tau_on = torch.full_like(onderwerp_probs[0], 0.5)
                tau_be = torch.full_like(beleving_probs[0], 0.5)

            onderwerp_pred = (onderwerp_probs > tau_on).squeeze().cpu().numpy()
            beleving_pred = (beleving_probs > tau_be).squeeze().cpu().numpy()

            # Get true labels
            onderwerp_true = val_onderwerp[i]
            beleving_true = val_beleving[i]

            # Update F1 components
            onderwerp_tp += ((onderwerp_pred == 1) & (onderwerp_true == 1)).sum()
            onderwerp_fp += ((onderwerp_pred == 1) & (onderwerp_true == 0)).sum()
            onderwerp_fn += ((onderwerp_pred == 0) & (onderwerp_true == 1)).sum()

            beleving_tp += ((beleving_pred == 1) & (beleving_true == 1)).sum()
            beleving_fp += ((beleving_pred == 1) & (beleving_true == 0)).sum()
            beleving_fn += ((beleving_pred == 0) & (beleving_true == 1)).sum()

            # Update accuracy metrics
            for j in range(len(onderwerp_names)):
                if onderwerp_pred[j] == onderwerp_true[j]:
                    onderwerp_correct[j] += 1
                onderwerp_total[j] += 1

            for j in range(len(beleving_names)):
                if beleving_pred[j] == beleving_true[j]:
                    beleving_correct[j] += 1
                beleving_total[j] += 1

    # Calculate F1 scores
    epsilon = 1e-8
    onderwerp_precision = onderwerp_tp / (onderwerp_tp + onderwerp_fp + epsilon)
    onderwerp_recall = onderwerp_tp / (onderwerp_tp + onderwerp_fn + epsilon)
    onderwerp_f1_score = 2 * onderwerp_precision * onderwerp_recall / (onderwerp_precision + onderwerp_recall + epsilon)

    beleving_precision = beleving_tp / (beleving_tp + beleving_fp + epsilon)
    beleving_recall = beleving_tp / (beleving_tp + beleving_fn + epsilon)
    beleving_f1_score = 2 * beleving_precision * beleving_recall / (beleving_precision + beleving_recall + epsilon)

    # Calculate accuracies
    onderwerp_acc = onderwerp_correct.sum() / onderwerp_total.sum()
    beleving_acc = beleving_correct.sum() / beleving_total.sum()

    # Get threshold statistics (convert to probability space for human readability)
    if model.use_thresholds:
        onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
        onderwerp_thresh_min = logit_to_prob(model.onderwerp_tau_logit).min().item()
        onderwerp_thresh_max = logit_to_prob(model.onderwerp_tau_logit).max().item()
        onderwerp_thresh_std = logit_to_prob(model.onderwerp_tau_logit).std().item()
        beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
        beleving_thresh_min = logit_to_prob(model.beleving_tau_logit).min().item()
        beleving_thresh_max = logit_to_prob(model.beleving_tau_logit).max().item()
        beleving_thresh_std = logit_to_prob(model.beleving_tau_logit).std().item()
    else:
        # Fixed threshold values
        onderwerp_thresh_mean = onderwerp_thresh_min = onderwerp_thresh_max = onderwerp_thresh_std = 0.5
        beleving_thresh_mean = beleving_thresh_min = beleving_thresh_max = beleving_thresh_std = 0.5

    # Return metrics dictionary
    return {
        'onderwerp_acc': onderwerp_acc,
        'onderwerp_precision': onderwerp_precision,
        'onderwerp_recall': onderwerp_recall,
        'onderwerp_f1': onderwerp_f1_score,
        'beleving_acc': beleving_acc,
        'beleving_precision': beleving_precision,
        'beleving_recall': beleving_recall,
        'beleving_f1': beleving_f1_score,
        'combined_acc': (onderwerp_acc + beleving_acc) / 2,
        'combined_f1': (onderwerp_f1_score + beleving_f1_score) / 2,
        'onderwerp_thresh_mean': onderwerp_thresh_mean,
        'onderwerp_thresh_min': onderwerp_thresh_min,
        'onderwerp_thresh_max': onderwerp_thresh_max,
        'onderwerp_thresh_std': onderwerp_thresh_std,
        'beleving_thresh_mean': beleving_thresh_mean,
        'beleving_thresh_min': beleving_thresh_min,
        'beleving_thresh_max': beleving_thresh_max,
        'beleving_thresh_std': beleving_thresh_std,
        'num_samples_evaluated': num_samples
    }


def grad_l2_norm(params):
    """
    Calculate L2 norm of gradients safely (avoids Python int→Tensor addition).

    Args:
        params: Iterator of parameters (e.g., model.parameters())

    Returns:
        float: L2 norm of all gradients, or 0.0 if no gradients exist
    """
    sq_sum = None
    for p in params:
        if p.grad is None:
            continue
        g = p.grad
        val = g.pow(2).sum()
        sq_sum = val if sq_sum is None else (sq_sum + val)
    if sq_sum is None:
        return 0.0
    return sq_sum.sqrt().item()


def make_opt_sched(model, enc_lr, thr_lr, total_steps, warmup_ratio, eta_min):
    """
    Create optimizer+scheduler for training.
    Optimizer has 1-2 param groups: [0]=encoder+heads, [1]=thresholds (optional).
    """
    # Group 0: encoder + heads
    encoder_params = [p for n, p in model.named_parameters()
                      if not (model.use_thresholds and 'tau_logit' in n)]
    param_groups = [{"params": encoder_params, "lr": enc_lr, "weight_decay": 0.0}]

    # Group 1 (optional): thresholds
    if model.use_thresholds:
        thr_params = [model.onderwerp_tau_logit, model.beleving_tau_logit]
        param_groups.append({"params": thr_params, "lr": thr_lr, "weight_decay": 0.0})

    optimizer = torch.optim.AdamW(param_groups)

    # Warmup → cosine schedule
    warmup_steps = min(max(1, int(warmup_ratio * total_steps)), max(1, total_steps - 1))
    warmup = LinearLR(optimizer, start_factor=1e-10, end_factor=1.0, total_iters=warmup_steps)
    cosine = CosineAnnealingLR(optimizer, T_max=max(1, total_steps - warmup_steps), eta_min=eta_min)
    scheduler = SequentialLR(optimizer, [warmup, cosine], milestones=[warmup_steps])

    return optimizer, scheduler


def run_epochs(model, tokenizer, train_loader, val_texts, val_onderwerp, val_beleving,
               onderwerp_names, beleving_names, device,
               *, start_epoch, end_epoch, phase_name="train",
               optimizer, scheduler, temperature, alpha,
               max_length, global_step):
    """
    Run training for a range of epochs.

    Args:
        model: The model to train
        tokenizer: Tokenizer for text encoding
        train_loader: DataLoader for training batches
        val_texts, val_onderwerp, val_beleving: Validation data
        onderwerp_names, beleving_names: Label names
        device: Device to train on
        start_epoch: Starting epoch (inclusive)
        end_epoch: Ending epoch (exclusive)
        phase_name: Name for logging (default: "train")
        optimizer: Optimizer
        scheduler: LR scheduler
        temperature: Soft-F1 temperature
        alpha: Loss weighting (F1 vs BCE)
        max_length: Max sequence length
        global_step: Starting global step counter

    Returns:
        Updated global_step
    """
    num_epochs = end_epoch - start_epoch
    phase_total_steps = max(1, len(train_loader) * num_epochs)

    model.train()

    for epoch in range(start_epoch, end_epoch):
        total_loss = 0
        total_onderwerp_f1 = 0
        total_beleving_f1 = 0
        total_bce_loss = 0
        total_f1_loss = 0
        num_batches = 0

        print(f"\n[{phase_name.upper()}] Epoch {epoch + 1}/{end_epoch}")
        print("-" * 40)

        for batch_idx, batch in enumerate(train_loader):
            # Move batch to device
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            onderwerp_labels = batch['onderwerp_labels'].to(device)
            beleving_labels = batch['beleving_labels'].to(device)

            # Zero gradients
            optimizer.zero_grad()

            # Forward pass
            onderwerp_logits, beleving_logits = model(input_ids, attention_mask)

            # Calculate Soft-F1 for both heads (conditionally pass thresholds)
            onderwerp_f1 = calculate_soft_f1(
                onderwerp_logits, onderwerp_labels,
                model.onderwerp_tau_logit if model.use_thresholds else None,
                temperature
            )
            beleving_f1 = calculate_soft_f1(
                beleving_logits, beleving_labels,
                model.beleving_tau_logit if model.use_thresholds else None,
                temperature
            )

            # Calculate BCE loss
            # Design choice (POLA):
            # - BCE is computed on raw logits to maintain probability calibration.
            # - Soft-F1 may use a shifted logit (if thresholds ON) to learn F1-friendly boundaries.
            # - If thresholds OFF, Soft-F1 acts directly on logits; there is a single "source of truth".
            # This keeps behavior unsurprising: either (A) calibrated logits + separate boundary learning,
            # or (B) no extra threshold machinery; F1 and BCE both reference the same logits.
            bce_onderwerp = F.binary_cross_entropy_with_logits(onderwerp_logits, onderwerp_labels)
            bce_beleving = F.binary_cross_entropy_with_logits(beleving_logits, beleving_labels)

            # Combined loss
            f1_loss = (1 - onderwerp_f1) + (1 - beleving_f1)
            bce_loss = bce_onderwerp + bce_beleving
            loss = alpha * (f1_loss / 2) + (1 - alpha) * (bce_loss / 2)

            # Periodic logging
            if batch_idx % 20 == 0:
                with torch.no_grad():
                    # Get predictions (convert thresholds from logit-space to prob-space if enabled)
                    onderwerp_probs = torch.sigmoid(onderwerp_logits)
                    beleving_probs = torch.sigmoid(beleving_logits)
                    if model.use_thresholds:
                        tau_on = logit_to_prob(model.onderwerp_tau_logit)
                        tau_be = logit_to_prob(model.beleving_tau_logit)
                    else:
                        tau_on = torch.full_like(onderwerp_probs[0], 0.5)
                        tau_be = torch.full_like(beleving_probs[0], 0.5)
                    onderwerp_pred = (onderwerp_probs > tau_on).float()
                    beleving_pred = (beleving_probs > tau_be).float()

                    # Log actual optimizer param group LRs
                    lrs = scheduler.get_last_lr()
                    encoder_head_lr = lrs[0]   # Param group 0: encoder + heads
                    threshold_lr = lrs[1] if len(lrs) > 1 else None  # Param group 1: thresholds (optional)

                    # Threshold statistics (convert to probability space for readability)
                    if model.use_thresholds:
                        onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
                        onderwerp_thresh_min = logit_to_prob(model.onderwerp_tau_logit).min().item()
                        onderwerp_thresh_max = logit_to_prob(model.onderwerp_tau_logit).max().item()
                        beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
                        beleving_thresh_min = logit_to_prob(model.beleving_tau_logit).min().item()
                        beleving_thresh_max = logit_to_prob(model.beleving_tau_logit).max().item()
                    else:
                        onderwerp_thresh_mean = onderwerp_thresh_min = onderwerp_thresh_max = 0.5
                        beleving_thresh_mean = beleving_thresh_min = beleving_thresh_max = 0.5

                    print(f"  Batch {batch_idx + 1} | Step {global_step + 1}/{phase_total_steps}:")
                    if threshold_lr is not None:
                        print(f"    Total loss: {loss.item():.4f} (α={alpha} F1 + {1-alpha} BCE) | LR: enc_head={encoder_head_lr:.2e} thresh={threshold_lr:.2e}")
                    else:
                        print(f"    Total loss: {loss.item():.4f} (α={alpha} F1 + {1-alpha} BCE) | LR: enc_head={encoder_head_lr:.2e}")
                    print(f"    F1 loss: {(f1_loss/2).item():.4f} | BCE loss: {(bce_loss/2).item():.4f}")
                    print(f"    Onderwerp F1: {onderwerp_f1.item():.4f} | BCE: {bce_onderwerp.item():.4f} | Thresh: {onderwerp_thresh_mean:.3f} [{onderwerp_thresh_min:.3f}-{onderwerp_thresh_max:.3f}]")
                    print(f"    Beleving F1: {beleving_f1.item():.4f} | BCE: {bce_beleving.item():.4f} | Thresh: {beleving_thresh_mean:.3f} [{beleving_thresh_min:.3f}-{beleving_thresh_max:.3f}]")
                    print(f"    Onderwerp preds: {int(onderwerp_pred.sum())} / {int(onderwerp_labels.sum())} true")
                    print(f"    Beleving preds: {int(beleving_pred.sum())} / {int(beleving_labels.sum())} true")

                    # Log to wandb
                    log_dict = {
                        "phase": phase_name,
                        "train/loss": loss.item(),
                        "train/f1_loss": (f1_loss / 2).item(),
                        "train/bce_loss": (bce_loss / 2).item(),
                        "train/onderwerp_f1": onderwerp_f1.item(),
                        "train/onderwerp_bce": bce_onderwerp.item(),
                        "train/beleving_f1": beleving_f1.item(),
                        "train/beleving_bce": bce_beleving.item(),
                        "train/encoder_head_lr": encoder_head_lr,
                        "train/onderwerp_threshold_mean": onderwerp_thresh_mean,
                        "train/onderwerp_threshold_min": onderwerp_thresh_min,
                        "train/onderwerp_threshold_max": onderwerp_thresh_max,
                        "train/beleving_threshold_mean": beleving_thresh_mean,
                        "train/beleving_threshold_min": beleving_thresh_min,
                        "train/beleving_threshold_max": beleving_thresh_max,
                    }
                    if threshold_lr is not None:
                        log_dict["train/threshold_lr"] = threshold_lr
                    wandb.log(log_dict, step=global_step)

            # Backward pass
            loss.backward()

            # Calculate gradient norms
            with torch.no_grad():
                onderwerp_thresh_grad = (model.onderwerp_tau_logit.grad.abs().mean().item()
                                         if model.use_thresholds and model.onderwerp_tau_logit.grad is not None else 0.0)
                beleving_thresh_grad = (model.beleving_tau_logit.grad.abs().mean().item()
                                        if model.use_thresholds and model.beleving_tau_logit.grad is not None else 0.0)

                encoder_grad_norm = grad_l2_norm(model.encoder.parameters())
                onderwerp_head_grad_norm = grad_l2_norm(model.onderwerp_head.parameters())
                beleving_head_grad_norm = grad_l2_norm(model.beleving_head.parameters())
                global_grad_norm = grad_l2_norm(model.parameters())

            # Log gradient norms
            wandb.log({
                "phase": phase_name,
                "grads/threshold_onderwerp": onderwerp_thresh_grad,
                "grads/threshold_beleving": beleving_thresh_grad,
                "grads/encoder": encoder_grad_norm,
                "grads/onderwerp_head": onderwerp_head_grad_norm,
                "grads/beleving_head": beleving_head_grad_norm,
                "grads/global_norm": global_grad_norm,
            }, step=global_step)

            # Gradient clipping
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

            # Update weights and LR
            optimizer.step()
            scheduler.step()

            # Update counters
            global_step += 1
            total_loss += loss.item()
            total_onderwerp_f1 += onderwerp_f1.item()
            total_beleving_f1 += beleving_f1.item()
            total_f1_loss += (f1_loss / 2).item()
            total_bce_loss += (bce_loss / 2).item()
            num_batches += 1

        # Epoch summary
        avg_loss = total_loss / max(1, num_batches)
        avg_onderwerp_f1 = total_onderwerp_f1 / max(1, num_batches)
        avg_beleving_f1 = total_beleving_f1 / max(1, num_batches)
        avg_f1_loss = total_f1_loss / max(1, num_batches)
        avg_bce_loss = total_bce_loss / max(1, num_batches)

        # Get current LR for summary
        lrs = scheduler.get_last_lr()
        current_lr = lrs[0]  # Display first group LR

        # Threshold statistics (convert to probability space for readability)
        if model.use_thresholds:
            onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
            onderwerp_thresh_std = logit_to_prob(model.onderwerp_tau_logit).std().item()
            beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
            beleving_thresh_std = logit_to_prob(model.beleving_tau_logit).std().item()
        else:
            onderwerp_thresh_mean = onderwerp_thresh_std = 0.5
            beleving_thresh_mean = beleving_thresh_std = 0.5

        print(f"\n  [{phase_name.upper()}] Epoch {epoch + 1} Summary:")
        print(f"    Average total loss: {avg_loss:.4f} (α={alpha} F1 + {1-alpha} BCE)")
        print(f"    Average F1 loss: {avg_f1_loss:.4f} | Average BCE loss: {avg_bce_loss:.4f}")
        print(f"    Average onderwerp F1: {avg_onderwerp_f1:.4f} | Threshold: {onderwerp_thresh_mean:.3f} (σ={onderwerp_thresh_std:.3f})")
        print(f"    Average beleving F1: {avg_beleving_f1:.4f} | Threshold: {beleving_thresh_mean:.3f} (σ={beleving_thresh_std:.3f})")
        print(f"    Average combined F1: {(avg_onderwerp_f1 + avg_beleving_f1) / 2:.4f}")
        print(f"    Current learning rate: {current_lr:.2e}")

        # Per-epoch validation
        print(f"\n  Running validation on 200 samples...")
        val_metrics = evaluate(
            model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
            onderwerp_names, beleving_names, num_samples=200, max_length=max_length
        )

        # Log validation metrics
        wandb.log({
            "phase": phase_name,
            "val/onderwerp_acc": val_metrics['onderwerp_acc'],
            "val/onderwerp_precision": val_metrics['onderwerp_precision'],
            "val/onderwerp_recall": val_metrics['onderwerp_recall'],
            "val/onderwerp_f1": val_metrics['onderwerp_f1'],
            "val/beleving_acc": val_metrics['beleving_acc'],
            "val/beleving_precision": val_metrics['beleving_precision'],
            "val/beleving_recall": val_metrics['beleving_recall'],
            "val/beleving_f1": val_metrics['beleving_f1'],
            "val/combined_acc": val_metrics['combined_acc'],
            "val/combined_f1": val_metrics['combined_f1'],
            "val/onderwerp_threshold_mean": val_metrics['onderwerp_thresh_mean'],
            "val/beleving_threshold_mean": val_metrics['beleving_thresh_mean'],
            "epoch": epoch + 1
        }, step=global_step)

        # Log threshold histograms (convert to probability space for readability)
        if model.use_thresholds:
            wandb.log({
                "phase": phase_name,
                "thresholds/onderwerp": wandb.Histogram(logit_to_prob(model.onderwerp_tau_logit).detach().cpu().numpy()),
                "thresholds/beleving": wandb.Histogram(logit_to_prob(model.beleving_tau_logit).detach().cpu().numpy()),
                "epoch": epoch + 1
            }, step=global_step)

        print(f"    Val onderwerp F1: {val_metrics['onderwerp_f1']:.4f} | Val beleving F1: {val_metrics['beleving_f1']:.4f}")
        print(f"    Val combined F1: {val_metrics['combined_f1']:.4f}")

        # Return to training mode
        model.train()

    return global_step


def main():
    # Enable TensorFloat32 for better performance on modern NVIDIA GPUs
    if torch.cuda.is_available():
        torch.set_float32_matmul_precision('high')

    # Initialize device
    device = get_device()

    # ============== CONFIGURATION FOR WANDB SWEEPS ==============
    # Fixed model configuration (not swept)
    model_name = "jhu-clsp/mmBERT-base"

    # Sweepable hyperparameters with defaults
    default_config = dict(
        # Reproducibility
        seed=42,

        # Model architecture
        dropout=0.2,
        initial_threshold=0.565,
        max_length=1408,

        # Training switches
        use_thresholds=False,  # If False: no learnable thresholds; Soft-F1 uses raw logits

        # Training
        encoder_peak_lr=8e-5,
        threshold_lr_mult=5.0,  # Threshold LR = encoder_peak_lr * threshold_lr_mult
        num_epochs=15,
        batch_size=16,

        # Loss function
        alpha=0.15,  # Weight for F1 loss in combined loss (0.5 = balanced)
        temperature=2.0,  # Sigmoid smoothing (lower = softer, higher = sharper)

        # LR schedule
        warmup_ratio=0.1,  # 10% warmup
        min_lr=1e-6,
    )

    # Initialize wandb and get config (allows sweep agent to override defaults)
    wandb.init(project="wim-multilabel-mmbert", config=default_config)
    cfg = wandb.config

    # Set seed for reproducibility (before loading data)
    set_seed(cfg.seed)

    # Load RD dataset
    print("\nLoading RD dataset...")
    texts, onderwerp, beleving, onderwerp_names, beleving_names = load_rd_wim_dataset(
        max_samples=None  # Using full dataset for better training
    )

    print(f"\nDataset loaded:")
    print(f"  Samples: {len(texts)}")
    print(f"  Onderwerp labels: {len(onderwerp_names)}")
    print(f"  Beleving labels: {len(beleving_names)}")
    print(f"  Avg onderwerp per sample: {onderwerp.sum(axis=1).mean():.2f}")
    print(f"  Avg beleving per sample: {beleving.sum(axis=1).mean():.2f}")

    # Unpack hyperparameters from wandb.config
    dropout = cfg.dropout
    initial_threshold = cfg.initial_threshold
    max_length = cfg.max_length
    encoder_peak_lr = cfg.encoder_peak_lr
    threshold_peak_lr = encoder_peak_lr * cfg.threshold_lr_mult  # Derived from multiplier
    num_epochs = cfg.num_epochs
    batch_size = cfg.batch_size
    alpha = cfg.alpha
    temperature = cfg.temperature
    warmup_ratio = cfg.warmup_ratio
    min_lr = cfg.min_lr
    # ================================================================

    # Load tokenizer and create model
    print("\nLoading mmBERT-base tokenizer and creating dual-head model...")
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    model = mmBERTDualHead(
        model_name=model_name,
        num_onderwerp=len(onderwerp_names),
        num_beleving=len(beleving_names),
        dropout=dropout,
        initial_threshold=initial_threshold,
        use_thresholds=cfg.use_thresholds
    )

    # Move model to device
    model = model.to(device)

    # Ensure thresholds match encoder dtype for mixed precision safety
    encoder_dtype = next(model.encoder.parameters()).dtype
    with torch.no_grad():
        if model.use_thresholds:
            model.onderwerp_tau_logit.copy_(model.onderwerp_tau_logit.to(encoder_dtype))
            model.beleving_tau_logit.copy_(model.beleving_tau_logit.to(encoder_dtype))

    print(f"Model loaded and moved to {device}")
    print(f"  Onderwerp head: {len(onderwerp_names)} outputs")
    print(f"  Beleving head: {len(beleving_names)} outputs")

    # Split data into train/val (80/20)
    split_idx = int(0.8 * len(texts))
    train_texts = texts[:split_idx]
    train_onderwerp = onderwerp[:split_idx]
    train_beleving = beleving[:split_idx]
    val_texts = texts[split_idx:]
    val_onderwerp = onderwerp[split_idx:]
    val_beleving = beleving[split_idx:]

    print(f"\nData split:")
    print(f"  Train: {len(train_texts)} samples")
    print(f"  Val: {len(val_texts)} samples")

    # Create training dataset and dataloader
    train_dataset = DutchDualLabelDataset(
        train_texts, train_onderwerp, train_beleving, tokenizer, max_length
    )

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

    steps_per_epoch = len(train_loader)
    total_training_steps = steps_per_epoch * num_epochs

    # Log derived/computed values to wandb (sweepable params already in config)
    wandb.config.update({
        # Fixed model configuration
        "model_name": model_name,
        "num_onderwerp": len(onderwerp_names),
        "num_beleving": len(beleving_names),

        # Derived training params
        "threshold_peak_lr": threshold_peak_lr,
        "total_training_steps": total_training_steps,

        # Dataset info
        "train_samples": len(train_texts),
        "val_samples": len(val_texts),
        "total_samples": len(texts),
        "split_ratio": 0.8,

        # Loss configuration (derived from alpha)
        "loss_type": "combined_f1_bce",
        "f1_weight": alpha,
        "bce_weight": 1 - alpha,

        # Fixed features
        "learnable_thresholds": cfg.use_thresholds,
        "per_class_thresholds": cfg.use_thresholds,
        "gradient_clipping": True,
        "max_grad_norm": 1.0,
    }, allow_val_change=True)

    # Print training info
    print(f"\nStarting training for {num_epochs} total epochs with COMBINED F1+BCE LOSS...")
    print(f"Loss formula: {alpha} * (1-F1) + {1-alpha} * BCE")
    print(f"Temperature for Soft-F1: {temperature} | Initial thresholds: {initial_threshold}")
    print(f"Batch size: {batch_size} | Total training batches: {steps_per_epoch}")
    print(f"Learnable thresholds enabled for both onderwerp and beleving heads")
    print("=" * 60)

    # ===== SINGLE-PHASE TRAINING =====
    print(f"\n{'='*60}")
    print(f"TRAINING: {num_epochs} epoch(s)")
    print(f"{'='*60}")

    # Create optimizer and scheduler
    optimizer, scheduler = make_opt_sched(
        model,
        enc_lr=encoder_peak_lr,
        thr_lr=threshold_peak_lr,
        total_steps=total_training_steps,
        warmup_ratio=warmup_ratio,
        eta_min=min_lr
    )

    # Run training
    global_step = run_epochs(
        model, tokenizer, train_loader,
        val_texts, val_onderwerp, val_beleving,
        onderwerp_names, beleving_names, device,
        start_epoch=0, end_epoch=num_epochs,
        phase_name="train",
        optimizer=optimizer, scheduler=scheduler,
        temperature=temperature, alpha=alpha,
        max_length=max_length, global_step=0
    )

    # Training complete
    print(f"\n{'='*60}")
    print("TRAINING COMPLETE")
    print(f"{'='*60}")

    # Final evaluation on larger validation set
    print("\n" + "=" * 60)
    print("FINAL EVALUATION ON VALIDATION SET")
    print("=" * 60)

    print(f"\nEvaluating on 500 validation samples...")
    final_metrics = evaluate(
        model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
        onderwerp_names, beleving_names, num_samples=500, max_length=max_length
    )

    # Print overall metrics
    print("\n" + "=" * 60)
    print(f"FINAL METRICS (on {final_metrics['num_samples_evaluated']} validation samples)")
    print("-" * 40)

    print(f"  Onderwerp:")
    print(f"    Accuracy: {final_metrics['onderwerp_acc']:.1%}")
    print(f"    Precision: {final_metrics['onderwerp_precision']:.3f}")
    print(f"    Recall: {final_metrics['onderwerp_recall']:.3f}")
    print(f"    F1 Score: {final_metrics['onderwerp_f1']:.3f}")

    print(f"\n  Beleving:")
    print(f"    Accuracy: {final_metrics['beleving_acc']:.1%}")
    print(f"    Precision: {final_metrics['beleving_precision']:.3f}")
    print(f"    Recall: {final_metrics['beleving_recall']:.3f}")
    print(f"    F1 Score: {final_metrics['beleving_f1']:.3f}")

    print(f"\n  Combined:")
    print(f"    Average Accuracy: {final_metrics['combined_acc']:.1%}")
    print(f"    Average F1: {final_metrics['combined_f1']:.3f}")

    # Log final metrics to wandb
    wandb.log({
        "final/onderwerp_acc": final_metrics['onderwerp_acc'],
        "final/onderwerp_precision": final_metrics['onderwerp_precision'],
        "final/onderwerp_recall": final_metrics['onderwerp_recall'],
        "final/onderwerp_f1": final_metrics['onderwerp_f1'],
        "final/beleving_acc": final_metrics['beleving_acc'],
        "final/beleving_precision": final_metrics['beleving_precision'],
        "final/beleving_recall": final_metrics['beleving_recall'],
        "final/beleving_f1": final_metrics['beleving_f1'],
        "final/combined_acc": final_metrics['combined_acc'],
        "final/combined_f1": final_metrics['combined_f1'],
    }, step=global_step)

    print("\n" + "=" * 60)
    print("Training complete! 🎉")
    print("mmBERT-base dual-head architecture with balanced F1+BCE loss")
    print(f"Loss formula: {alpha} * (1-F1) + {1-alpha} * BCE")
    print(f"Temperature: {temperature}")
    if cfg.use_thresholds:
        print(f"Learned per-class thresholds:")
        print(f"  Onderwerp ({len(onderwerp_names)} classes): mean={final_metrics['onderwerp_thresh_mean']:.3f} [{final_metrics['onderwerp_thresh_min']:.3f}-{final_metrics['onderwerp_thresh_max']:.3f}] σ={final_metrics['onderwerp_thresh_std']:.3f}")
        print(f"  Beleving ({len(beleving_names)} classes): mean={final_metrics['beleving_thresh_mean']:.3f} [{final_metrics['beleving_thresh_min']:.3f}-{final_metrics['beleving_thresh_max']:.3f}] σ={final_metrics['beleving_thresh_std']:.3f}")
    else:
        print("Thresholds disabled (fixed cutoff τ=0.5 for both heads).")
    print(f"With gradient clipping (max_norm=1.0) and warmup LR schedule")
    print(f"Full dataset: {len(texts)} samples | Batch size: {batch_size} | Epochs: {num_epochs}")
    print(f"mmBERT: Modern multilingual encoder (1800+ languages, max_length: {max_length})")

    # Save final model weights (minimal model saving)
    save_path = "mmbert_dual_head_final.pt"
    torch.save(model.state_dict(), save_path)
    print(f"\nModel weights saved to {save_path}")

    # Save Hugging Face-compatible checkpoint (encoder + tokenizer + custom heads)
    hf_dir = "mmbert_dual_head_hf"
    os.makedirs(hf_dir, exist_ok=True)
    # Save base encoder and tokenizer in HF format
    model.encoder.save_pretrained(hf_dir)
    tokenizer.save_pretrained(hf_dir)
    # Save custom heads and metadata alongside
    head_state = {
        "onderwerp_head_state": model.onderwerp_head.state_dict(),
        "beleving_head_state": model.beleving_head.state_dict(),
        "use_thresholds": model.use_thresholds,
        "num_onderwerp": len(onderwerp_names),
        "num_beleving": len(beleving_names),
        "dropout": dropout,
        "max_length": max_length,
        "alpha": alpha,
        "temperature": temperature,
        "model_name": model_name,
    }
    if model.use_thresholds:
        head_state["onderwerp_tau_logit"] = model.onderwerp_tau_logit.detach().cpu()
        head_state["beleving_tau_logit"] = model.beleving_tau_logit.detach().cpu()
    torch.save(head_state, os.path.join(hf_dir, "dual_head_state.pt"))
    # Save label names for convenience
    with open(os.path.join(hf_dir, "label_names.json"), "w") as f:
        json.dump({
            "onderwerp": list(map(str, onderwerp_names)),
            "beleving": list(map(str, beleving_names))
        }, f, ensure_ascii=False, indent=2)
    print(f"HF-compatible checkpoint saved to '{hf_dir}' (encoder+tokenizer), with heads in dual_head_state.pt")

    # Finish wandb run
    wandb.finish()
    print("\nWandB logging completed and run finished.")


if __name__ == "__main__":
    main()