File size: 40,825 Bytes
bdd5464 13d4fa0 bdd5464 13d4fa0 bdd5464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
#!/usr/bin/env python3
"""
Dual-head multi-label PyTorch training script for mmBERT-base.
Two classification heads: onderwerp (topic) and beleving (experience) with dynamic label counts.
Uses combined F1+BCE loss with weight α (configurable balance).
Features: learnable thresholds, warmup + cosine LR, gradient clipping.
mmBERT: Modern multilingual encoder (1800+ languages, 2x faster than XLM-R).
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import LinearLR, CosineAnnealingLR, SequentialLR
from transformers import AutoTokenizer, AutoModel
import os
import json
import numpy as np
import random
import wandb
from rd_dataset_loader import load_rd_wim_dataset
# Threshold helpers: logit ↔ probability conversions
def prob_to_logit(p: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""Convert probabilities to logits (inverse sigmoid). Numerically stable."""
p = torch.clamp(p, eps, 1 - eps)
return torch.log(p / (1 - p))
def logit_to_prob(l: torch.Tensor) -> torch.Tensor:
"""Convert logits to probabilities using sigmoid."""
return torch.sigmoid(l)
# Set device - MPS for Apple Silicon, fallback to CPU
def get_device():
if torch.backends.mps.is_available():
device = torch.device("mps")
print("Using MPS (Apple Silicon) for acceleration")
elif torch.cuda.is_available():
device = torch.device("cuda")
print("Using CUDA GPU")
else:
device = torch.device("cpu")
print("Using CPU")
return device
def set_seed(seed):
"""Set random seeds for reproducibility across torch, numpy, and Python random."""
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
class mmBERTDualHead(nn.Module):
"""
mmBERT with two classification heads for multi-task learning.
Shared encoder with separate heads for onderwerp and beleving.
Optionally includes learnable thresholds for each head.
"""
def __init__(self, model_name, num_onderwerp, num_beleving, dropout, initial_threshold, use_thresholds: bool = True):
super().__init__()
self.use_thresholds = use_thresholds
# Shared mmBERT encoder (22 layers, 768 hidden, supports up to 8192 tokens)
self.encoder = AutoModel.from_pretrained(model_name)
hidden_size = self.encoder.config.hidden_size # 768 for mmBERT-base
# Classification head for onderwerp (topics)
self.onderwerp_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.Dropout(dropout),
nn.ReLU(),
nn.Linear(hidden_size, num_onderwerp)
)
# Classification head for beleving (experiences)
self.beleving_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.Dropout(dropout),
nn.ReLU(),
nn.Linear(hidden_size, num_beleving)
)
# Thresholds are optionally parameterized in **logit space** (tau_logit).
# Why: (1) avoids prob clamping and keeps grads healthy, (2) matches the space of logits,
# (3) lets Soft-F1 express per-class decision boundaries independent of BCE calibration.
self.onderwerp_tau_logit = None
self.beleving_tau_logit = None
if self.use_thresholds:
init_logit = prob_to_logit(torch.tensor(initial_threshold))
self.onderwerp_tau_logit = nn.Parameter(torch.full((num_onderwerp,), init_logit))
self.beleving_tau_logit = nn.Parameter(torch.full((num_beleving,), init_logit))
def forward(self, input_ids, attention_mask):
# Get shared representation from mmBERT encoder
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask
)
# mmBERT doesn't have pooler_output, use CLS token from last_hidden_state
# Extract [CLS] token representation (first token in sequence)
pooled_output = outputs.last_hidden_state[:, 0, :]
# Generate predictions from both heads
onderwerp_logits = self.onderwerp_head(pooled_output)
beleving_logits = self.beleving_head(pooled_output)
return onderwerp_logits, beleving_logits
class DutchDualLabelDataset(Dataset):
"""Dataset for dual-label classification (onderwerp + beleving)."""
def __init__(self, texts, onderwerp_labels, beleving_labels, tokenizer, max_length):
self.texts = texts
self.onderwerp_labels = onderwerp_labels
self.beleving_labels = beleving_labels
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
# Tokenize text
encoding = self.tokenizer(
text,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_tensors='pt'
)
return {
'input_ids': encoding['input_ids'].squeeze(),
'attention_mask': encoding['attention_mask'].squeeze(),
'onderwerp_labels': torch.tensor(self.onderwerp_labels[idx], dtype=torch.float),
'beleving_labels': torch.tensor(self.beleving_labels[idx], dtype=torch.float)
}
def calculate_soft_f1(logits, labels, logit_threshold=None, temperature=1.0):
"""
Calculate differentiable F1 score using sigmoid approximation.
If logit_threshold is None: y_soft = sigmoid(logits * T)
Else: y_soft = sigmoid((logits - logit_threshold) * T)
Rationale:
- With thresholds ON, Soft-F1 learns per-class decision boundaries in logit space.
- With thresholds OFF, we follow POLA: a single, obvious source (head logits).
Args:
logits: Model predictions (before sigmoid)
labels: True labels (multi-hot encoded)
logit_threshold: Optional decision threshold in LOGIT space (None = no shift)
temperature: Sharpness of sigmoid approximation
Returns:
soft_f1: Differentiable F1 score
"""
# Compute shifted logits (or raw logits if threshold is None)
if logit_threshold is None:
shifted = logits * temperature
else:
shifted = (logits - logit_threshold) * temperature
# Soft predictions using sigmoid
y_pred_soft = torch.sigmoid(shifted)
# Soft confusion matrix elements
TP = (y_pred_soft * labels).sum(dim=-1) # True Positives
FP = (y_pred_soft * (1 - labels)).sum(dim=-1) # False Positives
FN = ((1 - y_pred_soft) * labels).sum(dim=-1) # False Negatives
# Differentiable F1 score
eps = 1e-8
precision = TP / (TP + FP + eps)
recall = TP / (TP + FN + eps)
f1 = 2 * precision * recall / (precision + recall + eps)
return f1.mean() # Average across batch
def evaluate(model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
onderwerp_names, beleving_names, num_samples, max_length):
"""
Evaluate model on validation set and return metrics.
Args:
model: The trained model
val_texts: List of validation texts
val_onderwerp: Validation onderwerp labels
val_beleving: Validation beleving labels
tokenizer: Tokenizer for encoding text
device: Device to run evaluation on
onderwerp_names: List of onderwerp label names
beleving_names: List of beleving label names
num_samples: Number of samples to evaluate (None = all)
max_length: Max sequence length
Returns:
dict: Dictionary containing all evaluation metrics
"""
model.eval()
# Determine number of samples to evaluate
if num_samples is None:
num_samples = len(val_texts)
else:
num_samples = min(num_samples, len(val_texts))
# Track metrics
onderwerp_correct = np.zeros(len(onderwerp_names))
onderwerp_total = np.zeros(len(onderwerp_names))
beleving_correct = np.zeros(len(beleving_names))
beleving_total = np.zeros(len(beleving_names))
# Track F1 components
onderwerp_tp = 0
onderwerp_fp = 0
onderwerp_fn = 0
beleving_tp = 0
beleving_fp = 0
beleving_fn = 0
with torch.inference_mode():
for i in range(num_samples):
# Tokenize
encoding = tokenizer(
val_texts[i],
truncation=True,
padding='max_length',
max_length=max_length,
return_tensors='pt'
)
# Move to device
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
# Get predictions
onderwerp_logits, beleving_logits = model(input_ids, attention_mask)
# Convert to probabilities
onderwerp_probs = torch.sigmoid(onderwerp_logits)
beleving_probs = torch.sigmoid(beleving_logits)
# Apply learned per-class thresholds (if enabled) or fixed 0.5 cutoff
if model.use_thresholds:
tau_on = logit_to_prob(model.onderwerp_tau_logit) # [C1]
tau_be = logit_to_prob(model.beleving_tau_logit) # [C2]
else:
# Fixed probability cutoff (POLA-friendly)
tau_on = torch.full_like(onderwerp_probs[0], 0.5)
tau_be = torch.full_like(beleving_probs[0], 0.5)
onderwerp_pred = (onderwerp_probs > tau_on).squeeze().cpu().numpy()
beleving_pred = (beleving_probs > tau_be).squeeze().cpu().numpy()
# Get true labels
onderwerp_true = val_onderwerp[i]
beleving_true = val_beleving[i]
# Update F1 components
onderwerp_tp += ((onderwerp_pred == 1) & (onderwerp_true == 1)).sum()
onderwerp_fp += ((onderwerp_pred == 1) & (onderwerp_true == 0)).sum()
onderwerp_fn += ((onderwerp_pred == 0) & (onderwerp_true == 1)).sum()
beleving_tp += ((beleving_pred == 1) & (beleving_true == 1)).sum()
beleving_fp += ((beleving_pred == 1) & (beleving_true == 0)).sum()
beleving_fn += ((beleving_pred == 0) & (beleving_true == 1)).sum()
# Update accuracy metrics
for j in range(len(onderwerp_names)):
if onderwerp_pred[j] == onderwerp_true[j]:
onderwerp_correct[j] += 1
onderwerp_total[j] += 1
for j in range(len(beleving_names)):
if beleving_pred[j] == beleving_true[j]:
beleving_correct[j] += 1
beleving_total[j] += 1
# Calculate F1 scores
epsilon = 1e-8
onderwerp_precision = onderwerp_tp / (onderwerp_tp + onderwerp_fp + epsilon)
onderwerp_recall = onderwerp_tp / (onderwerp_tp + onderwerp_fn + epsilon)
onderwerp_f1_score = 2 * onderwerp_precision * onderwerp_recall / (onderwerp_precision + onderwerp_recall + epsilon)
beleving_precision = beleving_tp / (beleving_tp + beleving_fp + epsilon)
beleving_recall = beleving_tp / (beleving_tp + beleving_fn + epsilon)
beleving_f1_score = 2 * beleving_precision * beleving_recall / (beleving_precision + beleving_recall + epsilon)
# Calculate accuracies
onderwerp_acc = onderwerp_correct.sum() / onderwerp_total.sum()
beleving_acc = beleving_correct.sum() / beleving_total.sum()
# Get threshold statistics (convert to probability space for human readability)
if model.use_thresholds:
onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
onderwerp_thresh_min = logit_to_prob(model.onderwerp_tau_logit).min().item()
onderwerp_thresh_max = logit_to_prob(model.onderwerp_tau_logit).max().item()
onderwerp_thresh_std = logit_to_prob(model.onderwerp_tau_logit).std().item()
beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
beleving_thresh_min = logit_to_prob(model.beleving_tau_logit).min().item()
beleving_thresh_max = logit_to_prob(model.beleving_tau_logit).max().item()
beleving_thresh_std = logit_to_prob(model.beleving_tau_logit).std().item()
else:
# Fixed threshold values
onderwerp_thresh_mean = onderwerp_thresh_min = onderwerp_thresh_max = onderwerp_thresh_std = 0.5
beleving_thresh_mean = beleving_thresh_min = beleving_thresh_max = beleving_thresh_std = 0.5
# Return metrics dictionary
return {
'onderwerp_acc': onderwerp_acc,
'onderwerp_precision': onderwerp_precision,
'onderwerp_recall': onderwerp_recall,
'onderwerp_f1': onderwerp_f1_score,
'beleving_acc': beleving_acc,
'beleving_precision': beleving_precision,
'beleving_recall': beleving_recall,
'beleving_f1': beleving_f1_score,
'combined_acc': (onderwerp_acc + beleving_acc) / 2,
'combined_f1': (onderwerp_f1_score + beleving_f1_score) / 2,
'onderwerp_thresh_mean': onderwerp_thresh_mean,
'onderwerp_thresh_min': onderwerp_thresh_min,
'onderwerp_thresh_max': onderwerp_thresh_max,
'onderwerp_thresh_std': onderwerp_thresh_std,
'beleving_thresh_mean': beleving_thresh_mean,
'beleving_thresh_min': beleving_thresh_min,
'beleving_thresh_max': beleving_thresh_max,
'beleving_thresh_std': beleving_thresh_std,
'num_samples_evaluated': num_samples
}
def grad_l2_norm(params):
"""
Calculate L2 norm of gradients safely (avoids Python int→Tensor addition).
Args:
params: Iterator of parameters (e.g., model.parameters())
Returns:
float: L2 norm of all gradients, or 0.0 if no gradients exist
"""
sq_sum = None
for p in params:
if p.grad is None:
continue
g = p.grad
val = g.pow(2).sum()
sq_sum = val if sq_sum is None else (sq_sum + val)
if sq_sum is None:
return 0.0
return sq_sum.sqrt().item()
def make_opt_sched(model, enc_lr, thr_lr, total_steps, warmup_ratio, eta_min):
"""
Create optimizer+scheduler for training.
Optimizer has 1-2 param groups: [0]=encoder+heads, [1]=thresholds (optional).
"""
# Group 0: encoder + heads
encoder_params = [p for n, p in model.named_parameters()
if not (model.use_thresholds and 'tau_logit' in n)]
param_groups = [{"params": encoder_params, "lr": enc_lr, "weight_decay": 0.0}]
# Group 1 (optional): thresholds
if model.use_thresholds:
thr_params = [model.onderwerp_tau_logit, model.beleving_tau_logit]
param_groups.append({"params": thr_params, "lr": thr_lr, "weight_decay": 0.0})
optimizer = torch.optim.AdamW(param_groups)
# Warmup → cosine schedule
warmup_steps = min(max(1, int(warmup_ratio * total_steps)), max(1, total_steps - 1))
warmup = LinearLR(optimizer, start_factor=1e-10, end_factor=1.0, total_iters=warmup_steps)
cosine = CosineAnnealingLR(optimizer, T_max=max(1, total_steps - warmup_steps), eta_min=eta_min)
scheduler = SequentialLR(optimizer, [warmup, cosine], milestones=[warmup_steps])
return optimizer, scheduler
def run_epochs(model, tokenizer, train_loader, val_texts, val_onderwerp, val_beleving,
onderwerp_names, beleving_names, device,
*, start_epoch, end_epoch, phase_name="train",
optimizer, scheduler, temperature, alpha,
max_length, global_step):
"""
Run training for a range of epochs.
Args:
model: The model to train
tokenizer: Tokenizer for text encoding
train_loader: DataLoader for training batches
val_texts, val_onderwerp, val_beleving: Validation data
onderwerp_names, beleving_names: Label names
device: Device to train on
start_epoch: Starting epoch (inclusive)
end_epoch: Ending epoch (exclusive)
phase_name: Name for logging (default: "train")
optimizer: Optimizer
scheduler: LR scheduler
temperature: Soft-F1 temperature
alpha: Loss weighting (F1 vs BCE)
max_length: Max sequence length
global_step: Starting global step counter
Returns:
Updated global_step
"""
num_epochs = end_epoch - start_epoch
phase_total_steps = max(1, len(train_loader) * num_epochs)
model.train()
for epoch in range(start_epoch, end_epoch):
total_loss = 0
total_onderwerp_f1 = 0
total_beleving_f1 = 0
total_bce_loss = 0
total_f1_loss = 0
num_batches = 0
print(f"\n[{phase_name.upper()}] Epoch {epoch + 1}/{end_epoch}")
print("-" * 40)
for batch_idx, batch in enumerate(train_loader):
# Move batch to device
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
onderwerp_labels = batch['onderwerp_labels'].to(device)
beleving_labels = batch['beleving_labels'].to(device)
# Zero gradients
optimizer.zero_grad()
# Forward pass
onderwerp_logits, beleving_logits = model(input_ids, attention_mask)
# Calculate Soft-F1 for both heads (conditionally pass thresholds)
onderwerp_f1 = calculate_soft_f1(
onderwerp_logits, onderwerp_labels,
model.onderwerp_tau_logit if model.use_thresholds else None,
temperature
)
beleving_f1 = calculate_soft_f1(
beleving_logits, beleving_labels,
model.beleving_tau_logit if model.use_thresholds else None,
temperature
)
# Calculate BCE loss
# Design choice (POLA):
# - BCE is computed on raw logits to maintain probability calibration.
# - Soft-F1 may use a shifted logit (if thresholds ON) to learn F1-friendly boundaries.
# - If thresholds OFF, Soft-F1 acts directly on logits; there is a single "source of truth".
# This keeps behavior unsurprising: either (A) calibrated logits + separate boundary learning,
# or (B) no extra threshold machinery; F1 and BCE both reference the same logits.
bce_onderwerp = F.binary_cross_entropy_with_logits(onderwerp_logits, onderwerp_labels)
bce_beleving = F.binary_cross_entropy_with_logits(beleving_logits, beleving_labels)
# Combined loss
f1_loss = (1 - onderwerp_f1) + (1 - beleving_f1)
bce_loss = bce_onderwerp + bce_beleving
loss = alpha * (f1_loss / 2) + (1 - alpha) * (bce_loss / 2)
# Periodic logging
if batch_idx % 20 == 0:
with torch.no_grad():
# Get predictions (convert thresholds from logit-space to prob-space if enabled)
onderwerp_probs = torch.sigmoid(onderwerp_logits)
beleving_probs = torch.sigmoid(beleving_logits)
if model.use_thresholds:
tau_on = logit_to_prob(model.onderwerp_tau_logit)
tau_be = logit_to_prob(model.beleving_tau_logit)
else:
tau_on = torch.full_like(onderwerp_probs[0], 0.5)
tau_be = torch.full_like(beleving_probs[0], 0.5)
onderwerp_pred = (onderwerp_probs > tau_on).float()
beleving_pred = (beleving_probs > tau_be).float()
# Log actual optimizer param group LRs
lrs = scheduler.get_last_lr()
encoder_head_lr = lrs[0] # Param group 0: encoder + heads
threshold_lr = lrs[1] if len(lrs) > 1 else None # Param group 1: thresholds (optional)
# Threshold statistics (convert to probability space for readability)
if model.use_thresholds:
onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
onderwerp_thresh_min = logit_to_prob(model.onderwerp_tau_logit).min().item()
onderwerp_thresh_max = logit_to_prob(model.onderwerp_tau_logit).max().item()
beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
beleving_thresh_min = logit_to_prob(model.beleving_tau_logit).min().item()
beleving_thresh_max = logit_to_prob(model.beleving_tau_logit).max().item()
else:
onderwerp_thresh_mean = onderwerp_thresh_min = onderwerp_thresh_max = 0.5
beleving_thresh_mean = beleving_thresh_min = beleving_thresh_max = 0.5
print(f" Batch {batch_idx + 1} | Step {global_step + 1}/{phase_total_steps}:")
if threshold_lr is not None:
print(f" Total loss: {loss.item():.4f} (α={alpha} F1 + {1-alpha} BCE) | LR: enc_head={encoder_head_lr:.2e} thresh={threshold_lr:.2e}")
else:
print(f" Total loss: {loss.item():.4f} (α={alpha} F1 + {1-alpha} BCE) | LR: enc_head={encoder_head_lr:.2e}")
print(f" F1 loss: {(f1_loss/2).item():.4f} | BCE loss: {(bce_loss/2).item():.4f}")
print(f" Onderwerp F1: {onderwerp_f1.item():.4f} | BCE: {bce_onderwerp.item():.4f} | Thresh: {onderwerp_thresh_mean:.3f} [{onderwerp_thresh_min:.3f}-{onderwerp_thresh_max:.3f}]")
print(f" Beleving F1: {beleving_f1.item():.4f} | BCE: {bce_beleving.item():.4f} | Thresh: {beleving_thresh_mean:.3f} [{beleving_thresh_min:.3f}-{beleving_thresh_max:.3f}]")
print(f" Onderwerp preds: {int(onderwerp_pred.sum())} / {int(onderwerp_labels.sum())} true")
print(f" Beleving preds: {int(beleving_pred.sum())} / {int(beleving_labels.sum())} true")
# Log to wandb
log_dict = {
"phase": phase_name,
"train/loss": loss.item(),
"train/f1_loss": (f1_loss / 2).item(),
"train/bce_loss": (bce_loss / 2).item(),
"train/onderwerp_f1": onderwerp_f1.item(),
"train/onderwerp_bce": bce_onderwerp.item(),
"train/beleving_f1": beleving_f1.item(),
"train/beleving_bce": bce_beleving.item(),
"train/encoder_head_lr": encoder_head_lr,
"train/onderwerp_threshold_mean": onderwerp_thresh_mean,
"train/onderwerp_threshold_min": onderwerp_thresh_min,
"train/onderwerp_threshold_max": onderwerp_thresh_max,
"train/beleving_threshold_mean": beleving_thresh_mean,
"train/beleving_threshold_min": beleving_thresh_min,
"train/beleving_threshold_max": beleving_thresh_max,
}
if threshold_lr is not None:
log_dict["train/threshold_lr"] = threshold_lr
wandb.log(log_dict, step=global_step)
# Backward pass
loss.backward()
# Calculate gradient norms
with torch.no_grad():
onderwerp_thresh_grad = (model.onderwerp_tau_logit.grad.abs().mean().item()
if model.use_thresholds and model.onderwerp_tau_logit.grad is not None else 0.0)
beleving_thresh_grad = (model.beleving_tau_logit.grad.abs().mean().item()
if model.use_thresholds and model.beleving_tau_logit.grad is not None else 0.0)
encoder_grad_norm = grad_l2_norm(model.encoder.parameters())
onderwerp_head_grad_norm = grad_l2_norm(model.onderwerp_head.parameters())
beleving_head_grad_norm = grad_l2_norm(model.beleving_head.parameters())
global_grad_norm = grad_l2_norm(model.parameters())
# Log gradient norms
wandb.log({
"phase": phase_name,
"grads/threshold_onderwerp": onderwerp_thresh_grad,
"grads/threshold_beleving": beleving_thresh_grad,
"grads/encoder": encoder_grad_norm,
"grads/onderwerp_head": onderwerp_head_grad_norm,
"grads/beleving_head": beleving_head_grad_norm,
"grads/global_norm": global_grad_norm,
}, step=global_step)
# Gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
# Update weights and LR
optimizer.step()
scheduler.step()
# Update counters
global_step += 1
total_loss += loss.item()
total_onderwerp_f1 += onderwerp_f1.item()
total_beleving_f1 += beleving_f1.item()
total_f1_loss += (f1_loss / 2).item()
total_bce_loss += (bce_loss / 2).item()
num_batches += 1
# Epoch summary
avg_loss = total_loss / max(1, num_batches)
avg_onderwerp_f1 = total_onderwerp_f1 / max(1, num_batches)
avg_beleving_f1 = total_beleving_f1 / max(1, num_batches)
avg_f1_loss = total_f1_loss / max(1, num_batches)
avg_bce_loss = total_bce_loss / max(1, num_batches)
# Get current LR for summary
lrs = scheduler.get_last_lr()
current_lr = lrs[0] # Display first group LR
# Threshold statistics (convert to probability space for readability)
if model.use_thresholds:
onderwerp_thresh_mean = logit_to_prob(model.onderwerp_tau_logit).mean().item()
onderwerp_thresh_std = logit_to_prob(model.onderwerp_tau_logit).std().item()
beleving_thresh_mean = logit_to_prob(model.beleving_tau_logit).mean().item()
beleving_thresh_std = logit_to_prob(model.beleving_tau_logit).std().item()
else:
onderwerp_thresh_mean = onderwerp_thresh_std = 0.5
beleving_thresh_mean = beleving_thresh_std = 0.5
print(f"\n [{phase_name.upper()}] Epoch {epoch + 1} Summary:")
print(f" Average total loss: {avg_loss:.4f} (α={alpha} F1 + {1-alpha} BCE)")
print(f" Average F1 loss: {avg_f1_loss:.4f} | Average BCE loss: {avg_bce_loss:.4f}")
print(f" Average onderwerp F1: {avg_onderwerp_f1:.4f} | Threshold: {onderwerp_thresh_mean:.3f} (σ={onderwerp_thresh_std:.3f})")
print(f" Average beleving F1: {avg_beleving_f1:.4f} | Threshold: {beleving_thresh_mean:.3f} (σ={beleving_thresh_std:.3f})")
print(f" Average combined F1: {(avg_onderwerp_f1 + avg_beleving_f1) / 2:.4f}")
print(f" Current learning rate: {current_lr:.2e}")
# Per-epoch validation
print(f"\n Running validation on 200 samples...")
val_metrics = evaluate(
model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
onderwerp_names, beleving_names, num_samples=200, max_length=max_length
)
# Log validation metrics
wandb.log({
"phase": phase_name,
"val/onderwerp_acc": val_metrics['onderwerp_acc'],
"val/onderwerp_precision": val_metrics['onderwerp_precision'],
"val/onderwerp_recall": val_metrics['onderwerp_recall'],
"val/onderwerp_f1": val_metrics['onderwerp_f1'],
"val/beleving_acc": val_metrics['beleving_acc'],
"val/beleving_precision": val_metrics['beleving_precision'],
"val/beleving_recall": val_metrics['beleving_recall'],
"val/beleving_f1": val_metrics['beleving_f1'],
"val/combined_acc": val_metrics['combined_acc'],
"val/combined_f1": val_metrics['combined_f1'],
"val/onderwerp_threshold_mean": val_metrics['onderwerp_thresh_mean'],
"val/beleving_threshold_mean": val_metrics['beleving_thresh_mean'],
"epoch": epoch + 1
}, step=global_step)
# Log threshold histograms (convert to probability space for readability)
if model.use_thresholds:
wandb.log({
"phase": phase_name,
"thresholds/onderwerp": wandb.Histogram(logit_to_prob(model.onderwerp_tau_logit).detach().cpu().numpy()),
"thresholds/beleving": wandb.Histogram(logit_to_prob(model.beleving_tau_logit).detach().cpu().numpy()),
"epoch": epoch + 1
}, step=global_step)
print(f" Val onderwerp F1: {val_metrics['onderwerp_f1']:.4f} | Val beleving F1: {val_metrics['beleving_f1']:.4f}")
print(f" Val combined F1: {val_metrics['combined_f1']:.4f}")
# Return to training mode
model.train()
return global_step
def main():
# Enable TensorFloat32 for better performance on modern NVIDIA GPUs
if torch.cuda.is_available():
torch.set_float32_matmul_precision('high')
# Initialize device
device = get_device()
# ============== CONFIGURATION FOR WANDB SWEEPS ==============
# Fixed model configuration (not swept)
model_name = "jhu-clsp/mmBERT-base"
# Sweepable hyperparameters with defaults
default_config = dict(
# Reproducibility
seed=42,
# Model architecture
dropout=0.2,
initial_threshold=0.565,
max_length=1408,
# Training switches
use_thresholds=False, # If False: no learnable thresholds; Soft-F1 uses raw logits
# Training
encoder_peak_lr=8e-5,
threshold_lr_mult=5.0, # Threshold LR = encoder_peak_lr * threshold_lr_mult
num_epochs=15,
batch_size=16,
# Loss function
alpha=0.15, # Weight for F1 loss in combined loss (0.5 = balanced)
temperature=2.0, # Sigmoid smoothing (lower = softer, higher = sharper)
# LR schedule
warmup_ratio=0.1, # 10% warmup
min_lr=1e-6,
)
# Initialize wandb and get config (allows sweep agent to override defaults)
wandb.init(project="wim-multilabel-mmbert", config=default_config)
cfg = wandb.config
# Set seed for reproducibility (before loading data)
set_seed(cfg.seed)
# Load RD dataset
print("\nLoading RD dataset...")
texts, onderwerp, beleving, onderwerp_names, beleving_names = load_rd_wim_dataset(
max_samples=None # Using full dataset for better training
)
print(f"\nDataset loaded:")
print(f" Samples: {len(texts)}")
print(f" Onderwerp labels: {len(onderwerp_names)}")
print(f" Beleving labels: {len(beleving_names)}")
print(f" Avg onderwerp per sample: {onderwerp.sum(axis=1).mean():.2f}")
print(f" Avg beleving per sample: {beleving.sum(axis=1).mean():.2f}")
# Unpack hyperparameters from wandb.config
dropout = cfg.dropout
initial_threshold = cfg.initial_threshold
max_length = cfg.max_length
encoder_peak_lr = cfg.encoder_peak_lr
threshold_peak_lr = encoder_peak_lr * cfg.threshold_lr_mult # Derived from multiplier
num_epochs = cfg.num_epochs
batch_size = cfg.batch_size
alpha = cfg.alpha
temperature = cfg.temperature
warmup_ratio = cfg.warmup_ratio
min_lr = cfg.min_lr
# ================================================================
# Load tokenizer and create model
print("\nLoading mmBERT-base tokenizer and creating dual-head model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = mmBERTDualHead(
model_name=model_name,
num_onderwerp=len(onderwerp_names),
num_beleving=len(beleving_names),
dropout=dropout,
initial_threshold=initial_threshold,
use_thresholds=cfg.use_thresholds
)
# Move model to device
model = model.to(device)
# Ensure thresholds match encoder dtype for mixed precision safety
encoder_dtype = next(model.encoder.parameters()).dtype
with torch.no_grad():
if model.use_thresholds:
model.onderwerp_tau_logit.copy_(model.onderwerp_tau_logit.to(encoder_dtype))
model.beleving_tau_logit.copy_(model.beleving_tau_logit.to(encoder_dtype))
print(f"Model loaded and moved to {device}")
print(f" Onderwerp head: {len(onderwerp_names)} outputs")
print(f" Beleving head: {len(beleving_names)} outputs")
# Split data into train/val (80/20)
split_idx = int(0.8 * len(texts))
train_texts = texts[:split_idx]
train_onderwerp = onderwerp[:split_idx]
train_beleving = beleving[:split_idx]
val_texts = texts[split_idx:]
val_onderwerp = onderwerp[split_idx:]
val_beleving = beleving[split_idx:]
print(f"\nData split:")
print(f" Train: {len(train_texts)} samples")
print(f" Val: {len(val_texts)} samples")
# Create training dataset and dataloader
train_dataset = DutchDualLabelDataset(
train_texts, train_onderwerp, train_beleving, tokenizer, max_length
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
steps_per_epoch = len(train_loader)
total_training_steps = steps_per_epoch * num_epochs
# Log derived/computed values to wandb (sweepable params already in config)
wandb.config.update({
# Fixed model configuration
"model_name": model_name,
"num_onderwerp": len(onderwerp_names),
"num_beleving": len(beleving_names),
# Derived training params
"threshold_peak_lr": threshold_peak_lr,
"total_training_steps": total_training_steps,
# Dataset info
"train_samples": len(train_texts),
"val_samples": len(val_texts),
"total_samples": len(texts),
"split_ratio": 0.8,
# Loss configuration (derived from alpha)
"loss_type": "combined_f1_bce",
"f1_weight": alpha,
"bce_weight": 1 - alpha,
# Fixed features
"learnable_thresholds": cfg.use_thresholds,
"per_class_thresholds": cfg.use_thresholds,
"gradient_clipping": True,
"max_grad_norm": 1.0,
}, allow_val_change=True)
# Print training info
print(f"\nStarting training for {num_epochs} total epochs with COMBINED F1+BCE LOSS...")
print(f"Loss formula: {alpha} * (1-F1) + {1-alpha} * BCE")
print(f"Temperature for Soft-F1: {temperature} | Initial thresholds: {initial_threshold}")
print(f"Batch size: {batch_size} | Total training batches: {steps_per_epoch}")
print(f"Learnable thresholds enabled for both onderwerp and beleving heads")
print("=" * 60)
# ===== SINGLE-PHASE TRAINING =====
print(f"\n{'='*60}")
print(f"TRAINING: {num_epochs} epoch(s)")
print(f"{'='*60}")
# Create optimizer and scheduler
optimizer, scheduler = make_opt_sched(
model,
enc_lr=encoder_peak_lr,
thr_lr=threshold_peak_lr,
total_steps=total_training_steps,
warmup_ratio=warmup_ratio,
eta_min=min_lr
)
# Run training
global_step = run_epochs(
model, tokenizer, train_loader,
val_texts, val_onderwerp, val_beleving,
onderwerp_names, beleving_names, device,
start_epoch=0, end_epoch=num_epochs,
phase_name="train",
optimizer=optimizer, scheduler=scheduler,
temperature=temperature, alpha=alpha,
max_length=max_length, global_step=0
)
# Training complete
print(f"\n{'='*60}")
print("TRAINING COMPLETE")
print(f"{'='*60}")
# Final evaluation on larger validation set
print("\n" + "=" * 60)
print("FINAL EVALUATION ON VALIDATION SET")
print("=" * 60)
print(f"\nEvaluating on 500 validation samples...")
final_metrics = evaluate(
model, val_texts, val_onderwerp, val_beleving, tokenizer, device,
onderwerp_names, beleving_names, num_samples=500, max_length=max_length
)
# Print overall metrics
print("\n" + "=" * 60)
print(f"FINAL METRICS (on {final_metrics['num_samples_evaluated']} validation samples)")
print("-" * 40)
print(f" Onderwerp:")
print(f" Accuracy: {final_metrics['onderwerp_acc']:.1%}")
print(f" Precision: {final_metrics['onderwerp_precision']:.3f}")
print(f" Recall: {final_metrics['onderwerp_recall']:.3f}")
print(f" F1 Score: {final_metrics['onderwerp_f1']:.3f}")
print(f"\n Beleving:")
print(f" Accuracy: {final_metrics['beleving_acc']:.1%}")
print(f" Precision: {final_metrics['beleving_precision']:.3f}")
print(f" Recall: {final_metrics['beleving_recall']:.3f}")
print(f" F1 Score: {final_metrics['beleving_f1']:.3f}")
print(f"\n Combined:")
print(f" Average Accuracy: {final_metrics['combined_acc']:.1%}")
print(f" Average F1: {final_metrics['combined_f1']:.3f}")
# Log final metrics to wandb
wandb.log({
"final/onderwerp_acc": final_metrics['onderwerp_acc'],
"final/onderwerp_precision": final_metrics['onderwerp_precision'],
"final/onderwerp_recall": final_metrics['onderwerp_recall'],
"final/onderwerp_f1": final_metrics['onderwerp_f1'],
"final/beleving_acc": final_metrics['beleving_acc'],
"final/beleving_precision": final_metrics['beleving_precision'],
"final/beleving_recall": final_metrics['beleving_recall'],
"final/beleving_f1": final_metrics['beleving_f1'],
"final/combined_acc": final_metrics['combined_acc'],
"final/combined_f1": final_metrics['combined_f1'],
}, step=global_step)
print("\n" + "=" * 60)
print("Training complete! 🎉")
print("mmBERT-base dual-head architecture with balanced F1+BCE loss")
print(f"Loss formula: {alpha} * (1-F1) + {1-alpha} * BCE")
print(f"Temperature: {temperature}")
if cfg.use_thresholds:
print(f"Learned per-class thresholds:")
print(f" Onderwerp ({len(onderwerp_names)} classes): mean={final_metrics['onderwerp_thresh_mean']:.3f} [{final_metrics['onderwerp_thresh_min']:.3f}-{final_metrics['onderwerp_thresh_max']:.3f}] σ={final_metrics['onderwerp_thresh_std']:.3f}")
print(f" Beleving ({len(beleving_names)} classes): mean={final_metrics['beleving_thresh_mean']:.3f} [{final_metrics['beleving_thresh_min']:.3f}-{final_metrics['beleving_thresh_max']:.3f}] σ={final_metrics['beleving_thresh_std']:.3f}")
else:
print("Thresholds disabled (fixed cutoff τ=0.5 for both heads).")
print(f"With gradient clipping (max_norm=1.0) and warmup LR schedule")
print(f"Full dataset: {len(texts)} samples | Batch size: {batch_size} | Epochs: {num_epochs}")
print(f"mmBERT: Modern multilingual encoder (1800+ languages, max_length: {max_length})")
# Save final model weights (minimal model saving)
save_path = "mmbert_dual_head_final.pt"
torch.save(model.state_dict(), save_path)
print(f"\nModel weights saved to {save_path}")
# Save Hugging Face-compatible checkpoint (encoder + tokenizer + custom heads)
hf_dir = "mmbert_dual_head_hf"
os.makedirs(hf_dir, exist_ok=True)
# Save base encoder and tokenizer in HF format
model.encoder.save_pretrained(hf_dir)
tokenizer.save_pretrained(hf_dir)
# Save custom heads and metadata alongside
head_state = {
"onderwerp_head_state": model.onderwerp_head.state_dict(),
"beleving_head_state": model.beleving_head.state_dict(),
"use_thresholds": model.use_thresholds,
"num_onderwerp": len(onderwerp_names),
"num_beleving": len(beleving_names),
"dropout": dropout,
"max_length": max_length,
"alpha": alpha,
"temperature": temperature,
"model_name": model_name,
}
if model.use_thresholds:
head_state["onderwerp_tau_logit"] = model.onderwerp_tau_logit.detach().cpu()
head_state["beleving_tau_logit"] = model.beleving_tau_logit.detach().cpu()
torch.save(head_state, os.path.join(hf_dir, "dual_head_state.pt"))
# Save label names for convenience
with open(os.path.join(hf_dir, "label_names.json"), "w") as f:
json.dump({
"onderwerp": list(map(str, onderwerp_names)),
"beleving": list(map(str, beleving_names))
}, f, ensure_ascii=False, indent=2)
print(f"HF-compatible checkpoint saved to '{hf_dir}' (encoder+tokenizer), with heads in dual_head_state.pt")
# Finish wandb run
wandb.finish()
print("\nWandB logging completed and run finished.")
if __name__ == "__main__":
main()
|