Upload folder using huggingface_hub
Browse files- config.json +67 -0
- modeling_gigaam.py +1426 -0
- pytorch_model.bin +3 -0
- tokenizer.model +3 -0
config.json
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "gigaam",
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoConfig": "modeling_gigaam.GigaAMConfig",
|
| 5 |
+
"AutoModel": "modeling_gigaam.GigaAMModel"
|
| 6 |
+
},
|
| 7 |
+
"cfg": {
|
| 8 |
+
"model": {
|
| 9 |
+
"cfg": {
|
| 10 |
+
"model_class": "rnnt",
|
| 11 |
+
"sample_rate": 16000,
|
| 12 |
+
"preprocessor": {
|
| 13 |
+
"_target_": "modeling_gigaam.FeatureExtractor",
|
| 14 |
+
"sample_rate": 16000,
|
| 15 |
+
"features": 64,
|
| 16 |
+
"win_length": 320,
|
| 17 |
+
"hop_length": 160,
|
| 18 |
+
"mel_scale": "htk",
|
| 19 |
+
"n_fft": 320,
|
| 20 |
+
"mel_norm": null,
|
| 21 |
+
"center": false
|
| 22 |
+
},
|
| 23 |
+
"encoder": {
|
| 24 |
+
"_target_": "modeling_gigaam.ConformerEncoder",
|
| 25 |
+
"feat_in": 64,
|
| 26 |
+
"n_layers": 16,
|
| 27 |
+
"d_model": 768,
|
| 28 |
+
"subsampling_factor": 4,
|
| 29 |
+
"ff_expansion_factor": 4,
|
| 30 |
+
"self_attention_model": "rotary",
|
| 31 |
+
"pos_emb_max_len": 5000,
|
| 32 |
+
"n_heads": 16,
|
| 33 |
+
"conv_kernel_size": 5,
|
| 34 |
+
"flash_attn": false,
|
| 35 |
+
"subs_kernel_size": 5,
|
| 36 |
+
"subsampling": "conv1d",
|
| 37 |
+
"conv_norm_type": "layer_norm"
|
| 38 |
+
},
|
| 39 |
+
"head": {
|
| 40 |
+
"_target_": "modeling_gigaam.RNNTHead",
|
| 41 |
+
"decoder": {
|
| 42 |
+
"pred_hidden": 320,
|
| 43 |
+
"pred_rnn_layers": 1,
|
| 44 |
+
"num_classes": 1025
|
| 45 |
+
},
|
| 46 |
+
"joint": {
|
| 47 |
+
"enc_hidden": 768,
|
| 48 |
+
"pred_hidden": 320,
|
| 49 |
+
"joint_hidden": 320,
|
| 50 |
+
"num_classes": 1025
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"decoding": {
|
| 54 |
+
"_target_": "modeling_gigaam.RNNTGreedyDecoding",
|
| 55 |
+
"vocabulary": null,
|
| 56 |
+
"model_path": "tokenizer.model"
|
| 57 |
+
},
|
| 58 |
+
"model_name": "v3_e2e_rnnt",
|
| 59 |
+
"hashes": {
|
| 60 |
+
"model": "72e2a9b5c7caad963b2bbfd2f298c252",
|
| 61 |
+
"tokenizer": "3b3bf8370e882885d79731592fc99f98"
|
| 62 |
+
}
|
| 63 |
+
},
|
| 64 |
+
"_target_": "modeling_gigaam.GigaAMASR"
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
}
|
modeling_gigaam.py
ADDED
|
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import warnings
|
| 7 |
+
from abc import ABC, abstractmethod
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from subprocess import CalledProcessError, run
|
| 10 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 11 |
+
|
| 12 |
+
import hydra
|
| 13 |
+
import numpy as np
|
| 14 |
+
import omegaconf
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
import torchaudio
|
| 18 |
+
from hydra.utils import instantiate
|
| 19 |
+
from sentencepiece import SentencePieceProcessor
|
| 20 |
+
from torch import Tensor, nn
|
| 21 |
+
from torch.jit import TracerWarning
|
| 22 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 23 |
+
from transformers.utils import cached_file
|
| 24 |
+
|
| 25 |
+
DIR_NAME = os.path.dirname(os.path.abspath(__file__))
|
| 26 |
+
sys.path.append(DIR_NAME) # enable using modules through modeling_gigaam.<module_name>
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
IMPORT_FLASH = False
|
| 30 |
+
SAMPLE_RATE = 16000
|
| 31 |
+
LONGFORM_THRESHOLD = 25 * SAMPLE_RATE
|
| 32 |
+
_PIPELINE = None
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### preprocess ###
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_audio(audio_path: str, sample_rate: int = SAMPLE_RATE) -> Tensor:
|
| 39 |
+
"""
|
| 40 |
+
Load an audio file and resample it to the specified sample rate.
|
| 41 |
+
"""
|
| 42 |
+
cmd = [
|
| 43 |
+
"ffmpeg",
|
| 44 |
+
"-nostdin",
|
| 45 |
+
"-threads",
|
| 46 |
+
"0",
|
| 47 |
+
"-i",
|
| 48 |
+
audio_path,
|
| 49 |
+
"-f",
|
| 50 |
+
"s16le",
|
| 51 |
+
"-ac",
|
| 52 |
+
"1",
|
| 53 |
+
"-acodec",
|
| 54 |
+
"pcm_s16le",
|
| 55 |
+
"-ar",
|
| 56 |
+
str(sample_rate),
|
| 57 |
+
"-",
|
| 58 |
+
]
|
| 59 |
+
try:
|
| 60 |
+
audio = run(cmd, capture_output=True, check=True).stdout
|
| 61 |
+
except CalledProcessError as exc:
|
| 62 |
+
raise RuntimeError("Failed to load audio") from exc
|
| 63 |
+
|
| 64 |
+
with warnings.catch_warnings():
|
| 65 |
+
warnings.simplefilter("ignore", category=UserWarning)
|
| 66 |
+
return torch.frombuffer(audio, dtype=torch.int16).float() / 32768.0
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class SpecScaler(nn.Module):
|
| 70 |
+
"""
|
| 71 |
+
Module that applies logarithmic scaling to spectrogram values.
|
| 72 |
+
This module clamps the input values within a certain range and then applies a natural logarithm.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 76 |
+
return torch.log(x.clamp_(1e-9, 1e9))
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class FeatureExtractor(nn.Module):
|
| 80 |
+
"""
|
| 81 |
+
Module for extracting Log-mel spectrogram features from raw audio signals.
|
| 82 |
+
This module uses Torchaudio's MelSpectrogram transform to extract features
|
| 83 |
+
and applies logarithmic scaling.
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
def __init__(self, sample_rate: int, features: int, **kwargs):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.hop_length = kwargs.get("hop_length", sample_rate // 100)
|
| 89 |
+
self.win_length = kwargs.get("win_length", sample_rate // 40)
|
| 90 |
+
self.n_fft = kwargs.get("n_fft", sample_rate // 40)
|
| 91 |
+
self.center = kwargs.get("center", True)
|
| 92 |
+
self.featurizer = nn.Sequential(
|
| 93 |
+
torchaudio.transforms.MelSpectrogram(
|
| 94 |
+
sample_rate=sample_rate,
|
| 95 |
+
n_mels=features,
|
| 96 |
+
win_length=self.win_length,
|
| 97 |
+
hop_length=self.hop_length,
|
| 98 |
+
n_fft=self.n_fft,
|
| 99 |
+
center=self.center,
|
| 100 |
+
),
|
| 101 |
+
SpecScaler(),
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
def out_len(self, input_lengths: Tensor) -> Tensor:
|
| 105 |
+
"""
|
| 106 |
+
Calculates the output length after the feature extraction process.
|
| 107 |
+
"""
|
| 108 |
+
if self.center:
|
| 109 |
+
return (
|
| 110 |
+
input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()
|
| 111 |
+
)
|
| 112 |
+
else:
|
| 113 |
+
return (
|
| 114 |
+
(input_lengths - self.win_length)
|
| 115 |
+
.div(self.hop_length, rounding_mode="floor")
|
| 116 |
+
.add(1)
|
| 117 |
+
.long()
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
def forward(self, input_signal: Tensor, length: Tensor) -> Tuple[Tensor, Tensor]:
|
| 121 |
+
"""
|
| 122 |
+
Extract Log-mel spectrogram features from the input audio signal.
|
| 123 |
+
"""
|
| 124 |
+
return self.featurizer(input_signal), self.out_len(length)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
### utils ###
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def onnx_converter(
|
| 131 |
+
model_name: str,
|
| 132 |
+
module: torch.nn.Module,
|
| 133 |
+
out_dir: str,
|
| 134 |
+
inputs: Optional[Tuple[Tensor, ...]] = None,
|
| 135 |
+
input_names: Optional[List[str]] = None,
|
| 136 |
+
output_names: Optional[List[str]] = None,
|
| 137 |
+
dynamic_axes: Optional[
|
| 138 |
+
Union[Dict[str, List[int]], Dict[str, Dict[int, str]]]
|
| 139 |
+
] = None,
|
| 140 |
+
opset_version: int = 17,
|
| 141 |
+
):
|
| 142 |
+
if inputs is None:
|
| 143 |
+
inputs = module.input_example() # type: ignore[operator]
|
| 144 |
+
if input_names is None:
|
| 145 |
+
input_names = module.input_names() # type: ignore[operator]
|
| 146 |
+
if output_names is None:
|
| 147 |
+
output_names = module.output_names() # type: ignore[operator]
|
| 148 |
+
|
| 149 |
+
Path(out_dir).mkdir(exist_ok=True, parents=True)
|
| 150 |
+
out_path = str(Path(out_dir) / f"{model_name}.onnx")
|
| 151 |
+
saved_dtype = next(module.parameters()).dtype
|
| 152 |
+
with warnings.catch_warnings():
|
| 153 |
+
warnings.simplefilter("ignore", category=UserWarning)
|
| 154 |
+
warnings.simplefilter("ignore", category=TracerWarning)
|
| 155 |
+
torch.onnx.export(
|
| 156 |
+
module.to(torch.float32),
|
| 157 |
+
inputs,
|
| 158 |
+
out_path,
|
| 159 |
+
input_names=input_names,
|
| 160 |
+
output_names=output_names,
|
| 161 |
+
dynamic_axes=dynamic_axes,
|
| 162 |
+
opset_version=opset_version,
|
| 163 |
+
)
|
| 164 |
+
print(f"Succesfully ported onnx {model_name} to {out_path}.")
|
| 165 |
+
module.to(saved_dtype)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def format_time(seconds: float) -> str:
|
| 169 |
+
"""
|
| 170 |
+
Formats time in seconds to HH:MM:SS:mm format.
|
| 171 |
+
"""
|
| 172 |
+
hours = int(seconds // 3600)
|
| 173 |
+
minutes = int((seconds % 3600) // 60)
|
| 174 |
+
seconds = seconds % 60
|
| 175 |
+
full_seconds = int(seconds)
|
| 176 |
+
milliseconds = int((seconds - full_seconds) * 100)
|
| 177 |
+
|
| 178 |
+
if hours > 0:
|
| 179 |
+
return f"{hours:02}:{minutes:02}:{full_seconds:02}:{milliseconds:02}"
|
| 180 |
+
return f"{minutes:02}:{full_seconds:02}:{milliseconds:02}"
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def rtt_half(x: Tensor) -> Tensor:
|
| 184 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 185 |
+
return torch.cat([-x2, x1], dim=x1.ndim - 1)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def apply_rotary_pos_emb(
|
| 189 |
+
q: Tensor, k: Tensor, cos: Tensor, sin: Tensor, offset: int = 0
|
| 190 |
+
) -> Tuple[Tensor, Tensor]:
|
| 191 |
+
"""
|
| 192 |
+
Applies Rotary Position Embeddings to query and key tensors.
|
| 193 |
+
"""
|
| 194 |
+
cos, sin = (
|
| 195 |
+
cos[offset : q.shape[0] + offset, ...],
|
| 196 |
+
sin[offset : q.shape[0] + offset, ...],
|
| 197 |
+
)
|
| 198 |
+
return (q * cos) + (rtt_half(q) * sin), (k * cos) + (rtt_half(k) * sin)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def _normalize_device(device: Optional[Union[str, torch.device]]) -> torch.device:
|
| 202 |
+
"""Normalize device parameter to torch.device."""
|
| 203 |
+
if device is None:
|
| 204 |
+
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 205 |
+
return torch.device(device_str)
|
| 206 |
+
if isinstance(device, str):
|
| 207 |
+
return torch.device(device)
|
| 208 |
+
return device
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def download_short_audio():
|
| 212 |
+
"""Download test audio file if not exists"""
|
| 213 |
+
audio_file = "example.wav"
|
| 214 |
+
if not os.path.exists(audio_file):
|
| 215 |
+
os.system(
|
| 216 |
+
'wget -O example.wav "https://cdn.chatwm.opensmodel.sberdevices.ru/GigaAM/example.wav"'
|
| 217 |
+
)
|
| 218 |
+
assert os.path.exists(audio_file), "Short audio file not found"
|
| 219 |
+
return audio_file
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def download_long_audio():
|
| 223 |
+
"""Download test audio file if not exists"""
|
| 224 |
+
audio_file = "long_example.wav"
|
| 225 |
+
if not os.path.exists(audio_file):
|
| 226 |
+
os.system(
|
| 227 |
+
'wget -O long_example.wav "https://cdn.chatwm.opensmodel.sberdevices.ru/GigaAM/long_example.wav"'
|
| 228 |
+
)
|
| 229 |
+
assert os.path.exists(audio_file), "Long audio file not found"
|
| 230 |
+
return audio_file
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class AudioDataset(torch.utils.data.Dataset):
|
| 234 |
+
"""
|
| 235 |
+
Helper class for creating batched inputs
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
def __init__(self, lst: List[Union[str, np.ndarray, torch.Tensor]]):
|
| 239 |
+
assert isinstance(
|
| 240 |
+
lst[0], (str, np.ndarray, torch.Tensor)
|
| 241 |
+
), f"Unexpected dtype: {type(lst[0])}"
|
| 242 |
+
self.lst = lst
|
| 243 |
+
|
| 244 |
+
def __len__(self):
|
| 245 |
+
return len(self.lst)
|
| 246 |
+
|
| 247 |
+
def __getitem__(self, idx):
|
| 248 |
+
item = self.lst[idx]
|
| 249 |
+
if isinstance(item, str):
|
| 250 |
+
wav_tns = load_audio(item)
|
| 251 |
+
elif isinstance(item, np.ndarray):
|
| 252 |
+
wav_tns = torch.from_numpy(item)
|
| 253 |
+
elif isinstance(item, torch.Tensor):
|
| 254 |
+
wav_tns = item
|
| 255 |
+
else:
|
| 256 |
+
raise RuntimeError(f"Unexpected sample type: {type(item)} at idx={idx}")
|
| 257 |
+
return wav_tns
|
| 258 |
+
|
| 259 |
+
@staticmethod
|
| 260 |
+
def collate(wavs):
|
| 261 |
+
lengths = torch.tensor([len(wav) for wav in wavs])
|
| 262 |
+
max_len = lengths.max().item()
|
| 263 |
+
wav_tns = torch.zeros(len(wavs), max_len, dtype=wavs[0].dtype)
|
| 264 |
+
for idx, wav in enumerate(wavs):
|
| 265 |
+
wav_tns[idx, : wav.shape[-1]] = wav.squeeze()
|
| 266 |
+
return wav_tns, lengths
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
### vad utils ###
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def get_pipeline(device: torch.device):
|
| 274 |
+
"""
|
| 275 |
+
Retrieves a PyAnnote voice activity detection pipeline and move it to the specified device.
|
| 276 |
+
The pipeline is loaded only once and reused across subsequent calls.
|
| 277 |
+
It requires the Hugging Face API token to be set in the HF_TOKEN environment variable.
|
| 278 |
+
"""
|
| 279 |
+
global _PIPELINE
|
| 280 |
+
if _PIPELINE is not None:
|
| 281 |
+
return _PIPELINE.to(device)
|
| 282 |
+
|
| 283 |
+
from pyannote.audio import Model
|
| 284 |
+
from pyannote.audio.pipelines import VoiceActivityDetection
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
hf_token = os.environ["HF_TOKEN"]
|
| 288 |
+
except KeyError as exc:
|
| 289 |
+
raise ValueError("HF_TOKEN environment variable is not set") from exc
|
| 290 |
+
|
| 291 |
+
model = Model.from_pretrained("pyannote/segmentation-3.0", use_auth_token=hf_token)
|
| 292 |
+
_PIPELINE = VoiceActivityDetection(segmentation=model)
|
| 293 |
+
_PIPELINE.instantiate({"min_duration_on": 0.0, "min_duration_off": 0.0})
|
| 294 |
+
|
| 295 |
+
return _PIPELINE.to(device)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def segment_audio_file(
|
| 299 |
+
wav_file: str,
|
| 300 |
+
sr: int,
|
| 301 |
+
max_duration: float = 22.0,
|
| 302 |
+
min_duration: float = 15.0,
|
| 303 |
+
strict_limit_duration: float = 30.0,
|
| 304 |
+
new_chunk_threshold: float = 0.2,
|
| 305 |
+
device: torch.device = torch.device("cpu"),
|
| 306 |
+
) -> Tuple[List[torch.Tensor], List[Tuple[float, float]]]:
|
| 307 |
+
"""
|
| 308 |
+
Segments an audio waveform into smaller chunks based on speech activity.
|
| 309 |
+
The segmentation is performed using a PyAnnote voice activity detection pipeline.
|
| 310 |
+
"""
|
| 311 |
+
|
| 312 |
+
audio = load_audio(wav_file)
|
| 313 |
+
pipeline = get_pipeline(device)
|
| 314 |
+
sad_segments = pipeline(wav_file)
|
| 315 |
+
|
| 316 |
+
segments: List[torch.Tensor] = []
|
| 317 |
+
curr_duration = 0.0
|
| 318 |
+
curr_start = 0.0
|
| 319 |
+
curr_end = 0.0
|
| 320 |
+
boundaries: List[Tuple[float, float]] = []
|
| 321 |
+
|
| 322 |
+
def _update_segments(curr_start: float, curr_end: float, curr_duration: float):
|
| 323 |
+
if curr_duration > strict_limit_duration:
|
| 324 |
+
max_segments = int(curr_duration / strict_limit_duration) + 1
|
| 325 |
+
segment_duration = curr_duration / max_segments
|
| 326 |
+
curr_end = curr_start + segment_duration
|
| 327 |
+
for _ in range(max_segments - 1):
|
| 328 |
+
segments.append(audio[int(curr_start * sr) : int(curr_end * sr)])
|
| 329 |
+
boundaries.append((curr_start, curr_end))
|
| 330 |
+
curr_start = curr_end
|
| 331 |
+
curr_end += segment_duration
|
| 332 |
+
segments.append(audio[int(curr_start * sr) : int(curr_end * sr)])
|
| 333 |
+
boundaries.append((curr_start, curr_end))
|
| 334 |
+
|
| 335 |
+
# Concat segments from pipeline into chunks for asr according to max/min duration
|
| 336 |
+
# Segments longer than strict_limit_duration are splitted manually
|
| 337 |
+
for segment in sad_segments.get_timeline().support():
|
| 338 |
+
start = max(0, segment.start)
|
| 339 |
+
end = min(audio.shape[0] / sr, segment.end)
|
| 340 |
+
if curr_duration > new_chunk_threshold and (
|
| 341 |
+
curr_duration + (end - curr_end) > max_duration
|
| 342 |
+
or curr_duration > min_duration
|
| 343 |
+
):
|
| 344 |
+
_update_segments(curr_start, curr_end, curr_duration)
|
| 345 |
+
curr_start = start
|
| 346 |
+
curr_end = end
|
| 347 |
+
curr_duration = curr_end - curr_start
|
| 348 |
+
|
| 349 |
+
if curr_duration > new_chunk_threshold:
|
| 350 |
+
_update_segments(curr_start, curr_end, curr_duration)
|
| 351 |
+
|
| 352 |
+
return segments, boundaries
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
### encoder ###
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class StridingSubsampling(nn.Module):
|
| 360 |
+
"""
|
| 361 |
+
Strided Subsampling layer used to reduce the sequence length.
|
| 362 |
+
"""
|
| 363 |
+
|
| 364 |
+
def __init__(
|
| 365 |
+
self,
|
| 366 |
+
subsampling: str,
|
| 367 |
+
kernel_size: int,
|
| 368 |
+
subsampling_factor: int,
|
| 369 |
+
feat_in: int,
|
| 370 |
+
feat_out: int,
|
| 371 |
+
conv_channels: int,
|
| 372 |
+
):
|
| 373 |
+
super().__init__()
|
| 374 |
+
self.subsampling_type = subsampling
|
| 375 |
+
assert self.subsampling_type in ["conv1d", "conv2d"]
|
| 376 |
+
self._sampling_num = int(math.log(subsampling_factor, 2))
|
| 377 |
+
self._stride = 2
|
| 378 |
+
self._kernel_size = kernel_size
|
| 379 |
+
self._padding = (self._kernel_size - 1) // 2
|
| 380 |
+
|
| 381 |
+
layers: List[nn.Module] = []
|
| 382 |
+
in_channels = 1 if self.subsampling_type == "conv2d" else feat_in
|
| 383 |
+
subs_conv_class = (
|
| 384 |
+
torch.nn.Conv2d if self.subsampling_type == "conv2d" else torch.nn.Conv1d
|
| 385 |
+
)
|
| 386 |
+
for _ in range(self._sampling_num):
|
| 387 |
+
layers.append(
|
| 388 |
+
subs_conv_class(
|
| 389 |
+
in_channels=in_channels,
|
| 390 |
+
out_channels=conv_channels,
|
| 391 |
+
kernel_size=self._kernel_size,
|
| 392 |
+
stride=self._stride,
|
| 393 |
+
padding=self._padding,
|
| 394 |
+
)
|
| 395 |
+
)
|
| 396 |
+
layers.append(nn.ReLU())
|
| 397 |
+
in_channels = conv_channels
|
| 398 |
+
|
| 399 |
+
out_length = self.calc_output_length(torch.tensor(feat_in))
|
| 400 |
+
if self.subsampling_type == "conv2d":
|
| 401 |
+
self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
|
| 402 |
+
self.conv = torch.nn.Sequential(*layers)
|
| 403 |
+
|
| 404 |
+
def calc_output_length(self, lengths: Tensor) -> Tensor:
|
| 405 |
+
"""
|
| 406 |
+
Calculates the output length after applying the subsampling.
|
| 407 |
+
"""
|
| 408 |
+
lengths = lengths.to(torch.float)
|
| 409 |
+
add_pad = 2 * self._padding - self._kernel_size
|
| 410 |
+
for _ in range(self._sampling_num):
|
| 411 |
+
lengths = torch.div(lengths + add_pad, self._stride) + 1.0
|
| 412 |
+
lengths = torch.floor(lengths)
|
| 413 |
+
return lengths.to(dtype=torch.int)
|
| 414 |
+
|
| 415 |
+
def forward(self, x: Tensor, lengths: Tensor) -> Tuple[Tensor, Tensor]:
|
| 416 |
+
if self.subsampling_type == "conv2d":
|
| 417 |
+
x = self.conv(x.unsqueeze(1))
|
| 418 |
+
b, _, t, _ = x.size()
|
| 419 |
+
x = self.out(x.transpose(1, 2).reshape(b, t, -1))
|
| 420 |
+
else:
|
| 421 |
+
x = self.conv(x.transpose(1, 2)).transpose(1, 2)
|
| 422 |
+
return x, self.calc_output_length(lengths)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class MultiHeadAttention(nn.Module, ABC):
|
| 426 |
+
"""
|
| 427 |
+
Base class of Multi-Head Attention Mechanisms.
|
| 428 |
+
"""
|
| 429 |
+
|
| 430 |
+
def __init__(
|
| 431 |
+
self, n_head: int, n_feat: int, flash_attn=False, torch_sdpa_attn=False
|
| 432 |
+
):
|
| 433 |
+
super().__init__()
|
| 434 |
+
assert n_feat % n_head == 0
|
| 435 |
+
self.d_k = n_feat // n_head
|
| 436 |
+
self.h = n_head
|
| 437 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
| 438 |
+
self.linear_k = nn.Linear(n_feat, n_feat)
|
| 439 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
| 440 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
| 441 |
+
self.flash_attn = flash_attn
|
| 442 |
+
self.torch_sdpa_attn = torch_sdpa_attn
|
| 443 |
+
if self.flash_attn and not IMPORT_FLASH:
|
| 444 |
+
raise RuntimeError(
|
| 445 |
+
f"flash_attn_func was imported with err {IMPORT_FLASH_ERR}. "
|
| 446 |
+
"Please install flash_attn or use --no_flash flag. "
|
| 447 |
+
"If you have already done this, "
|
| 448 |
+
"--force-reinstall flag might be useful"
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
def forward_qkv(
|
| 452 |
+
self, query: Tensor, key: Tensor, value: Tensor
|
| 453 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
| 454 |
+
"""
|
| 455 |
+
Projects the inputs into queries, keys, and values for multi-head attention.
|
| 456 |
+
"""
|
| 457 |
+
b = query.size(0)
|
| 458 |
+
q = self.linear_q(query).view(b, -1, self.h, self.d_k)
|
| 459 |
+
k = self.linear_k(key).view(b, -1, self.h, self.d_k)
|
| 460 |
+
v = self.linear_v(value).view(b, -1, self.h, self.d_k)
|
| 461 |
+
if self.flash_attn:
|
| 462 |
+
return q, k, v
|
| 463 |
+
return q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
| 464 |
+
|
| 465 |
+
def forward_attention(
|
| 466 |
+
self, value: Tensor, scores: Tensor, mask: Optional[Tensor]
|
| 467 |
+
) -> Tensor:
|
| 468 |
+
"""
|
| 469 |
+
Computes the scaled dot-product attention given the projected values and scores.
|
| 470 |
+
"""
|
| 471 |
+
b = value.size(0)
|
| 472 |
+
if mask is not None:
|
| 473 |
+
mask = mask.unsqueeze(1)
|
| 474 |
+
scores = scores.masked_fill(mask, -10000.0)
|
| 475 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
|
| 476 |
+
else:
|
| 477 |
+
attn = torch.softmax(scores, dim=-1)
|
| 478 |
+
x = torch.matmul(attn, value)
|
| 479 |
+
x = x.transpose(1, 2).reshape(b, -1, self.h * self.d_k)
|
| 480 |
+
return self.linear_out(x)
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class RelPositionMultiHeadAttention(MultiHeadAttention):
|
| 484 |
+
"""
|
| 485 |
+
Relative Position Multi-Head Attention module.
|
| 486 |
+
"""
|
| 487 |
+
|
| 488 |
+
def __init__(self, n_head: int, n_feat: int):
|
| 489 |
+
super().__init__(n_head, n_feat)
|
| 490 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
| 491 |
+
self.pos_bias_u = nn.Parameter(torch.FloatTensor(self.h, self.d_k))
|
| 492 |
+
self.pos_bias_v = nn.Parameter(torch.FloatTensor(self.h, self.d_k))
|
| 493 |
+
|
| 494 |
+
def rel_shift(self, x: Tensor) -> Tensor:
|
| 495 |
+
b, h, qlen, pos_len = x.size()
|
| 496 |
+
x = torch.nn.functional.pad(x, pad=(1, 0))
|
| 497 |
+
x = x.view(b, h, -1, qlen)
|
| 498 |
+
return x[:, :, 1:].view(b, h, qlen, pos_len)
|
| 499 |
+
|
| 500 |
+
def forward(
|
| 501 |
+
self,
|
| 502 |
+
query: Tensor,
|
| 503 |
+
key: Tensor,
|
| 504 |
+
value: Tensor,
|
| 505 |
+
pos_emb: Tensor,
|
| 506 |
+
mask: Optional[Tensor] = None,
|
| 507 |
+
) -> Tensor:
|
| 508 |
+
q, k, v = self.forward_qkv(query, key, value)
|
| 509 |
+
q = q.transpose(1, 2)
|
| 510 |
+
p = self.linear_pos(pos_emb)
|
| 511 |
+
p = p.view(pos_emb.shape[0], -1, self.h, self.d_k).transpose(1, 2)
|
| 512 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
| 513 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
| 514 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
| 515 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
| 516 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
| 517 |
+
matrix_bd = matrix_bd[:, :, :, : matrix_ac.size(-1)]
|
| 518 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
| 519 |
+
return self.forward_attention(v, scores, mask)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class RotaryPositionMultiHeadAttention(MultiHeadAttention):
|
| 523 |
+
"""
|
| 524 |
+
Rotary Position Multi-Head Attention module.
|
| 525 |
+
"""
|
| 526 |
+
|
| 527 |
+
def forward(
|
| 528 |
+
self,
|
| 529 |
+
query: Tensor,
|
| 530 |
+
key: Tensor,
|
| 531 |
+
value: Tensor,
|
| 532 |
+
pos_emb: List[Tensor],
|
| 533 |
+
mask: Optional[Tensor] = None,
|
| 534 |
+
) -> Tensor:
|
| 535 |
+
b, t, _ = value.size()
|
| 536 |
+
query = query.transpose(0, 1).view(t, b, self.h, self.d_k)
|
| 537 |
+
key = key.transpose(0, 1).view(t, b, self.h, self.d_k)
|
| 538 |
+
value = value.transpose(0, 1).view(t, b, self.h, self.d_k)
|
| 539 |
+
|
| 540 |
+
cos, sin = pos_emb
|
| 541 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=0)
|
| 542 |
+
|
| 543 |
+
q, k, v = self.forward_qkv(
|
| 544 |
+
query.view(t, b, self.h * self.d_k).transpose(0, 1),
|
| 545 |
+
key.view(t, b, self.h * self.d_k).transpose(0, 1),
|
| 546 |
+
value.view(t, b, self.h * self.d_k).transpose(0, 1),
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
if not self.flash_attn and not self.torch_sdpa_attn:
|
| 550 |
+
scores = torch.matmul(q, k.transpose(-2, -1) / math.sqrt(self.d_k))
|
| 551 |
+
return self.forward_attention(v, scores, mask)
|
| 552 |
+
elif self.flash_attn:
|
| 553 |
+
if mask is None:
|
| 554 |
+
scores = flash_attn_func(q, k, v)
|
| 555 |
+
else:
|
| 556 |
+
scores = apply_masked_flash_attn(q, k, v, mask, self.h, self.d_k)
|
| 557 |
+
scores = scores.view(b, -1, self.h * self.d_k)
|
| 558 |
+
return self.linear_out(scores)
|
| 559 |
+
else:
|
| 560 |
+
attn_mask = None if mask is None else ~mask.unsqueeze(1)
|
| 561 |
+
attn_output = F.scaled_dot_product_attention(
|
| 562 |
+
q,
|
| 563 |
+
k,
|
| 564 |
+
v,
|
| 565 |
+
attn_mask=attn_mask,
|
| 566 |
+
)
|
| 567 |
+
attn_output = attn_output.transpose(1, 2).reshape(b, t, self.h * self.d_k)
|
| 568 |
+
return self.linear_out(attn_output)
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
class PositionalEncoding(nn.Module, ABC):
|
| 572 |
+
"""
|
| 573 |
+
Base class of Positional Encodings.
|
| 574 |
+
"""
|
| 575 |
+
|
| 576 |
+
def __init__(self, dim: int, base: int):
|
| 577 |
+
super().__init__()
|
| 578 |
+
self.dim = dim
|
| 579 |
+
self.base = base
|
| 580 |
+
|
| 581 |
+
@abstractmethod
|
| 582 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
| 583 |
+
pass
|
| 584 |
+
|
| 585 |
+
def extend_pe(self, length: int, device: torch.device):
|
| 586 |
+
"""
|
| 587 |
+
Extends the positional encoding buffer to process longer sequences.
|
| 588 |
+
"""
|
| 589 |
+
pe = self.create_pe(length, device)
|
| 590 |
+
if pe is None:
|
| 591 |
+
return
|
| 592 |
+
if hasattr(self, "pe"):
|
| 593 |
+
self.pe = pe
|
| 594 |
+
else:
|
| 595 |
+
self.register_buffer("pe", pe, persistent=False)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
class RelPositionalEmbedding(PositionalEncoding):
|
| 599 |
+
"""
|
| 600 |
+
Relative Positional Embedding module.
|
| 601 |
+
"""
|
| 602 |
+
|
| 603 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
| 604 |
+
"""
|
| 605 |
+
Creates the relative positional encoding matrix.
|
| 606 |
+
"""
|
| 607 |
+
if hasattr(self, "pe") and self.pe.shape[1] >= 2 * length - 1:
|
| 608 |
+
return None
|
| 609 |
+
positions = torch.arange(length - 1, -length, -1, device=device).unsqueeze(1)
|
| 610 |
+
pos_length = positions.size(0)
|
| 611 |
+
pe = torch.zeros(pos_length, self.dim, device=positions.device)
|
| 612 |
+
div_term = torch.exp(
|
| 613 |
+
torch.arange(0, self.dim, 2, device=pe.device)
|
| 614 |
+
* -(math.log(10000.0) / self.dim)
|
| 615 |
+
)
|
| 616 |
+
pe[:, 0::2] = torch.sin(positions * div_term)
|
| 617 |
+
pe[:, 1::2] = torch.cos(positions * div_term)
|
| 618 |
+
return pe.unsqueeze(0)
|
| 619 |
+
|
| 620 |
+
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
| 621 |
+
input_len = x.size(1)
|
| 622 |
+
center_pos = self.pe.size(1) // 2 + 1
|
| 623 |
+
start_pos = center_pos - input_len
|
| 624 |
+
end_pos = center_pos + input_len - 1
|
| 625 |
+
return x, self.pe[:, start_pos:end_pos]
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
class RotaryPositionalEmbedding(PositionalEncoding):
|
| 629 |
+
"""
|
| 630 |
+
Rotary Positional Embedding module.
|
| 631 |
+
"""
|
| 632 |
+
|
| 633 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
| 634 |
+
"""
|
| 635 |
+
Creates or extends the rotary positional encoding matrix.
|
| 636 |
+
"""
|
| 637 |
+
if hasattr(self, "pe") and self.pe.size(0) >= 2 * length:
|
| 638 |
+
return None
|
| 639 |
+
positions = torch.arange(0, length, dtype=torch.float32, device=device)
|
| 640 |
+
inv_freq = 1.0 / (
|
| 641 |
+
self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
| 642 |
+
)
|
| 643 |
+
t = torch.arange(length, device=positions.device).type_as(inv_freq)
|
| 644 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
| 645 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(positions.device)
|
| 646 |
+
return torch.cat([emb.cos()[:, None, None, :], emb.sin()[:, None, None, :]])
|
| 647 |
+
|
| 648 |
+
def forward(self, x: torch.Tensor) -> Tuple[Tensor, List[Tensor]]:
|
| 649 |
+
cos_emb = self.pe[0 : x.shape[1]]
|
| 650 |
+
half_pe = self.pe.shape[0] // 2
|
| 651 |
+
sin_emb = self.pe[half_pe : half_pe + x.shape[1]]
|
| 652 |
+
return x, [cos_emb, sin_emb]
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
class ConformerConvolution(nn.Module):
|
| 656 |
+
"""
|
| 657 |
+
Conformer Convolution module.
|
| 658 |
+
"""
|
| 659 |
+
|
| 660 |
+
def __init__(
|
| 661 |
+
self,
|
| 662 |
+
d_model: int,
|
| 663 |
+
kernel_size: int,
|
| 664 |
+
norm_type: str,
|
| 665 |
+
):
|
| 666 |
+
super().__init__()
|
| 667 |
+
assert (kernel_size - 1) % 2 == 0
|
| 668 |
+
assert norm_type in ["batch_norm", "layer_norm"]
|
| 669 |
+
self.norm_type = norm_type
|
| 670 |
+
self.pointwise_conv1 = nn.Conv1d(d_model, d_model * 2, kernel_size=1)
|
| 671 |
+
self.depthwise_conv = nn.Conv1d(
|
| 672 |
+
in_channels=d_model,
|
| 673 |
+
out_channels=d_model,
|
| 674 |
+
kernel_size=kernel_size,
|
| 675 |
+
padding=(kernel_size - 1) // 2,
|
| 676 |
+
groups=d_model,
|
| 677 |
+
bias=True,
|
| 678 |
+
)
|
| 679 |
+
self.batch_norm = (
|
| 680 |
+
nn.BatchNorm1d(d_model)
|
| 681 |
+
if norm_type == "batch_norm"
|
| 682 |
+
else nn.LayerNorm(d_model)
|
| 683 |
+
)
|
| 684 |
+
self.activation = nn.SiLU()
|
| 685 |
+
self.pointwise_conv2 = nn.Conv1d(d_model, d_model, kernel_size=1)
|
| 686 |
+
|
| 687 |
+
def forward(self, x: Tensor, pad_mask: Optional[Tensor] = None) -> Tensor:
|
| 688 |
+
x = x.transpose(1, 2)
|
| 689 |
+
x = self.pointwise_conv1(x)
|
| 690 |
+
x = nn.functional.glu(x, dim=1)
|
| 691 |
+
if pad_mask is not None:
|
| 692 |
+
x = x.masked_fill(pad_mask.unsqueeze(1), 0.0)
|
| 693 |
+
x = self.depthwise_conv(x)
|
| 694 |
+
if self.norm_type == "batch_norm":
|
| 695 |
+
x = self.batch_norm(x)
|
| 696 |
+
else:
|
| 697 |
+
x = self.batch_norm(x.transpose(1, 2)).transpose(1, 2)
|
| 698 |
+
x = self.activation(x)
|
| 699 |
+
x = self.pointwise_conv2(x)
|
| 700 |
+
return x.transpose(1, 2)
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
class ConformerFeedForward(nn.Module):
|
| 704 |
+
"""
|
| 705 |
+
Conformer Feed Forward module.
|
| 706 |
+
"""
|
| 707 |
+
|
| 708 |
+
def __init__(self, d_model: int, d_ff: int, use_bias=True):
|
| 709 |
+
super().__init__()
|
| 710 |
+
self.linear1 = nn.Linear(d_model, d_ff, bias=use_bias)
|
| 711 |
+
self.activation = nn.SiLU()
|
| 712 |
+
self.linear2 = nn.Linear(d_ff, d_model, bias=use_bias)
|
| 713 |
+
|
| 714 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 715 |
+
return self.linear2(self.activation(self.linear1(x)))
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
class ConformerLayer(nn.Module):
|
| 719 |
+
"""
|
| 720 |
+
Conformer Layer module.
|
| 721 |
+
This module combines several submodules including feed forward networks,
|
| 722 |
+
depthwise separable convolution, and multi-head self-attention
|
| 723 |
+
to form a single Conformer block.
|
| 724 |
+
"""
|
| 725 |
+
|
| 726 |
+
def __init__(
|
| 727 |
+
self,
|
| 728 |
+
d_model: int,
|
| 729 |
+
d_ff: int,
|
| 730 |
+
self_attention_model: str,
|
| 731 |
+
n_heads: int = 16,
|
| 732 |
+
conv_norm_type: str = "batch_norm",
|
| 733 |
+
conv_kernel_size: int = 31,
|
| 734 |
+
flash_attn: bool = False,
|
| 735 |
+
):
|
| 736 |
+
super().__init__()
|
| 737 |
+
self.fc_factor = 0.5
|
| 738 |
+
self.norm_feed_forward1 = nn.LayerNorm(d_model)
|
| 739 |
+
self.feed_forward1 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
|
| 740 |
+
self.norm_conv = nn.LayerNorm(d_model)
|
| 741 |
+
self.conv = ConformerConvolution(
|
| 742 |
+
d_model=d_model,
|
| 743 |
+
kernel_size=conv_kernel_size,
|
| 744 |
+
norm_type=conv_norm_type,
|
| 745 |
+
)
|
| 746 |
+
self.norm_self_att = nn.LayerNorm(d_model)
|
| 747 |
+
if self_attention_model == "rotary":
|
| 748 |
+
self.self_attn: nn.Module = RotaryPositionMultiHeadAttention(
|
| 749 |
+
n_head=n_heads,
|
| 750 |
+
n_feat=d_model,
|
| 751 |
+
flash_attn=flash_attn,
|
| 752 |
+
torch_sdpa_attn=not flash_attn,
|
| 753 |
+
)
|
| 754 |
+
else:
|
| 755 |
+
assert not flash_attn, "Not supported flash_attn for rel_pos"
|
| 756 |
+
self.self_attn = RelPositionMultiHeadAttention(
|
| 757 |
+
n_head=n_heads,
|
| 758 |
+
n_feat=d_model,
|
| 759 |
+
)
|
| 760 |
+
self.norm_feed_forward2 = nn.LayerNorm(d_model)
|
| 761 |
+
self.feed_forward2 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
|
| 762 |
+
self.norm_out = nn.LayerNorm(d_model)
|
| 763 |
+
|
| 764 |
+
def forward(
|
| 765 |
+
self,
|
| 766 |
+
x: Tensor,
|
| 767 |
+
pos_emb: Union[Tensor, List[Tensor]],
|
| 768 |
+
att_mask: Optional[Tensor] = None,
|
| 769 |
+
pad_mask: Optional[Tensor] = None,
|
| 770 |
+
) -> Tensor:
|
| 771 |
+
residual = x
|
| 772 |
+
x = self.norm_feed_forward1(x)
|
| 773 |
+
x = self.feed_forward1(x)
|
| 774 |
+
residual = residual + x * self.fc_factor
|
| 775 |
+
|
| 776 |
+
x = self.norm_self_att(residual)
|
| 777 |
+
x = self.self_attn(x, x, x, pos_emb, mask=att_mask)
|
| 778 |
+
residual = residual + x
|
| 779 |
+
|
| 780 |
+
x = self.norm_conv(residual)
|
| 781 |
+
x = self.conv(x, pad_mask=pad_mask)
|
| 782 |
+
residual = residual + x
|
| 783 |
+
|
| 784 |
+
x = self.norm_feed_forward2(residual)
|
| 785 |
+
x = self.feed_forward2(x)
|
| 786 |
+
residual = residual + x * self.fc_factor
|
| 787 |
+
|
| 788 |
+
x = self.norm_out(residual)
|
| 789 |
+
return x
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
class ConformerEncoder(nn.Module):
|
| 793 |
+
"""
|
| 794 |
+
Conformer Encoder module.
|
| 795 |
+
This module encapsulates the entire Conformer encoder architecture,
|
| 796 |
+
consisting of a StridingSubsampling layer, positional embeddings, and
|
| 797 |
+
a stack of Conformer Layers.
|
| 798 |
+
It serves as the main component responsible for processing speech features.
|
| 799 |
+
"""
|
| 800 |
+
|
| 801 |
+
def __init__(
|
| 802 |
+
self,
|
| 803 |
+
feat_in: int = 64,
|
| 804 |
+
n_layers: int = 16,
|
| 805 |
+
d_model: int = 768,
|
| 806 |
+
subsampling: str = "conv2d",
|
| 807 |
+
subs_kernel_size: int = 3,
|
| 808 |
+
subsampling_factor: int = 4,
|
| 809 |
+
ff_expansion_factor: int = 4,
|
| 810 |
+
self_attention_model: str = "rotary",
|
| 811 |
+
n_heads: int = 16,
|
| 812 |
+
pos_emb_max_len: int = 5000,
|
| 813 |
+
conv_norm_type: str = "batch_norm",
|
| 814 |
+
conv_kernel_size: int = 31,
|
| 815 |
+
flash_attn: bool = False,
|
| 816 |
+
):
|
| 817 |
+
super().__init__()
|
| 818 |
+
self.feat_in = feat_in
|
| 819 |
+
assert self_attention_model in [
|
| 820 |
+
"rotary",
|
| 821 |
+
"rel_pos",
|
| 822 |
+
], f"Not supported attn = {self_attention_model}"
|
| 823 |
+
|
| 824 |
+
self.pre_encode = StridingSubsampling(
|
| 825 |
+
subsampling=subsampling,
|
| 826 |
+
kernel_size=subs_kernel_size,
|
| 827 |
+
subsampling_factor=subsampling_factor,
|
| 828 |
+
feat_in=feat_in,
|
| 829 |
+
feat_out=d_model,
|
| 830 |
+
conv_channels=d_model,
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
self.pos_emb_max_len = pos_emb_max_len
|
| 834 |
+
if self_attention_model == "rotary":
|
| 835 |
+
self.pos_enc: PositionalEncoding = RotaryPositionalEmbedding(
|
| 836 |
+
d_model // n_heads, pos_emb_max_len
|
| 837 |
+
)
|
| 838 |
+
else:
|
| 839 |
+
self.pos_enc = RelPositionalEmbedding(d_model, pos_emb_max_len)
|
| 840 |
+
|
| 841 |
+
self.layers = nn.ModuleList()
|
| 842 |
+
for _ in range(n_layers):
|
| 843 |
+
layer = ConformerLayer(
|
| 844 |
+
d_model=d_model,
|
| 845 |
+
d_ff=d_model * ff_expansion_factor,
|
| 846 |
+
self_attention_model=self_attention_model,
|
| 847 |
+
n_heads=n_heads,
|
| 848 |
+
conv_norm_type=conv_norm_type,
|
| 849 |
+
conv_kernel_size=conv_kernel_size,
|
| 850 |
+
flash_attn=flash_attn,
|
| 851 |
+
)
|
| 852 |
+
self.layers.append(layer)
|
| 853 |
+
|
| 854 |
+
def input_example(
|
| 855 |
+
self,
|
| 856 |
+
batch_size: int = 1,
|
| 857 |
+
seqlen: int = 200,
|
| 858 |
+
) -> Tuple[Tensor, Tensor]:
|
| 859 |
+
device = next(self.parameters()).device
|
| 860 |
+
features = torch.zeros(batch_size, self.feat_in, seqlen)
|
| 861 |
+
feature_lengths = torch.full([batch_size], features.shape[-1])
|
| 862 |
+
return features.float().to(device), feature_lengths.to(device)
|
| 863 |
+
|
| 864 |
+
def input_names(self) -> List[str]:
|
| 865 |
+
return ["audio_signal", "length"]
|
| 866 |
+
|
| 867 |
+
def output_names(self) -> List[str]:
|
| 868 |
+
return ["encoded", "encoded_len"]
|
| 869 |
+
|
| 870 |
+
def dynamic_axes(self) -> Dict[str, Dict[int, str]]:
|
| 871 |
+
return {
|
| 872 |
+
"audio_signal": {0: "batch_size", 2: "seq_len"},
|
| 873 |
+
"length": {0: "batch_size"},
|
| 874 |
+
"encoded": {0: "batch_size", 1: "seq_len"},
|
| 875 |
+
"encoded_len": {0: "batch_size"},
|
| 876 |
+
}
|
| 877 |
+
|
| 878 |
+
def forward(self, audio_signal: Tensor, length: Tensor) -> Tuple[Tensor, Tensor]:
|
| 879 |
+
if not hasattr(self.pos_enc, "pe"):
|
| 880 |
+
self.pos_enc.extend_pe(self.pos_emb_max_len, audio_signal.device)
|
| 881 |
+
|
| 882 |
+
audio_signal, length = self.pre_encode(
|
| 883 |
+
x=audio_signal.transpose(1, 2), lengths=length
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
max_len = audio_signal.size(1)
|
| 887 |
+
audio_signal, pos_emb = self.pos_enc(x=audio_signal)
|
| 888 |
+
|
| 889 |
+
pad_mask = torch.arange(0, max_len, device=audio_signal.device).expand(
|
| 890 |
+
length.size(0), -1
|
| 891 |
+
) < length.unsqueeze(-1)
|
| 892 |
+
|
| 893 |
+
att_mask = None
|
| 894 |
+
if audio_signal.shape[0] > 1:
|
| 895 |
+
att_mask = pad_mask.unsqueeze(1).repeat([1, max_len, 1])
|
| 896 |
+
att_mask = torch.logical_and(att_mask, att_mask.transpose(1, 2))
|
| 897 |
+
att_mask = ~att_mask
|
| 898 |
+
|
| 899 |
+
pad_mask = ~pad_mask
|
| 900 |
+
|
| 901 |
+
for layer in self.layers:
|
| 902 |
+
audio_signal = layer(
|
| 903 |
+
x=audio_signal,
|
| 904 |
+
pos_emb=pos_emb,
|
| 905 |
+
att_mask=att_mask,
|
| 906 |
+
pad_mask=pad_mask,
|
| 907 |
+
)
|
| 908 |
+
|
| 909 |
+
return audio_signal.transpose(1, 2), length
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
### decoders ###
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
class CTCHead(nn.Module):
|
| 916 |
+
"""
|
| 917 |
+
CTC Head module for Connectionist Temporal Classification.
|
| 918 |
+
"""
|
| 919 |
+
|
| 920 |
+
def __init__(self, feat_in: int, num_classes: int):
|
| 921 |
+
super().__init__()
|
| 922 |
+
self.decoder_layers = torch.nn.Sequential(
|
| 923 |
+
torch.nn.Conv1d(feat_in, num_classes, kernel_size=1)
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
def forward(self, encoder_output: Tensor) -> Tensor:
|
| 927 |
+
return torch.nn.functional.log_softmax(
|
| 928 |
+
self.decoder_layers(encoder_output).transpose(1, 2), dim=-1
|
| 929 |
+
)
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
class RNNTJoint(nn.Module):
|
| 933 |
+
"""
|
| 934 |
+
RNN-Transducer Joint Network Module.
|
| 935 |
+
This module combines the outputs of the encoder and the prediction network using
|
| 936 |
+
a linear transformation followed by ReLU activation and another linear projection.
|
| 937 |
+
"""
|
| 938 |
+
|
| 939 |
+
def __init__(
|
| 940 |
+
self, enc_hidden: int, pred_hidden: int, joint_hidden: int, num_classes: int
|
| 941 |
+
):
|
| 942 |
+
super().__init__()
|
| 943 |
+
self.enc_hidden = enc_hidden
|
| 944 |
+
self.pred_hidden = pred_hidden
|
| 945 |
+
self.pred = nn.Linear(pred_hidden, joint_hidden)
|
| 946 |
+
self.enc = nn.Linear(enc_hidden, joint_hidden)
|
| 947 |
+
self.joint_net = nn.Sequential(nn.ReLU(), nn.Linear(joint_hidden, num_classes))
|
| 948 |
+
|
| 949 |
+
def joint(self, encoder_out: Tensor, decoder_out: Tensor) -> Tensor:
|
| 950 |
+
"""
|
| 951 |
+
Combine the encoder and prediction network outputs into a joint representation.
|
| 952 |
+
"""
|
| 953 |
+
enc = self.enc(encoder_out).unsqueeze(2)
|
| 954 |
+
pred = self.pred(decoder_out).unsqueeze(1)
|
| 955 |
+
return self.joint_net(enc + pred).log_softmax(-1)
|
| 956 |
+
|
| 957 |
+
def input_example(self) -> Tuple[Tensor, Tensor]:
|
| 958 |
+
device = next(self.parameters()).device
|
| 959 |
+
enc = torch.zeros(1, self.enc_hidden, 1)
|
| 960 |
+
dec = torch.zeros(1, self.pred_hidden, 1)
|
| 961 |
+
return enc.float().to(device), dec.float().to(device)
|
| 962 |
+
|
| 963 |
+
def input_names(self) -> List[str]:
|
| 964 |
+
return ["enc", "dec"]
|
| 965 |
+
|
| 966 |
+
def output_names(self) -> List[str]:
|
| 967 |
+
return ["joint"]
|
| 968 |
+
|
| 969 |
+
def forward(self, enc: Tensor, dec: Tensor) -> Tensor:
|
| 970 |
+
return self.joint(enc.transpose(1, 2), dec.transpose(1, 2))
|
| 971 |
+
|
| 972 |
+
|
| 973 |
+
class RNNTDecoder(nn.Module):
|
| 974 |
+
"""
|
| 975 |
+
RNN-Transducer Decoder Module.
|
| 976 |
+
This module handles the prediction network part of the RNN-Transducer architecture.
|
| 977 |
+
"""
|
| 978 |
+
|
| 979 |
+
def __init__(self, pred_hidden: int, pred_rnn_layers: int, num_classes: int):
|
| 980 |
+
super().__init__()
|
| 981 |
+
self.blank_id = num_classes - 1
|
| 982 |
+
self.pred_hidden = pred_hidden
|
| 983 |
+
self.embed = nn.Embedding(num_classes, pred_hidden, padding_idx=self.blank_id)
|
| 984 |
+
self.lstm = nn.LSTM(pred_hidden, pred_hidden, pred_rnn_layers)
|
| 985 |
+
|
| 986 |
+
def predict(
|
| 987 |
+
self,
|
| 988 |
+
x: Optional[Tensor],
|
| 989 |
+
state: Optional[Tensor],
|
| 990 |
+
batch_size: int = 1,
|
| 991 |
+
) -> Tuple[Tensor, Tensor]:
|
| 992 |
+
"""
|
| 993 |
+
Make predictions based on the current input and previous states.
|
| 994 |
+
If no input is provided, use zeros as the initial input.
|
| 995 |
+
"""
|
| 996 |
+
if x is not None:
|
| 997 |
+
emb: Tensor = self.embed(x)
|
| 998 |
+
else:
|
| 999 |
+
emb = torch.zeros(
|
| 1000 |
+
(batch_size, 1, self.pred_hidden), device=next(self.parameters()).device
|
| 1001 |
+
)
|
| 1002 |
+
g, hid = self.lstm(emb.transpose(0, 1), state)
|
| 1003 |
+
return g.transpose(0, 1), hid
|
| 1004 |
+
|
| 1005 |
+
def input_example(self) -> Tuple[Tensor, Tensor, Tensor]:
|
| 1006 |
+
device = next(self.parameters()).device
|
| 1007 |
+
label = torch.tensor([[0]]).to(device)
|
| 1008 |
+
hidden_h = torch.zeros(1, 1, self.pred_hidden).to(device)
|
| 1009 |
+
hidden_c = torch.zeros(1, 1, self.pred_hidden).to(device)
|
| 1010 |
+
return label, hidden_h, hidden_c
|
| 1011 |
+
|
| 1012 |
+
def input_names(self) -> List[str]:
|
| 1013 |
+
return ["x", "h", "c"]
|
| 1014 |
+
|
| 1015 |
+
def output_names(self) -> List[str]:
|
| 1016 |
+
return ["dec", "h", "c"]
|
| 1017 |
+
|
| 1018 |
+
def forward(self, x: Tensor, h: Tensor, c: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
| 1019 |
+
"""
|
| 1020 |
+
ONNX-specific forward with x, state = (h, c) -> x, h, c.
|
| 1021 |
+
"""
|
| 1022 |
+
emb = self.embed(x)
|
| 1023 |
+
g, (h, c) = self.lstm(emb.transpose(0, 1), (h, c))
|
| 1024 |
+
return g.transpose(0, 1), h, c
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
+
class RNNTHead(nn.Module):
|
| 1028 |
+
"""
|
| 1029 |
+
RNN-Transducer Head Module.
|
| 1030 |
+
This module combines the decoder and joint network components of the RNN-Transducer architecture.
|
| 1031 |
+
"""
|
| 1032 |
+
|
| 1033 |
+
def __init__(self, decoder: Dict[str, int], joint: Dict[str, int]):
|
| 1034 |
+
super().__init__()
|
| 1035 |
+
self.decoder = RNNTDecoder(**decoder)
|
| 1036 |
+
self.joint = RNNTJoint(**joint)
|
| 1037 |
+
|
| 1038 |
+
|
| 1039 |
+
### decoding ###
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
class Tokenizer:
|
| 1043 |
+
"""
|
| 1044 |
+
Tokenizer for converting between text and token IDs.
|
| 1045 |
+
The tokenizer can operate either character-wise or using a pre-trained SentencePiece model.
|
| 1046 |
+
"""
|
| 1047 |
+
|
| 1048 |
+
def __init__(self, vocab: List[str], model_path: Optional[str] = None):
|
| 1049 |
+
self.charwise = model_path is None
|
| 1050 |
+
if self.charwise:
|
| 1051 |
+
self.vocab = vocab
|
| 1052 |
+
else:
|
| 1053 |
+
self.model = SentencePieceProcessor()
|
| 1054 |
+
self.model.load(model_path)
|
| 1055 |
+
|
| 1056 |
+
def decode(self, tokens: List[int]) -> str:
|
| 1057 |
+
"""
|
| 1058 |
+
Convert a list of token IDs back to a string.
|
| 1059 |
+
"""
|
| 1060 |
+
if self.charwise:
|
| 1061 |
+
return "".join(self.vocab[tok] for tok in tokens)
|
| 1062 |
+
return self.model.decode(tokens)
|
| 1063 |
+
|
| 1064 |
+
def __len__(self):
|
| 1065 |
+
"""
|
| 1066 |
+
Get the total number of tokens in the vocabulary.
|
| 1067 |
+
"""
|
| 1068 |
+
return len(self.vocab) if self.charwise else len(self.model)
|
| 1069 |
+
|
| 1070 |
+
|
| 1071 |
+
class CTCGreedyDecoding:
|
| 1072 |
+
"""
|
| 1073 |
+
Class for performing greedy decoding of CTC outputs.
|
| 1074 |
+
"""
|
| 1075 |
+
|
| 1076 |
+
def __init__(self, vocabulary: List[str], model_path: Optional[str] = None):
|
| 1077 |
+
self.tokenizer = Tokenizer(vocabulary, model_path)
|
| 1078 |
+
self.blank_id = len(self.tokenizer)
|
| 1079 |
+
|
| 1080 |
+
@torch.inference_mode()
|
| 1081 |
+
def decode(self, head: CTCHead, encoded: Tensor, lengths: Tensor) -> List[str]:
|
| 1082 |
+
"""
|
| 1083 |
+
Decode the output of a CTC model into a list of hypotheses.
|
| 1084 |
+
"""
|
| 1085 |
+
log_probs = head(encoder_output=encoded)
|
| 1086 |
+
assert (
|
| 1087 |
+
len(log_probs.shape) == 3
|
| 1088 |
+
), f"Expected log_probs shape {log_probs.shape} == [B, T, C]"
|
| 1089 |
+
b, _, c = log_probs.shape
|
| 1090 |
+
assert (
|
| 1091 |
+
c == len(self.tokenizer) + 1
|
| 1092 |
+
), f"Num classes {c} != len(vocab) + 1 {len(self.tokenizer) + 1}"
|
| 1093 |
+
labels = log_probs.argmax(dim=-1, keepdim=False)
|
| 1094 |
+
|
| 1095 |
+
skip_mask = labels != self.blank_id
|
| 1096 |
+
skip_mask[:, 1:] = torch.logical_and(
|
| 1097 |
+
skip_mask[:, 1:], labels[:, 1:] != labels[:, :-1]
|
| 1098 |
+
)
|
| 1099 |
+
for i, length in enumerate(lengths):
|
| 1100 |
+
skip_mask[i, length:] = 0
|
| 1101 |
+
|
| 1102 |
+
pred_texts: List[str] = []
|
| 1103 |
+
for i in range(b):
|
| 1104 |
+
pred_texts.append(
|
| 1105 |
+
"".join(self.tokenizer.decode(labels[i][skip_mask[i]].cpu().tolist()))
|
| 1106 |
+
)
|
| 1107 |
+
return pred_texts
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
class RNNTGreedyDecoding:
|
| 1111 |
+
def __init__(
|
| 1112 |
+
self,
|
| 1113 |
+
vocabulary: List[str],
|
| 1114 |
+
model_path: Optional[str] = None,
|
| 1115 |
+
max_symbols_per_step: int = 10,
|
| 1116 |
+
):
|
| 1117 |
+
"""
|
| 1118 |
+
Class for performing greedy decoding of RNN-T outputs.
|
| 1119 |
+
"""
|
| 1120 |
+
self.tokenizer = Tokenizer(vocabulary, model_path)
|
| 1121 |
+
self.blank_id = len(self.tokenizer)
|
| 1122 |
+
self.max_symbols = max_symbols_per_step
|
| 1123 |
+
|
| 1124 |
+
def _greedy_decode(self, head: RNNTHead, x: Tensor, seqlen: Tensor) -> str:
|
| 1125 |
+
"""
|
| 1126 |
+
Internal helper function for performing greedy decoding on a single sequence.
|
| 1127 |
+
"""
|
| 1128 |
+
hyp: List[int] = []
|
| 1129 |
+
dec_state: Optional[Tensor] = None
|
| 1130 |
+
last_label: Optional[Tensor] = None
|
| 1131 |
+
for t in range(seqlen):
|
| 1132 |
+
f = x[t, :, :].unsqueeze(1)
|
| 1133 |
+
not_blank = True
|
| 1134 |
+
new_symbols = 0
|
| 1135 |
+
while not_blank and new_symbols < self.max_symbols:
|
| 1136 |
+
g, hidden = head.decoder.predict(last_label, dec_state)
|
| 1137 |
+
k = head.joint.joint(f, g)[0, 0, 0, :].argmax(0).item()
|
| 1138 |
+
if k == self.blank_id:
|
| 1139 |
+
not_blank = False
|
| 1140 |
+
else:
|
| 1141 |
+
hyp.append(int(k))
|
| 1142 |
+
dec_state = hidden
|
| 1143 |
+
last_label = torch.tensor([[hyp[-1]]]).to(x.device)
|
| 1144 |
+
new_symbols += 1
|
| 1145 |
+
|
| 1146 |
+
return self.tokenizer.decode(hyp)
|
| 1147 |
+
|
| 1148 |
+
@torch.inference_mode()
|
| 1149 |
+
def decode(self, head: RNNTHead, encoded: Tensor, enc_len: Tensor) -> List[str]:
|
| 1150 |
+
"""
|
| 1151 |
+
Decode the output of an RNN-T model into a list of hypotheses.
|
| 1152 |
+
"""
|
| 1153 |
+
b = encoded.shape[0]
|
| 1154 |
+
pred_texts = []
|
| 1155 |
+
encoded = encoded.transpose(1, 2)
|
| 1156 |
+
for i in range(b):
|
| 1157 |
+
inseq = encoded[i, :, :].unsqueeze(1)
|
| 1158 |
+
pred_texts.append(self._greedy_decode(head, inseq, enc_len[i]))
|
| 1159 |
+
return pred_texts
|
| 1160 |
+
|
| 1161 |
+
|
| 1162 |
+
### models ###
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
class GigaAM(nn.Module):
|
| 1166 |
+
"""
|
| 1167 |
+
Giga Acoustic Model: Self-Supervised Model for Speech Tasks
|
| 1168 |
+
"""
|
| 1169 |
+
|
| 1170 |
+
def __init__(self, cfg: omegaconf.DictConfig):
|
| 1171 |
+
super().__init__()
|
| 1172 |
+
self.cfg = cfg
|
| 1173 |
+
self.preprocessor = hydra.utils.instantiate(self.cfg.preprocessor)
|
| 1174 |
+
self.encoder = hydra.utils.instantiate(self.cfg.encoder)
|
| 1175 |
+
|
| 1176 |
+
def forward(
|
| 1177 |
+
self, features: Tensor, feature_lengths: Tensor
|
| 1178 |
+
) -> Tuple[Tensor, Tensor]:
|
| 1179 |
+
"""
|
| 1180 |
+
Perform forward pass through the preprocessor and encoder.
|
| 1181 |
+
"""
|
| 1182 |
+
features, feature_lengths = self.preprocessor(features, feature_lengths)
|
| 1183 |
+
if self._device.type == "cpu":
|
| 1184 |
+
return self.encoder(features, feature_lengths)
|
| 1185 |
+
with torch.autocast(device_type=self._device.type, dtype=torch.float16):
|
| 1186 |
+
return self.encoder(features, feature_lengths)
|
| 1187 |
+
|
| 1188 |
+
@property
|
| 1189 |
+
def _device(self) -> torch.device:
|
| 1190 |
+
return next(self.parameters()).device
|
| 1191 |
+
|
| 1192 |
+
@property
|
| 1193 |
+
def _dtype(self) -> torch.dtype:
|
| 1194 |
+
return next(self.parameters()).dtype
|
| 1195 |
+
|
| 1196 |
+
def prepare_wav(self, wav_file: str) -> Tuple[Tensor, Tensor]:
|
| 1197 |
+
"""
|
| 1198 |
+
Prepare an audio file for processing by loading it onto
|
| 1199 |
+
the correct device and converting its format.
|
| 1200 |
+
"""
|
| 1201 |
+
wav = load_audio(wav_file)
|
| 1202 |
+
wav = wav.to(self._device).to(self._dtype).unsqueeze(0)
|
| 1203 |
+
length = torch.full([1], wav.shape[-1], device=self._device)
|
| 1204 |
+
return wav, length
|
| 1205 |
+
|
| 1206 |
+
def embed_audio(self, wav_file: str) -> Tuple[Tensor, Tensor]:
|
| 1207 |
+
"""
|
| 1208 |
+
Extract audio representations using the GigaAM model.
|
| 1209 |
+
"""
|
| 1210 |
+
wav, length = self.prepare_wav(wav_file)
|
| 1211 |
+
encoded, encoded_len = self.forward(wav, length)
|
| 1212 |
+
return encoded, encoded_len
|
| 1213 |
+
|
| 1214 |
+
def to_onnx(self, dir_path: str = ".") -> None:
|
| 1215 |
+
"""
|
| 1216 |
+
Export onnx model encoder to the specified dir.
|
| 1217 |
+
"""
|
| 1218 |
+
self._to_onnx(dir_path)
|
| 1219 |
+
omegaconf.OmegaConf.save(self.cfg, f"{dir_path}/{self.cfg.model_name}.yaml")
|
| 1220 |
+
|
| 1221 |
+
def _to_onnx(self, dir_path: str = ".") -> None:
|
| 1222 |
+
"""
|
| 1223 |
+
Export onnx model encoder to the specified dir.
|
| 1224 |
+
"""
|
| 1225 |
+
onnx_converter(
|
| 1226 |
+
model_name=f"{self.cfg.model_name}_encoder",
|
| 1227 |
+
out_dir=dir_path,
|
| 1228 |
+
module=self.encoder,
|
| 1229 |
+
dynamic_axes=self.encoder.dynamic_axes(),
|
| 1230 |
+
)
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
class GigaAMASR(GigaAM):
|
| 1234 |
+
"""
|
| 1235 |
+
Giga Acoustic Model for Speech Recognition
|
| 1236 |
+
"""
|
| 1237 |
+
|
| 1238 |
+
def __init__(self, cfg: omegaconf.DictConfig):
|
| 1239 |
+
super().__init__(cfg)
|
| 1240 |
+
self.head = hydra.utils.instantiate(self.cfg.head)
|
| 1241 |
+
self.decoding = hydra.utils.instantiate(self.cfg.decoding)
|
| 1242 |
+
|
| 1243 |
+
@torch.inference_mode()
|
| 1244 |
+
def transcribe(self, wav_file: str) -> str:
|
| 1245 |
+
"""
|
| 1246 |
+
Transcribes a short audio file into text.
|
| 1247 |
+
"""
|
| 1248 |
+
wav, length = self.prepare_wav(wav_file)
|
| 1249 |
+
if length.item() > LONGFORM_THRESHOLD:
|
| 1250 |
+
raise ValueError("Too long wav file, use 'transcribe_longform' method.")
|
| 1251 |
+
|
| 1252 |
+
encoded, encoded_len = self.forward(wav, length)
|
| 1253 |
+
return self.decoding.decode(self.head, encoded, encoded_len)[0]
|
| 1254 |
+
|
| 1255 |
+
def forward_for_export(self, features: Tensor, feature_lengths: Tensor) -> Tensor:
|
| 1256 |
+
"""
|
| 1257 |
+
Encoder-decoder forward to save model entirely in onnx format.
|
| 1258 |
+
"""
|
| 1259 |
+
return self.head(self.encoder(features, feature_lengths)[0])
|
| 1260 |
+
|
| 1261 |
+
def _to_onnx(self, dir_path: str = ".") -> None:
|
| 1262 |
+
"""
|
| 1263 |
+
Export onnx ASR model.
|
| 1264 |
+
`ctc`: exported entirely in encoder-decoder format.
|
| 1265 |
+
`rnnt`: exported in encoder/decoder/joint parts separately.
|
| 1266 |
+
"""
|
| 1267 |
+
if "ctc" in self.cfg.model_name:
|
| 1268 |
+
saved_forward = self.forward
|
| 1269 |
+
self.forward = self.forward_for_export # type: ignore[assignment, method-assign]
|
| 1270 |
+
onnx_converter(
|
| 1271 |
+
model_name=self.cfg.model_name,
|
| 1272 |
+
out_dir=dir_path,
|
| 1273 |
+
module=self,
|
| 1274 |
+
inputs=self.encoder.input_example(),
|
| 1275 |
+
input_names=["features", "feature_lengths"],
|
| 1276 |
+
output_names=["log_probs"],
|
| 1277 |
+
dynamic_axes={
|
| 1278 |
+
"features": {0: "batch_size", 2: "seq_len"},
|
| 1279 |
+
"feature_lengths": {0: "batch_size"},
|
| 1280 |
+
"log_probs": {0: "batch_size", 1: "seq_len"},
|
| 1281 |
+
},
|
| 1282 |
+
)
|
| 1283 |
+
self.forward = saved_forward # type: ignore[assignment, method-assign]
|
| 1284 |
+
else:
|
| 1285 |
+
super()._to_onnx(dir_path) # export encoder
|
| 1286 |
+
onnx_converter(
|
| 1287 |
+
model_name=f"{self.cfg.model_name}_decoder",
|
| 1288 |
+
out_dir=dir_path,
|
| 1289 |
+
module=self.head.decoder,
|
| 1290 |
+
)
|
| 1291 |
+
onnx_converter(
|
| 1292 |
+
model_name=f"{self.cfg.model_name}_joint",
|
| 1293 |
+
out_dir=dir_path,
|
| 1294 |
+
module=self.head.joint,
|
| 1295 |
+
)
|
| 1296 |
+
|
| 1297 |
+
@torch.inference_mode()
|
| 1298 |
+
def transcribe_longform(
|
| 1299 |
+
self, wav_file: str, **kwargs
|
| 1300 |
+
) -> List[Dict[str, Union[str, Tuple[float, float]]]]:
|
| 1301 |
+
"""
|
| 1302 |
+
Transcribes a long audio file by splitting it into segments and
|
| 1303 |
+
then transcribing each segment.
|
| 1304 |
+
"""
|
| 1305 |
+
transcribed_segments = []
|
| 1306 |
+
segments, boundaries = segment_audio_file(
|
| 1307 |
+
wav_file, SAMPLE_RATE, device=self._device, **kwargs
|
| 1308 |
+
)
|
| 1309 |
+
for segment, segment_boundaries in zip(segments, boundaries):
|
| 1310 |
+
wav = segment.to(self._device).unsqueeze(0).to(self._dtype)
|
| 1311 |
+
length = torch.full([1], wav.shape[-1], device=self._device)
|
| 1312 |
+
encoded, encoded_len = self.forward(wav, length)
|
| 1313 |
+
result = self.decoding.decode(self.head, encoded, encoded_len)[0]
|
| 1314 |
+
transcribed_segments.append(
|
| 1315 |
+
{"transcription": result, "boundaries": segment_boundaries}
|
| 1316 |
+
)
|
| 1317 |
+
return transcribed_segments
|
| 1318 |
+
|
| 1319 |
+
|
| 1320 |
+
class GigaAMEmo(GigaAM):
|
| 1321 |
+
"""
|
| 1322 |
+
Giga Acoustic Model for Emotion Recognition
|
| 1323 |
+
"""
|
| 1324 |
+
|
| 1325 |
+
def __init__(self, cfg: omegaconf.DictConfig):
|
| 1326 |
+
super().__init__(cfg)
|
| 1327 |
+
self.head = hydra.utils.instantiate(self.cfg.head)
|
| 1328 |
+
self.id2name = cfg.id2name
|
| 1329 |
+
|
| 1330 |
+
def get_probs(self, wav_file: str) -> Dict[str, float]:
|
| 1331 |
+
"""
|
| 1332 |
+
Calculate probabilities for each emotion class based on the provided audio file.
|
| 1333 |
+
"""
|
| 1334 |
+
wav, length = self.prepare_wav(wav_file)
|
| 1335 |
+
encoded, _ = self.forward(wav, length)
|
| 1336 |
+
encoded_pooled = nn.functional.avg_pool1d(
|
| 1337 |
+
encoded, kernel_size=encoded.shape[-1]
|
| 1338 |
+
).squeeze(-1)
|
| 1339 |
+
|
| 1340 |
+
logits = self.head(encoded_pooled)[0]
|
| 1341 |
+
probs = nn.functional.softmax(logits, dim=-1).detach().tolist()
|
| 1342 |
+
|
| 1343 |
+
return {self.id2name[i]: probs[i] for i in range(len(self.id2name))}
|
| 1344 |
+
|
| 1345 |
+
def forward_for_export(self, features: Tensor, feature_lengths: Tensor) -> Tensor:
|
| 1346 |
+
"""
|
| 1347 |
+
Encoder-decoder forward to save model entirely in onnx format.
|
| 1348 |
+
"""
|
| 1349 |
+
encoded, _ = self.encoder(features, feature_lengths)
|
| 1350 |
+
enc_pooled = encoded.mean(dim=-1)
|
| 1351 |
+
return nn.functional.softmax(self.head(enc_pooled), dim=-1)
|
| 1352 |
+
|
| 1353 |
+
def _to_onnx(self, dir_path: str = ".") -> None:
|
| 1354 |
+
"""
|
| 1355 |
+
Export onnx Emo model.
|
| 1356 |
+
"""
|
| 1357 |
+
saved_forward = self.forward
|
| 1358 |
+
self.forward = self.forward_for_export # type: ignore[assignment, method-assign]
|
| 1359 |
+
onnx_converter(
|
| 1360 |
+
model_name=self.cfg.model_name,
|
| 1361 |
+
out_dir=dir_path,
|
| 1362 |
+
module=self,
|
| 1363 |
+
inputs=self.encoder.input_example(),
|
| 1364 |
+
input_names=["features", "feature_lengths"],
|
| 1365 |
+
output_names=["probs"],
|
| 1366 |
+
dynamic_axes={
|
| 1367 |
+
"features": {0: "batch_size", 2: "seq_len"},
|
| 1368 |
+
"feature_lengths": {0: "batch_size"},
|
| 1369 |
+
"probs": {0: "batch_size", 1: "seq_len"},
|
| 1370 |
+
},
|
| 1371 |
+
)
|
| 1372 |
+
self.forward = saved_forward # type: ignore[assignment, method-assign]
|
| 1373 |
+
|
| 1374 |
+
|
| 1375 |
+
### transformers ###
|
| 1376 |
+
|
| 1377 |
+
|
| 1378 |
+
class GigaAMConfig(PretrainedConfig):
|
| 1379 |
+
model_type = "gigaam"
|
| 1380 |
+
|
| 1381 |
+
def __init__(self, cfg: omegaconf.DictConfig = None, **kwargs):
|
| 1382 |
+
super().__init__(**kwargs)
|
| 1383 |
+
self.cfg = cfg
|
| 1384 |
+
|
| 1385 |
+
|
| 1386 |
+
class GigaAMModel(PreTrainedModel):
|
| 1387 |
+
config_class = GigaAMConfig
|
| 1388 |
+
base_model_prefix = "gigaam"
|
| 1389 |
+
|
| 1390 |
+
def __init__(self, config: GigaAMConfig):
|
| 1391 |
+
super().__init__(config)
|
| 1392 |
+
self.config = config
|
| 1393 |
+
if "decoding" in self.config.cfg["model"]["cfg"] and "model_path" in self.config.cfg["model"]["cfg"]["decoding"]:
|
| 1394 |
+
resolved_tokenizer_path = cached_file(
|
| 1395 |
+
config.name_or_path,
|
| 1396 |
+
"tokenizer.model",
|
| 1397 |
+
revision=getattr(config, "_commit_hash", None),
|
| 1398 |
+
cache_dir=getattr(config, "cache_dir", None),
|
| 1399 |
+
use_auth_token=getattr(config, "use_auth_token", None),
|
| 1400 |
+
)
|
| 1401 |
+
self.config.cfg["model"]["cfg"]["decoding"]["model_path"] = resolved_tokenizer_path
|
| 1402 |
+
|
| 1403 |
+
self.model = instantiate(config.cfg["model"], _recursive_=False)
|
| 1404 |
+
|
| 1405 |
+
def forward(self, features: torch.Tensor, feature_lengths: torch.Tensor):
|
| 1406 |
+
return self.model(features, feature_lengths)
|
| 1407 |
+
|
| 1408 |
+
def embed_audio(self, wav_file: str) -> torch.Tensor:
|
| 1409 |
+
return self.model.embed_audio(wav_file)
|
| 1410 |
+
|
| 1411 |
+
def transcribe(self, wav_file: str) -> str:
|
| 1412 |
+
return self.model.transcribe(wav_file)
|
| 1413 |
+
|
| 1414 |
+
def transcribe_longform(self, wav_file: str) -> List[Dict[str, Union[str, Tuple[float, float]]]]:
|
| 1415 |
+
return self.model.transcribe_longform(wav_file)
|
| 1416 |
+
|
| 1417 |
+
def get_probs(self, wav_file: str) -> Dict[str, float]:
|
| 1418 |
+
return self.model.get_probs(wav_file)
|
| 1419 |
+
|
| 1420 |
+
@torch.no_grad()
|
| 1421 |
+
def to_onnx(self, dir_path: str = ".") -> None:
|
| 1422 |
+
self.model.to_onnx(dir_path)
|
| 1423 |
+
|
| 1424 |
+
@classmethod
|
| 1425 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 1426 |
+
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afc6dcbae8320ea56f2cddebc0f13fbf62c9d59b6ddcad899782623c8610826a
|
| 3 |
+
size 448928167
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:828c12c991019eef952a960661f25a92d6ad279591e2ea466b4aeddf1d20a18a
|
| 3 |
+
size 255336
|