--- license: mit tags: - yolo - object-detection - watermark-detection library_name: ultralytics pipeline_tag: object-detection --- # YOLO11x – Fine-tuned Watermark Detector This is a **fine-tuned YOLO11x model for watermark & logo detection**, built upon the original **fancyfeast/joycaption-watermark-detection** model (by fancyfeast). I further trained it on a custom dataset for improved performance. --- ## Model Details | Feature | Value | |----------------|-----------------------------------| | Base checkpoint | `fancyfeast/joycaption-watermark-detection` | | Input size | 1280 × 1280 | | Framework | PyTorch / Ultralytics YOLO11x | ## Installation ```bash pip install ultralytics opencv-python ``` ## Usage ### Python ```python from ultralytics import YOLO import cv2 # Load model model = YOLO("corzent/yolo11x_watermark_detection") # Run inference results = model("test.jpg", conf=0.35) # Visualize annotated = results[0].plot() cv2.imwrite("result.jpg", annotated) ``` ### CLI ```bash yolo predict model=your-username/wm_yolo11_ft source="test.jpg" conf=0.3 ``` ## Results | Metric | Value | |----------|--------| | Precision| 0.896 | | Recall | 0.883 | | mAP@50 | 0.900 | | mAP@50-95| 0.686 | ## Model Info - Base model: YOLO11x - Trained on: custom watermark/logo dataset ## License This model is provided for **research and educational purposes only**. Do not use for removing watermarks from copyrighted content. --- 🤝 Created by Corzent