BassemE commited on
Commit
c932b80
·
verified ·
1 Parent(s): 6b2d3b2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mulesoft-documentation-embeddings
2
+
3
+ MuleSoft Documentation Embeddings for RAG Applications
4
+
5
+ ## Dataset Information
6
+
7
+ - **Version**: 1.0.0
8
+ - **Created**: 2025-09-16T02:31:46.176390
9
+ - **Source**: Weaviate Vector Database
10
+ - **License**: MIT
11
+ - **Language**: en
12
+
13
+ ## Task Categories
14
+
15
+ question-answering, retrieval, knowledge-base
16
+
17
+ ## Dataset Statistics
18
+
19
+ ### SkillPilotDataSet_v11
20
+
21
+ - **Total Objects**: 6430
22
+ - **Unique Properties**: 13
23
+ - **Knowledge Sources**: mulesoft, user_defined_docs
24
+ - **Average Content Length**: 5079 characters
25
+
26
+ ## RAG Configuration
27
+
28
+ This dataset was created using the following RAG (Retrieval-Augmented Generation) configuration:
29
+
30
+ ### Embedding Model
31
+ - **Model Type**: OpenAI
32
+ - **Model ID**: text-embedding-3-large
33
+ - **Embedding Dimensions**: 3072
34
+ - **Provider**: OpenAI
35
+
36
+ ### Chunking Configuration
37
+ - **Chunk Size**: 2048 characters
38
+ - **Chunk Overlap**: 256 characters
39
+
40
+ ### Technical Details
41
+ - **Vector Database**: Weaviate
42
+ - **Collection**: SkillPilotDataSet_v11
43
+ - **Total Vectors**: 6430
44
+ - **Vector Distance**: Cosine similarity
45
+
46
+ ## Usage
47
+
48
+ This dataset can be used for:
49
+ - Question answering systems
50
+ - Retrieval-augmented generation (RAG)
51
+ - Knowledge base construction
52
+ - Technical interview preparation
53
+ - AI assistant training
54
+
55
+ ## Dataset Schema
56
+
57
+ The dataset preserves the original Weaviate structure with the following columns:
58
+
59
+ - **weaviate_id**: Unique identifier from Weaviate
60
+ - **collection**: Source collection name (SkillPilotDataSet_v11)
61
+ - **extracted_at**: Timestamp of extraction
62
+ - **properties**: Nested object containing all original Weaviate properties:
63
+ - `author`: Document author
64
+ - `chunk_id`: Unique chunk identifier
65
+ - `chunk_index`: Position of chunk in document
66
+ - `document_id`: Source document identifier
67
+ - `entities`: Extracted entities
68
+ - `keywords`: Document keywords
69
+ - `knowledge_source`: Source of knowledge (mulesoft, user_defined_docs)
70
+ - `page_content`: Main text content
71
+ - `relationships`: Entity relationships
72
+ - `source_url`: Original document URL
73
+ - `tags`: Document tags
74
+ - `title`: Document title
75
+ - `total_chunks`: Total number of chunks in document
76
+
77
+ ## Files
78
+
79
+ - `dataset.parquet`: Dataset in Parquet format (recommended for large datasets)
80
+ - `README.md`: This documentation file
81
+
82
+ ## Citation
83
+
84
+ If you use this dataset, please cite:
85
+
86
+ ```bibtex
87
+ @dataset{{mulesoft_documentation_embeddings,
88
+ title={{MuleSoft Documentation Embeddings}},
89
+ author={{Bassem Elsodany}},
90
+ year={{2025}},
91
+ url={{https://huggingface.co/datasets/BassemE/mulesoft-documentation-embeddings}}
92
+ }}
93
+ ```