SmilingWolf commited on
Commit
844c7d5
·
verified ·
1 Parent(s): cd8776b

Upload 14 files

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ val_dataset.csv filter=lfs diff=lfs merge=lfs -text
1_json_to_csv.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import pandas as pd
4
+
5
+ cat_name_to_db_id = {
6
+ "meta": 5,
7
+ "character": 4,
8
+ "copyright": 3,
9
+ "artist": 1,
10
+ "general": 0,
11
+ "year": 10,
12
+ "rating": 9,
13
+ }
14
+
15
+
16
+ with open("cm_tags.json") as f:
17
+ data = json.load(f)
18
+
19
+ df_list = []
20
+ for elem in data["idx_to_tag"]:
21
+ base = {"tag_id": None, "name": None, "category": None, "count": -1}
22
+ base["tag_id"] = elem
23
+ base["name"] = data["idx_to_tag"][elem]
24
+ base["category"] = cat_name_to_db_id[data["tag_to_category"][base["name"]]]
25
+ df_list.append(base)
26
+
27
+ df = pd.DataFrame.from_dict(df_list)
28
+ df.to_csv("cm_tags.csv", index=False)
2_retrieve_images_by_cc.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import pandas as pd
3
+ from cheesechaser.datapool.danbooru import DanbooruNewestDataPool
4
+
5
+ existing = Path("original").glob("*")
6
+ existing = [int(x.stem) for x in existing]
7
+
8
+ df = pd.read_csv("val_dataset.csv")
9
+ want = df["id"].tolist()
10
+ want = list(set(want) - set(existing))
11
+
12
+ pool = DanbooruNewestDataPool()
13
+
14
+ pool.batch_download_to_directory(
15
+ resource_ids=want,
16
+ dst_dir="original",
17
+ max_workers=12,
18
+ silent=True,
19
+ )
3_common_tags.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ sw_tags = pd.read_csv("sw_tags.csv")
4
+ cm_tags = pd.read_csv("cm_tags.csv")
5
+
6
+ sw_tags["tag_idx"] = sw_tags.index
7
+
8
+ sw_tags = sw_tags.set_index("name")
9
+ cm_tags = cm_tags.set_index("name")
10
+
11
+ common_tags = sw_tags.index.intersection(cm_tags.index)
12
+
13
+ sw_tags = sw_tags[sw_tags.index.isin(common_tags)]
14
+ cm_tags = cm_tags[cm_tags.index.isin(common_tags)]
15
+
16
+ # Some tags have changed category over time,
17
+ # so only keep the ones where the category matches between the datasets
18
+ sw_tags["cm_category"] = cm_tags["category"]
19
+ sw_tags = sw_tags[sw_tags["category"] == sw_tags["cm_category"]]
20
+ sw_tags = sw_tags.drop("cm_category", axis=1)
21
+
22
+ common_tags = sw_tags.index.intersection(cm_tags.index)
23
+
24
+ sw_tags = sw_tags[sw_tags.index.isin(common_tags)]
25
+ cm_tags = cm_tags[cm_tags.index.isin(common_tags)]
26
+
27
+ cm_tags["tag_idx"] = cm_tags["tag_id"]
28
+ cm_tags["tag_id"] = sw_tags["tag_id"]
29
+
30
+ cm_tags = cm_tags.reindex(sw_tags.index)
31
+
32
+ sw_tags.to_csv("sw_tags_common.csv")
33
+ cm_tags.to_csv("cm_tags_common.csv")
4_cm_onnx_inference.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import numpy as np
4
+ import onnxruntime as ort
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+
8
+ # Disable decompression bomb warnings 'cuz we trust danbooru images
9
+ Image.MAX_IMAGE_PIXELS = None
10
+
11
+
12
+ def load_model(model_path):
13
+ """Test an ONNX model with a single image"""
14
+ # Load ONNX model
15
+ print(f"Loading ONNX model from {model_path}")
16
+ try:
17
+ # Try with CUDA
18
+ session = ort.InferenceSession(
19
+ model_path,
20
+ providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
21
+ )
22
+ print(f"Using providers: {session.get_providers()}")
23
+ except Exception as e:
24
+ print(f"CUDA not available, using CPU: {e}")
25
+ session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
26
+ print(f"Using providers: {session.get_providers()}")
27
+ return session
28
+
29
+
30
+ def preprocess_image(image_path, image_size=512):
31
+ """Process an image for inference"""
32
+ try:
33
+ with Image.open(image_path) as img:
34
+ # Convert RGBA or Palette images to RGB
35
+ # ...while respecting transparency set in the palette
36
+ if img.mode in ("RGBA", "P"):
37
+ img = img.convert("RGBA")
38
+ canvas = Image.new("RGBA", img.size, (0, 0, 0))
39
+ canvas.alpha_composite(img)
40
+ img = canvas.convert("RGB")
41
+
42
+ # Get original dimensions
43
+ width, height = img.size
44
+ aspect_ratio = width / height
45
+
46
+ # Calculate new dimensions to maintain aspect ratio
47
+ if aspect_ratio > 1:
48
+ new_width = image_size
49
+ new_height = int(new_width / aspect_ratio)
50
+ else:
51
+ new_height = image_size
52
+ new_width = int(new_height * aspect_ratio)
53
+
54
+ # Resize with LANCZOS filter
55
+ img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
56
+
57
+ # Create new image with padding
58
+ new_image = Image.new("RGB", (image_size, image_size), (0, 0, 0))
59
+ paste_x = (image_size - new_width) // 2
60
+ paste_y = (image_size - new_height) // 2
61
+ new_image.paste(img, (paste_x, paste_y))
62
+
63
+ # Apply transforms
64
+ img_tensor = np.array(new_image, dtype=np.float32)
65
+ img_tensor = img_tensor / 255.0
66
+ return img_tensor
67
+ except Exception as e:
68
+ raise Exception(f"Error processing {image_path}: {str(e)}")
69
+
70
+
71
+ def test_onnx_model(session, image_path):
72
+ # Preprocess image
73
+ img_tensor = preprocess_image(image_path)
74
+
75
+ # Add batch dimension and convert to numpy
76
+ img_numpy = np.transpose(img_tensor, [2, 0, 1])
77
+ img_numpy = np.expand_dims(img_numpy, axis=0)
78
+
79
+ # Get input name
80
+ input_name = session.get_inputs()[0].name
81
+
82
+ # Run inference
83
+ outputs = session.run(None, {input_name: img_numpy})
84
+
85
+ # Process outputs
86
+ initial_probs = 1.0 / (1.0 + np.exp(-outputs[0])) # Apply sigmoid
87
+ return initial_probs
88
+
89
+
90
+ if __name__ == "__main__":
91
+ session = load_model("camie-tagger/model_initial.onnx")
92
+ images = sorted(list(Path("original").glob("*")))
93
+
94
+ probs = np.zeros((len(images), 70527), dtype=np.float32)
95
+ for i, image_path in enumerate(tqdm(images)):
96
+ probs[i] = test_onnx_model(session, image_path)
97
+
98
+ np.save("cm_probs.npy", probs)
5_wd_v3_onnx_inference.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import numpy as np
4
+ import onnxruntime as ort
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+
8
+ # Disable decompression bomb warnings 'cuz we trust danbooru images
9
+ Image.MAX_IMAGE_PIXELS = None
10
+
11
+
12
+ def load_model(model_path):
13
+ """Test an ONNX model with a single image"""
14
+ # Load ONNX model
15
+ print(f"Loading ONNX model from {model_path}")
16
+ try:
17
+ # Try with CUDA
18
+ session = ort.InferenceSession(
19
+ model_path,
20
+ providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
21
+ )
22
+ print(f"Using providers: {session.get_providers()}")
23
+ except Exception as e:
24
+ print(f"CUDA not available, using CPU: {e}")
25
+ session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
26
+ print(f"Using providers: {session.get_providers()}")
27
+ return session
28
+
29
+
30
+ def preprocess_image(image_path, target_size=448):
31
+ image = Image.open(image_path)
32
+ image = image.convert(mode="RGBA")
33
+
34
+ canvas = Image.new("RGBA", image.size, (255, 255, 255))
35
+ canvas.alpha_composite(image)
36
+ image = canvas.convert("RGB")
37
+
38
+ # Pad image to square
39
+ image_shape = image.size
40
+ max_dim = max(image_shape)
41
+ pad_left = (max_dim - image_shape[0]) // 2
42
+ pad_top = (max_dim - image_shape[1]) // 2
43
+
44
+ padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
45
+ padded_image.paste(image, (pad_left, pad_top))
46
+
47
+ # Resize
48
+ if max_dim != target_size:
49
+ padded_image = padded_image.resize(
50
+ (target_size, target_size),
51
+ Image.BICUBIC,
52
+ )
53
+
54
+ # Convert to numpy array
55
+ image_array = np.asarray(padded_image, dtype=np.float32)
56
+
57
+ # Convert PIL-native RGB to BGR
58
+ image_array = image_array[:, :, ::-1]
59
+
60
+ return np.expand_dims(image_array, axis=0)
61
+
62
+
63
+ def test_onnx_model(session, image_path):
64
+ # Preprocess image
65
+ img_numpy = preprocess_image(image_path)
66
+
67
+ # Get input name
68
+ input_name = session.get_inputs()[0].name
69
+
70
+ # Run inference
71
+ outputs = session.run(None, {input_name: img_numpy})[0]
72
+ return outputs
73
+
74
+
75
+ if __name__ == "__main__":
76
+ session = load_model("wd_v3_tagger/swinv2.onnx")
77
+ images = sorted(list(Path("original").glob("*")))
78
+
79
+ probs = np.zeros((len(images), 10861), dtype=np.float32)
80
+ for i, image_path in enumerate(tqdm(images)):
81
+ probs[i] = test_onnx_model(session, image_path)
82
+
83
+ np.save("swinv2_probs.npy", probs)
6_get_labels.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+
6
+ df = pd.read_csv("val_dataset.csv")
7
+ df = df.set_index("id")
8
+
9
+ images = sorted(list(Path("original").glob("*")))
10
+ images = [int(x.stem) for x in images]
11
+ df = df.loc[images]
12
+
13
+ tags = pd.read_csv("sw_tags_common.csv")
14
+ tags = tags["name"].tolist()
15
+
16
+
17
+ def to_one_hot(x):
18
+ tag_fields = [
19
+ "tag_string_general",
20
+ "tag_string_character",
21
+ "tag_string_copyright",
22
+ "tag_string_artist",
23
+ "tag_string_meta",
24
+ ]
25
+
26
+ tag_string = []
27
+ for tag_field in tag_fields:
28
+ column_content = x[tag_field]
29
+ if pd.isna(column_content):
30
+ continue
31
+
32
+ tag_string.extend(column_content.split(" "))
33
+
34
+ return np.isin(tags, tag_string)
35
+
36
+
37
+ labels = np.zeros((len(df), len(tags)), dtype=np.uint8)
38
+ for i, elem in enumerate(df.iterrows()):
39
+ res = to_one_hot(elem[1])
40
+ labels[i] = res
41
+
42
+ np.save("labels.npy", labels)
7_analyze_metrics_macro.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+
7
+
8
+ def calc_metrics(img_tags, img_probs, thresh):
9
+ yz = (img_tags > 0).astype(np.uint8)
10
+ pos = (img_probs > thresh).astype(np.uint8)
11
+ pct = pos + 2 * yz
12
+
13
+ FP = np.sum(pct == 1, axis=0).astype(np.float32)
14
+ FN = np.sum(pct == 2, axis=0).astype(np.float32)
15
+ TP = np.sum(pct == 3, axis=0).astype(np.float32)
16
+
17
+ recall = TP / np.maximum(TP + FN, 1e-6)
18
+ precision = TP / np.maximum(TP + FP, 1e-6)
19
+ return precision.mean(), recall.mean()
20
+
21
+
22
+ parser = argparse.ArgumentParser(description="Analyze output probabilities dumps")
23
+ parser.add_argument(
24
+ "-tc",
25
+ "--tags-csv",
26
+ default="sw_tags_common.csv",
27
+ help="Dataset name",
28
+ )
29
+
30
+ parser.add_argument(
31
+ "-d",
32
+ "--dump",
33
+ default="swinv2_probs.npy",
34
+ help="Probabilities dump",
35
+ )
36
+
37
+ parser.add_argument(
38
+ "-l",
39
+ "--labels",
40
+ default="labels.npy",
41
+ help="One-hot encoded labels dump file",
42
+ )
43
+
44
+ parser.add_argument(
45
+ "-s",
46
+ "--start-index",
47
+ type=int,
48
+ default=0,
49
+ help="Slice files along axis=1 starting from this index",
50
+ )
51
+
52
+ parser.add_argument(
53
+ "-e",
54
+ "--end-index",
55
+ type=int,
56
+ default=-1,
57
+ help="Slice files along axis=1 ending to this index",
58
+ )
59
+
60
+ parser.add_argument(
61
+ "-c",
62
+ "--category",
63
+ type=int,
64
+ default=-1,
65
+ help="Only analyze tags of this category (-1 = all)",
66
+ )
67
+
68
+ thresh_group = parser.add_mutually_exclusive_group()
69
+ thresh_group.add_argument(
70
+ "-a",
71
+ "--analyze",
72
+ action="store_true",
73
+ help="Iteratively look for the threshold where P ≈ R",
74
+ )
75
+ thresh_group.set_defaults(analyze=False)
76
+
77
+ thresh_group.add_argument(
78
+ "-t",
79
+ "--threshold",
80
+ type=float,
81
+ default=0.4,
82
+ help="Use this threshold to calculate the metrics",
83
+ )
84
+ args = parser.parse_args()
85
+
86
+ img_probs = np.load(args.dump)
87
+ img_tags = np.load(args.labels)
88
+
89
+ df = pd.read_csv(args.tags_csv)
90
+ indexes = df["tag_idx"].tolist()
91
+ img_probs = img_probs[:, indexes]
92
+
93
+ if args.category != -1:
94
+ indexes = np.where(df["category"] == args.category)[0]
95
+ img_probs = img_probs[:, indexes]
96
+ img_tags = img_tags[:, indexes]
97
+
98
+ end_index = args.end_index
99
+ if end_index == -1:
100
+ end_index = img_probs.shape[1]
101
+
102
+ img_probs = img_probs[:, args.start_index : end_index]
103
+ img_tags = img_tags[:, args.start_index : end_index]
104
+
105
+ indexes = np.where(img_tags.sum(axis=0) > 0)[0]
106
+ img_probs = img_probs[:, indexes]
107
+ img_tags = img_tags[:, indexes]
108
+ print(f"Final # of tags: {img_tags.shape[1]}")
109
+
110
+ assert img_probs.shape[1] > 0
111
+
112
+ if args.analyze:
113
+ threshold_min = 0.05
114
+ threshold_max = 0.95
115
+
116
+ iters = 0
117
+ recall = 0.0
118
+ precision = 1.0
119
+ while not np.isclose(recall, precision) and (iters < 15):
120
+ threshold = (threshold_max + threshold_min) / 2
121
+ precision, recall = calc_metrics(img_tags, img_probs, threshold)
122
+ if precision > recall:
123
+ threshold_max = threshold
124
+ else:
125
+ threshold_min = threshold
126
+ iters += 1
127
+
128
+ threshold = round(threshold, 4)
129
+ else:
130
+ threshold = args.threshold
131
+
132
+ pos = (img_probs > threshold).astype(np.uint8)
133
+ yz = (img_tags > 0).astype(np.uint8)
134
+ pct = pos + 2 * yz
135
+
136
+ TN = np.sum(pct == 0, axis=0).astype(np.float32)
137
+ FP = np.sum(pct == 1, axis=0).astype(np.float32)
138
+ FN = np.sum(pct == 2, axis=0).astype(np.float32)
139
+ TP = np.sum(pct == 3, axis=0).astype(np.float32)
140
+
141
+ recall = np.mean(TP / np.maximum(TP + FN, 1e-6))
142
+ precision = np.mean(TP / np.maximum(TP + FP, 1e-6))
143
+ accuracy = np.mean((TP + TN) / (TP + TN + FP + FN))
144
+
145
+
146
+ def get_fbeta(beta, TP, FP, FN):
147
+ numerator = (1 + beta**2) * TP
148
+ denominator = (1 + beta**2) * TP + beta**2 * FN + FP
149
+
150
+ idx = np.where(denominator == 0)
151
+ numerator[idx] = 1
152
+ denominator[idx] = 1
153
+
154
+ return np.mean(numerator / denominator)
155
+
156
+
157
+ def get_mcc(TP, TN, FP, FN):
158
+ N = TP + FN + FP + TN
159
+ S = (TP + FN) / N
160
+ P = (TP + FP) / N
161
+ numerator = (TP / N) - (S * P)
162
+ denominator = S * P * (1 - S) * (1 - P)
163
+ denominator = np.maximum(denominator, 1e-12)
164
+ denominator = np.sqrt(denominator)
165
+ return np.mean(numerator / denominator)
166
+
167
+
168
+ F1 = get_fbeta(1, TP, FP, FN)
169
+ F2 = get_fbeta(2, TP, FP, FN)
170
+
171
+ MCC = get_mcc(TP, TN, FP, FN)
172
+
173
+ model_name = Path(args.dump).name
174
+ d = {
175
+ "thres": threshold,
176
+ "F1": round(float(F1), 4),
177
+ "F2": round(float(F2), 4),
178
+ "MCC": round(float(MCC), 4),
179
+ "A": round(float(accuracy), 4),
180
+ "R": round(float(recall), 4),
181
+ "P": round(float(precision), 4),
182
+ }
183
+ print(f"{model_name}: {str(d)}")
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## What's what
2
+
3
+ `1_json_to_csv.py`:
4
+ - converts cm_tags.json to a csv format I'm more used to and that is easier to use with my existing tooling
5
+
6
+ `2_retrieve_images_by_cc.py`:
7
+ - retrieves the validation images using cheesechaser, downloads them to "original/"
8
+
9
+ `3_common_tags.py`:
10
+ - clean up both models tag sets to only consider the common tags; note down the indexes to use to fetch the correct tag probs from the dumps generated by the inference scripts
11
+
12
+ `4_cm_onnx_inference.py`:
13
+ - run inference using the ONNX model of camie-tagger, dump the activated (post-sigmoid) outputs
14
+
15
+ `5_wd_v3_onnx_inference.py`:
16
+ - run inference using the ONNX model of wd_v3 taggers (hardcoded to use swinv2_v3, could be made to use any of the v3 series), dump the activated outputs
17
+
18
+ `6_get_labels.py`:
19
+ - get one-hot encoded labels from val_dataset.csv, dumps them to "labels.npy"
20
+
21
+ `7_analyze_metrics_macro.py`:
22
+ - final analysis tool
23
+
24
+ ## Results
25
+
26
+ Category 0: general tags - full
27
+ ```
28
+ [user]$ python 7_analyze_metrics_macro.py -tc sw_tags_common.csv -c 0 -d swinv2_probs.npy -l labels.npy -a
29
+ Final # of tags: 7853
30
+ swinv2_probs.npy: {'thres': 0.2613, 'F1': 0.5386, 'F2': 0.5475, 'MCC': 0.548, 'A': 0.9972, 'R': 0.5619, 'P': 0.5619}
31
+
32
+ [user]$ python 7_analyze_metrics_macro.py -tc cm_tags_common.csv -c 0 -d cm_probs.npy -l labels.npy -a
33
+ Final # of tags: 7853
34
+ cm_probs.npy: {'thres': 0.2694, 'F1': 0.273, 'F2': 0.2835, 'MCC': 0.2859, 'A': 0.9955, 'R': 0.3075, 'P': 0.3075}
35
+ ```
36
+
37
+ Category 0: general tags - ignoring the top 5000
38
+ ```
39
+ [user]$ python 7_analyze_metrics_macro.py -tc sw_tags_common.csv -c 0 -d swinv2_probs.npy -l labels.npy -a -s 5000
40
+ Final # of tags: 2859
41
+ swinv2_probs.npy: {'thres': 0.2272, 'F1': 0.4908, 'F2': 0.5026, 'MCC': 0.5069, 'A': 0.9998, 'R': 0.5256, 'P': 0.5255}
42
+
43
+ [user]$ python 7_analyze_metrics_macro.py -tc cm_tags_common.csv -c 0 -d cm_probs.npy -l labels.npy -a -s 5000
44
+ Final # of tags: 2859
45
+ cm_probs.npy: {'thres': 0.2484, 'F1': 0.1961, 'F2': 0.2032, 'MCC': 0.2104, 'A': 0.9997, 'R': 0.2295, 'P': 0.2294}
46
+ ```
47
+
48
+ Category 4: character tags
49
+ ```
50
+ [user]$ python 7_analyze_metrics_macro.py -tc sw_tags_common.csv -c 4 -d swinv2_probs.npy -l labels.npy -a
51
+ Final # of tags: 2585
52
+ swinv2_probs.npy: {'thres': 0.3411, 'F1': 0.9464, 'F2': 0.9482, 'MCC': 0.9491, 'A': 1.0, 'R': 0.9519, 'P': 0.952}
53
+
54
+ [user]$ python 7_analyze_metrics_macro.py -tc cm_tags_common.csv -c 4 -d cm_probs.npy -l labels.npy -a
55
+ Final # of tags: 2585
56
+ cm_probs.npy: {'thres': 0.2493, 'F1': 0.7148, 'F2': 0.7226, 'MCC': 0.7266, 'A': 0.9998, 'R': 0.74, 'P': 0.7397}
57
+ ```
58
+
59
+ ## Caveats
60
+
61
+ The swinv2_v3 tagger has got an unfair home advantage, in that out of the 20116 validation samples, only 2908 are guaranteed to not have been part of the training set.
62
+
63
+ Gathering a more fair validation set is left as an excersise for the reader.
64
+ The exact datasets splits use for wd_v3 models are available here: https://huggingface.co/datasets/SmilingWolf/wdtagger-v3-seed
65
+
66
+ The analysis script removes tags that have no positive samples in the val set.
67
+ It would probably be a good idea to only select tags that have 5+ samples.
68
+ It's a fairly trivial change to make to the analysis script, if one feels so inclined.
69
+
70
+ I have only used the tags that have the exact same name and category to build the common tag set. I haven't adjusted for aliases and implications.
cm_tags.csv ADDED
The diff for this file is too large to render. See raw diff
 
cm_tags.json ADDED
The diff for this file is too large to render. See raw diff
 
cm_tags_common.csv ADDED
The diff for this file is too large to render. See raw diff
 
sw_tags.csv ADDED
The diff for this file is too large to render. See raw diff
 
sw_tags_common.csv ADDED
The diff for this file is too large to render. See raw diff
 
val_dataset.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1aad7975cb31a25a237f489a7036b38af6e584da5e5ecd2597f1bbf33bf616d
3
+ size 12932864