construct_text_correction / finetune_data.py
WangZeJun's picture
Upload finetune_data.py with huggingface_hub
2329cc5 verified
# coding=utf-8
import argparse
import json
import random
from ltp import LTP
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=True)
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--ltp_model", type=str, required=True)
parser.add_argument("--basic_hanzi", type=str, default="confusion/basic_hanzi_2500.txt")
parser.add_argument("--sound_confusion", type=str, default="confusion/sound_confusion.txt")
parser.add_argument("--shape_confusion", type=str, default="confusion/shape_confusion.txt")
parser.add_argument("--same_ratio", type=float, default=0.1)
parser.add_argument("--repeat_ratio", type=float, default=0.15)
parser.add_argument("--delete_ratio", type=float, default=0.15)
parser.add_argument("--sound_ratio", type=float, default=0.5)
parser.add_argument("--shape_ratio", type=float, default=0.1)
parser.add_argument("--whitelist", type=str, default="一二三四五六七八九十")
parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args()
return args
def isChinese(word):
for ch in word:
cp = ord(ch)
if cp >= 0x4E00 and cp <= 0x9FA5:
continue
return False
return True
def load_hanzi(path):
hanzi = set()
with open(path, mode="r", encoding="utf-8") as handle:
for line in handle:
line = line.strip()
assert len(line) == 1
hanzi.update(line)
return hanzi
def load_confusion_set(path, hanzi):
confusion_set = {}
with open(path, mode="r", encoding="utf-8") as handle:
for line in handle:
line = line.strip().split()
if len(line) < 2: continue
key, val = line[0], []
for c in line[1]:
if c in hanzi and c not in val and c != key:
val.append(c)
if val:
confusion_set[key] = val
return confusion_set
def do_mask(sent, args):
# 分词和词性标注
cws, pos = args.ltp.pipeline(sent, tasks=["cws", "pos"], return_dict=False)
n = len(cws)
i = random.choice(range(n))
word = cws[i]
if not isChinese(word):
i = random.choice(range(n))
word = cws[i]
if not isChinese(word):
return sent
p = random.random()
p1 = args.same_ratio
p2 = p1 + args.repeat_ratio
p3 = p2 + args.delete_ratio
p4 = p3 + args.sound_ratio
p5 = p4 + args.shape_ratio
assert abs(p5 - 1) < 0.001
if p < p1:
return sent
if p < p2:
# 字词冗余
cws[i] += word
return ''.join(cws)
if pos[i] in ['nh', 'ns']:
# 不修改人名地名
return sent
chars = list(word)
k = random.choice(range(len(word)))
c = chars[k]
if c in args.whitelist:
return sent
if p < p3:
if len(word) < 2:
return sent
chars[k] = ''
cws[i] = ''.join(chars)
return ''.join(cws)
if p < p4:
if c in args.sound_set:
chars[k] = random.choice(args.sound_set[c])
else:
if c in args.shape_set:
chars[k] = random.choice(args.shape_set[c])
cws[i] = ''.join(chars)
return ''.join(cws)
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
# 常用汉字集合
hanzi = load_hanzi(args.basic_hanzi)
# 混淆集
args.sound_set = load_confusion_set(args.sound_confusion, hanzi)
args.shape_set = load_confusion_set(args.shape_confusion, hanzi)
args.hanzi = list(hanzi)
# ltp中文分词模型
args.ltp = LTP(args.ltp_model)
output = open(args.output, mode="w")
with open(args.input, mode="r", encoding="utf-8") as handle:
for line in tqdm(handle):
sent = line.strip()
if len(sent) < 4:
continue
source = do_mask(sent, args)
label = int(source != sent)
output.write(
json.dumps({"source": source, "target": sent, "label": label}, ensure_ascii=False)
)
output.write("\n")