Datasets:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Variance-Aware Machine Translation Test Sets""" | |
| import os | |
| import json | |
| import textwrap | |
| from typing import List | |
| import datasets | |
| from datasets.utils.download_manager import DownloadManager | |
| _CITATION = """\ | |
| @inproceedings{ | |
| zhan2021varianceaware, | |
| title={Variance-Aware Machine Translation Test Sets}, | |
| author={Runzhe Zhan and Xuebo Liu and Derek F. Wong and Lidia S. Chao}, | |
| booktitle={Thirty-fifth Conference on Neural Information Processing Systems, Datasets and Benchmarks Track}, | |
| year={2021}, | |
| url={https://openreview.net/forum?id=hhKA5k0oVy5} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The Variance-Aware Machine Translation corpus contains 70 small and discriminative test sets for machine translation (MT) | |
| evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. | |
| VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances | |
| of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark | |
| in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties | |
| of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive | |
| MT systems, providing guidance for constructing future MT test sets. | |
| """ | |
| _HOMEPAGE = "https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets" | |
| _LICENSE = "https://raw.githubusercontent.com/NLP2CT/Variance-Aware-MT-Test-Sets/main/LICENSE" | |
| _BASE_URL = "https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets/raw/main/VAT_data" | |
| _META_URL = "https://raw.githubusercontent.com/NLP2CT/Variance-Aware-MT-Test-Sets/main/VAT_meta" | |
| _CONFIGS = { | |
| "wmt16": ["tr_en", "ru_en", "ro_en", "de_en", "en_ru", "fi_en", "cs_en"], | |
| "wmt17": ["en_lv", "zh_en", "en_tr", "lv_en", "en_de", "ru_en", "en_fi", "tr_en", "en_zh", "en_ru", "fi_en", "en_cs", "de_en", "cs_en"], | |
| "wmt18": ["en_cs", "cs_en", "en_fi", "en_tr", "en_et", "ru_en", "et_en", "tr_en", "fi_en", "zh_en", "en_zh", "en_ru", "de_en", "en_de"], | |
| "wmt19": ["zh_en", "en_cs", "de_en", "en_gu", "fr_de", "en_zh", "fi_en", "en_fi", "kk_en", "de_cs", "lt_en", "en_lt", "ru_en", "en_kk", "en_ru", "gu_en", "de_fr", "en_de"], | |
| "wmt20": ["km_en", "cs_en", "en_de", "ja_en", "ps_en", "en_zh", "en_ta", "de_en", "zh_en", "en_ja", "en_cs", "en_pl", "en_ru", "pl_en", "iu_en", "ru_en", "ta_en"], | |
| } | |
| _PATHS = { | |
| f"{year}_{pair}": { | |
| "src" : os.path.join(_BASE_URL, year, f"vat_newstest20{year[3:]}-{pair.replace('_', '')}-src.{pair.split('_')[0]}{'.txt' if year == 'wmt20' else ''}"), | |
| "ref" : os.path.join(_BASE_URL, year, f"vat_newstest20{year[3:]}-{pair.replace('_', '')}-ref.{pair.split('_')[1]}{'.txt' if year == 'wmt20' else ''}") | |
| } for year, pairs in _CONFIGS.items() for pair in pairs | |
| } | |
| _METADATA_PATHS = {k:os.path.join(_META_URL, k, "bert-r_filter-std60.json") for k in _CONFIGS.keys()} | |
| class WmtVatConfig(datasets.BuilderConfig): | |
| def __init__( | |
| self, | |
| campaign: str, | |
| source: str, | |
| reference: str, | |
| **kwargs | |
| ): | |
| """BuilderConfig for Variance-Aware MT Test Sets. | |
| Args: | |
| campaign: `str`, WMT campaign from which the test set was extracted | |
| source: `str`, source for translation. | |
| reference: `str`, reference translation. | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super().__init__(**kwargs) | |
| self.campaign = campaign | |
| self.source = source | |
| self.reference = reference | |
| class WmtVat(datasets.GeneratorBasedBuilder): | |
| """Variance-Aware Machine Translation Test Sets""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| WmtVatConfig( | |
| name=cfg, | |
| campaign=cfg.split("_")[0], | |
| source=cfg.split("_")[1], | |
| reference=cfg.split("_")[2], | |
| ) for cfg in _PATHS.keys() | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "orig_id": datasets.Value("int32"), | |
| "source": datasets.Value("string"), | |
| "reference": datasets.Value("string") | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: DownloadManager): | |
| """Returns SplitGenerators.""" | |
| src_file = dl_manager.download_and_extract(_PATHS[self.config.name]["src"]) | |
| ref_file = dl_manager.download_and_extract(_PATHS[self.config.name]["ref"]) | |
| meta_file = dl_manager.download_and_extract(_METADATA_PATHS[self.config.name[:5]]) # Only wmtXX | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "src_path": src_file, | |
| "ref_path": ref_file, | |
| "pair": self.config.name[6:].replace("_", "-"), | |
| "meta_path": meta_file | |
| }, | |
| ) | |
| ] | |
| def _generate_examples( | |
| self, src_path: str, ref_path: str, pair: str, meta_path: str | |
| ): | |
| """ Yields examples as (key, example) tuples. """ | |
| with open(meta_path, encoding="utf-8") as meta: | |
| ids = json.load(meta)[pair] | |
| with open(src_path, encoding="utf-8") as src: | |
| with open(ref_path, encoding="utf-8") as ref: | |
| for id_, (src_ex, ref_ex, orig_idx) in enumerate(zip(src, ref, ids)): | |
| yield id_, { | |
| "orig_id": orig_idx, | |
| "source": src_ex.strip(), | |
| "reference": ref_ex.strip(), | |
| } |