Commit
·
4e3b836
0
Parent(s):
Add README.md, notebooks and preprocessing scripts
Browse files- README.md +61 -0
- bindingdb.ipynb +791 -0
- biolip.ipynb +460 -0
- biolip.py +41 -0
- combine_dbs.ipynb +1477 -0
- moad.ipynb +513 -0
- moad.py +32 -0
- pdbbind.ipynb +296 -0
- pdbbind.py +35 -0
- requirements.txt +3 -0
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## How to use the data sets
|
| 2 |
+
|
| 3 |
+
### Use the already preprocessed data
|
| 4 |
+
|
| 5 |
+
The file `data/all.parquet` contains the preprocessed data
|
| 6 |
+
|
| 7 |
+
### Pre-process yourself
|
| 8 |
+
|
| 9 |
+
To manually perform the preprocessing, fownload the data sets from
|
| 10 |
+
|
| 11 |
+
1. BindingDB
|
| 12 |
+
|
| 13 |
+
In `bindingdb`, download the database as tab separated values
|
| 14 |
+
[https://bindingdb.org] > Download > BindingDB_All_2021m4.tsv.zip
|
| 15 |
+
and extract the zip archive into `bindingdb/data`
|
| 16 |
+
|
| 17 |
+
Run the steps in `bindingdb.ipynb`
|
| 18 |
+
|
| 19 |
+
2. PDBBind-cn
|
| 20 |
+
|
| 21 |
+
Register for an account at [https://www.pdbbind.org.cn/], confirm the validation
|
| 22 |
+
email, then login and download
|
| 23 |
+
|
| 24 |
+
- the Index files (1)
|
| 25 |
+
- the general protein-ligand complexes (2)
|
| 26 |
+
- the refined protein-ligand complexes (3)
|
| 27 |
+
|
| 28 |
+
Extract those files in `pdbbind/data`
|
| 29 |
+
|
| 30 |
+
Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
|
| 31 |
+
(e.g., `mpirun -n 64 pdbbind.py`).
|
| 32 |
+
|
| 33 |
+
Perform the steps in the notebook `pdbbind.ipynb`
|
| 34 |
+
|
| 35 |
+
3. BindingMOAD
|
| 36 |
+
|
| 37 |
+
Go to [https://bindingmoad.org] and download the files `every.csv`
|
| 38 |
+
(All of Binding MOAD, Binding Data) and the non-redundant biounits
|
| 39 |
+
(`nr_bind.zip`). Place and extract those files into `binding_moad`.
|
| 40 |
+
|
| 41 |
+
Run the script `moad.py` in a compute job on an MPI-enabled cluster
|
| 42 |
+
(e.g., `mpirun -n 64 moad.py).
|
| 43 |
+
|
| 44 |
+
Perform the steps in the notebook `moad.ipynb`
|
| 45 |
+
|
| 46 |
+
4. BioLIP
|
| 47 |
+
|
| 48 |
+
Download from [https://zhanglab.ccmb.med.umich.edu/BioLiP/] the files
|
| 49 |
+
- receptor_nr1.tar.bz2 (Receptor1, Non-redudant set)
|
| 50 |
+
- ligand_nr.tar.bz2 (Ligands)
|
| 51 |
+
- BioLiP_nr.tar.bz2 (Annotations)
|
| 52 |
+
and extract them in `biolip/data`.
|
| 53 |
+
|
| 54 |
+
Run the script `biolip.py` in a compute job on an MPI-enabled cluster
|
| 55 |
+
(e.g., `mpirun -n 64 biolip.py).
|
| 56 |
+
|
| 57 |
+
Perform sthe steps in the notebook `biolip.ipynb`
|
| 58 |
+
|
| 59 |
+
5. Final concatenation and filtering
|
| 60 |
+
|
| 61 |
+
Run the steps in the notebook `combine_dbs.ipynb`
|
bindingdb.ipynb
ADDED
|
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import dask.dataframe as dd"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 2,
|
| 16 |
+
"id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 3,
|
| 26 |
+
"id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"import tqdm.notebook"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": [
|
| 40 |
+
"for i in tqdm.notebook.tqdm(range(0,13)):\n",
|
| 41 |
+
" mycol = 'BindingDB Target Chain Sequence.{}'.format(i)\n",
|
| 42 |
+
" allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]\n",
|
| 43 |
+
" dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}\n",
|
| 44 |
+
" dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
|
| 45 |
+
" 'IC50 (nM)': 'object',\n",
|
| 46 |
+
" 'KEGG ID of Ligand': 'object',\n",
|
| 47 |
+
" 'Ki (nM)': 'object',\n",
|
| 48 |
+
" 'Kd (nM)': 'object',\n",
|
| 49 |
+
" 'EC50 (nM)': 'object',\n",
|
| 50 |
+
" 'koff (s-1)': 'object'})\n",
|
| 51 |
+
" ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',error_bad_lines=False,blocksize=16*1024*1024,\n",
|
| 52 |
+
" usecols=cols+allseq,\n",
|
| 53 |
+
" dtype=dtypes)\n",
|
| 54 |
+
" ddf = ddf.reset_index()\n",
|
| 55 |
+
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence.{}'.format(j): 'seq_{}'.format(j) for j in range(1,13)})\n",
|
| 56 |
+
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence': 'seq_0'})\n",
|
| 57 |
+
" ddf = ddf.drop(columns={'seq_{}'.format(j) for j in range(0,13) if i != j})\n",
|
| 58 |
+
" ddf[cols+['seq_{}'.format(i)]].to_parquet('bindingdb/parquet_data/target{}'.format(i),schema='infer')"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 68,
|
| 64 |
+
"id": "be79bbcf-0622-4d1e-8f08-a723a4167d8b",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"outputs": [],
|
| 67 |
+
"source": [
|
| 68 |
+
"ddfs = []\n",
|
| 69 |
+
"for i in range(0,13):\n",
|
| 70 |
+
" ddf = dd.read_parquet('bindingdb/parquet_data/target{}'.format(i))\n",
|
| 71 |
+
" ddf = ddf.rename(columns={'seq_{}'.format(i): 'seq'})\n",
|
| 72 |
+
" ddfs.append(ddf)"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 69,
|
| 78 |
+
"id": "35ca09cb-6264-4526-b504-0d29236a03c1",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"ddf = dd.concat(ddfs)"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": 70,
|
| 88 |
+
"id": "ba518a9a-0d15-47be-977b-e2dfe2511529",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [
|
| 91 |
+
{
|
| 92 |
+
"data": {
|
| 93 |
+
"text/html": [
|
| 94 |
+
"<div>\n",
|
| 95 |
+
"<style scoped>\n",
|
| 96 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 97 |
+
" vertical-align: middle;\n",
|
| 98 |
+
" }\n",
|
| 99 |
+
"\n",
|
| 100 |
+
" .dataframe tbody tr th {\n",
|
| 101 |
+
" vertical-align: top;\n",
|
| 102 |
+
" }\n",
|
| 103 |
+
"\n",
|
| 104 |
+
" .dataframe thead th {\n",
|
| 105 |
+
" text-align: right;\n",
|
| 106 |
+
" }\n",
|
| 107 |
+
"</style>\n",
|
| 108 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 109 |
+
" <thead>\n",
|
| 110 |
+
" <tr style=\"text-align: right;\">\n",
|
| 111 |
+
" <th></th>\n",
|
| 112 |
+
" <th>Ligand SMILES</th>\n",
|
| 113 |
+
" <th>IC50 (nM)</th>\n",
|
| 114 |
+
" <th>KEGG ID of Ligand</th>\n",
|
| 115 |
+
" <th>Ki (nM)</th>\n",
|
| 116 |
+
" <th>Kd (nM)</th>\n",
|
| 117 |
+
" <th>EC50 (nM)</th>\n",
|
| 118 |
+
" <th>seq</th>\n",
|
| 119 |
+
" </tr>\n",
|
| 120 |
+
" </thead>\n",
|
| 121 |
+
" <tbody>\n",
|
| 122 |
+
" <tr>\n",
|
| 123 |
+
" <th>0</th>\n",
|
| 124 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
| 125 |
+
" <td>None</td>\n",
|
| 126 |
+
" <td>None</td>\n",
|
| 127 |
+
" <td>0.24</td>\n",
|
| 128 |
+
" <td>None</td>\n",
|
| 129 |
+
" <td>None</td>\n",
|
| 130 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 131 |
+
" </tr>\n",
|
| 132 |
+
" <tr>\n",
|
| 133 |
+
" <th>1</th>\n",
|
| 134 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
| 135 |
+
" <td>None</td>\n",
|
| 136 |
+
" <td>None</td>\n",
|
| 137 |
+
" <td>0.25</td>\n",
|
| 138 |
+
" <td>None</td>\n",
|
| 139 |
+
" <td>None</td>\n",
|
| 140 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 141 |
+
" </tr>\n",
|
| 142 |
+
" <tr>\n",
|
| 143 |
+
" <th>2</th>\n",
|
| 144 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
| 145 |
+
" <td>None</td>\n",
|
| 146 |
+
" <td>None</td>\n",
|
| 147 |
+
" <td>0.41</td>\n",
|
| 148 |
+
" <td>None</td>\n",
|
| 149 |
+
" <td>None</td>\n",
|
| 150 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 151 |
+
" </tr>\n",
|
| 152 |
+
" <tr>\n",
|
| 153 |
+
" <th>3</th>\n",
|
| 154 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
| 155 |
+
" <td>None</td>\n",
|
| 156 |
+
" <td>None</td>\n",
|
| 157 |
+
" <td>0.8</td>\n",
|
| 158 |
+
" <td>None</td>\n",
|
| 159 |
+
" <td>None</td>\n",
|
| 160 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 161 |
+
" </tr>\n",
|
| 162 |
+
" <tr>\n",
|
| 163 |
+
" <th>4</th>\n",
|
| 164 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
| 165 |
+
" <td>None</td>\n",
|
| 166 |
+
" <td>None</td>\n",
|
| 167 |
+
" <td>0.99</td>\n",
|
| 168 |
+
" <td>None</td>\n",
|
| 169 |
+
" <td>None</td>\n",
|
| 170 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 171 |
+
" </tr>\n",
|
| 172 |
+
" </tbody>\n",
|
| 173 |
+
"</table>\n",
|
| 174 |
+
"</div>"
|
| 175 |
+
],
|
| 176 |
+
"text/plain": [
|
| 177 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
| 178 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
| 179 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
| 180 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
| 181 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
| 182 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
| 183 |
+
"\n",
|
| 184 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
| 185 |
+
"0 None 0.24 None None \n",
|
| 186 |
+
"1 None 0.25 None None \n",
|
| 187 |
+
"2 None 0.41 None None \n",
|
| 188 |
+
"3 None 0.8 None None \n",
|
| 189 |
+
"4 None 0.99 None None \n",
|
| 190 |
+
"\n",
|
| 191 |
+
" seq \n",
|
| 192 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 193 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 194 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 195 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 196 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
"execution_count": 70,
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"output_type": "execute_result"
|
| 202 |
+
}
|
| 203 |
+
],
|
| 204 |
+
"source": [
|
| 205 |
+
"ddf.head()"
|
| 206 |
+
]
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"cell_type": "code",
|
| 210 |
+
"execution_count": 71,
|
| 211 |
+
"id": "f504d7aa-dfc1-4346-a136-8814c4b5d979",
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"outputs": [],
|
| 214 |
+
"source": [
|
| 215 |
+
"ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "code",
|
| 220 |
+
"execution_count": 4,
|
| 221 |
+
"id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004",
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"ddf = dd.read_parquet('bindingdb/parquet_data/all_targets')"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "code",
|
| 230 |
+
"execution_count": 5,
|
| 231 |
+
"id": "b151868a-0cd6-405e-8401-f79918fb0b07",
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [
|
| 234 |
+
{
|
| 235 |
+
"data": {
|
| 236 |
+
"text/html": [
|
| 237 |
+
"<div><strong>Dask DataFrame Structure:</strong></div>\n",
|
| 238 |
+
"<div>\n",
|
| 239 |
+
"<style scoped>\n",
|
| 240 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 241 |
+
" vertical-align: middle;\n",
|
| 242 |
+
" }\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" .dataframe tbody tr th {\n",
|
| 245 |
+
" vertical-align: top;\n",
|
| 246 |
+
" }\n",
|
| 247 |
+
"\n",
|
| 248 |
+
" .dataframe thead th {\n",
|
| 249 |
+
" text-align: right;\n",
|
| 250 |
+
" }\n",
|
| 251 |
+
"</style>\n",
|
| 252 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 253 |
+
" <thead>\n",
|
| 254 |
+
" <tr style=\"text-align: right;\">\n",
|
| 255 |
+
" <th></th>\n",
|
| 256 |
+
" <th>Ligand SMILES</th>\n",
|
| 257 |
+
" <th>IC50 (nM)</th>\n",
|
| 258 |
+
" <th>KEGG ID of Ligand</th>\n",
|
| 259 |
+
" <th>Ki (nM)</th>\n",
|
| 260 |
+
" <th>Kd (nM)</th>\n",
|
| 261 |
+
" <th>EC50 (nM)</th>\n",
|
| 262 |
+
" <th>seq</th>\n",
|
| 263 |
+
" </tr>\n",
|
| 264 |
+
" <tr>\n",
|
| 265 |
+
" <th>npartitions=459</th>\n",
|
| 266 |
+
" <th></th>\n",
|
| 267 |
+
" <th></th>\n",
|
| 268 |
+
" <th></th>\n",
|
| 269 |
+
" <th></th>\n",
|
| 270 |
+
" <th></th>\n",
|
| 271 |
+
" <th></th>\n",
|
| 272 |
+
" <th></th>\n",
|
| 273 |
+
" </tr>\n",
|
| 274 |
+
" </thead>\n",
|
| 275 |
+
" <tbody>\n",
|
| 276 |
+
" <tr>\n",
|
| 277 |
+
" <th></th>\n",
|
| 278 |
+
" <td>object</td>\n",
|
| 279 |
+
" <td>object</td>\n",
|
| 280 |
+
" <td>object</td>\n",
|
| 281 |
+
" <td>object</td>\n",
|
| 282 |
+
" <td>object</td>\n",
|
| 283 |
+
" <td>object</td>\n",
|
| 284 |
+
" <td>object</td>\n",
|
| 285 |
+
" </tr>\n",
|
| 286 |
+
" <tr>\n",
|
| 287 |
+
" <th></th>\n",
|
| 288 |
+
" <td>...</td>\n",
|
| 289 |
+
" <td>...</td>\n",
|
| 290 |
+
" <td>...</td>\n",
|
| 291 |
+
" <td>...</td>\n",
|
| 292 |
+
" <td>...</td>\n",
|
| 293 |
+
" <td>...</td>\n",
|
| 294 |
+
" <td>...</td>\n",
|
| 295 |
+
" </tr>\n",
|
| 296 |
+
" <tr>\n",
|
| 297 |
+
" <th>...</th>\n",
|
| 298 |
+
" <td>...</td>\n",
|
| 299 |
+
" <td>...</td>\n",
|
| 300 |
+
" <td>...</td>\n",
|
| 301 |
+
" <td>...</td>\n",
|
| 302 |
+
" <td>...</td>\n",
|
| 303 |
+
" <td>...</td>\n",
|
| 304 |
+
" <td>...</td>\n",
|
| 305 |
+
" </tr>\n",
|
| 306 |
+
" <tr>\n",
|
| 307 |
+
" <th></th>\n",
|
| 308 |
+
" <td>...</td>\n",
|
| 309 |
+
" <td>...</td>\n",
|
| 310 |
+
" <td>...</td>\n",
|
| 311 |
+
" <td>...</td>\n",
|
| 312 |
+
" <td>...</td>\n",
|
| 313 |
+
" <td>...</td>\n",
|
| 314 |
+
" <td>...</td>\n",
|
| 315 |
+
" </tr>\n",
|
| 316 |
+
" <tr>\n",
|
| 317 |
+
" <th></th>\n",
|
| 318 |
+
" <td>...</td>\n",
|
| 319 |
+
" <td>...</td>\n",
|
| 320 |
+
" <td>...</td>\n",
|
| 321 |
+
" <td>...</td>\n",
|
| 322 |
+
" <td>...</td>\n",
|
| 323 |
+
" <td>...</td>\n",
|
| 324 |
+
" <td>...</td>\n",
|
| 325 |
+
" </tr>\n",
|
| 326 |
+
" </tbody>\n",
|
| 327 |
+
"</table>\n",
|
| 328 |
+
"</div>\n",
|
| 329 |
+
"<div>Dask Name: read-parquet, 459 tasks</div>"
|
| 330 |
+
],
|
| 331 |
+
"text/plain": [
|
| 332 |
+
"Dask DataFrame Structure:\n",
|
| 333 |
+
" Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n",
|
| 334 |
+
"npartitions=459 \n",
|
| 335 |
+
" object object object object object object object\n",
|
| 336 |
+
" ... ... ... ... ... ... ...\n",
|
| 337 |
+
"... ... ... ... ... ... ... ...\n",
|
| 338 |
+
" ... ... ... ... ... ... ...\n",
|
| 339 |
+
" ... ... ... ... ... ... ...\n",
|
| 340 |
+
"Dask Name: read-parquet, 459 tasks"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
"execution_count": 5,
|
| 344 |
+
"metadata": {},
|
| 345 |
+
"output_type": "execute_result"
|
| 346 |
+
}
|
| 347 |
+
],
|
| 348 |
+
"source": [
|
| 349 |
+
"ddf"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "code",
|
| 354 |
+
"execution_count": 6,
|
| 355 |
+
"id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"outputs": [],
|
| 358 |
+
"source": [
|
| 359 |
+
"ddf_nonnull = ddf[~ddf.seq.isnull()].copy()"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"cell_type": "code",
|
| 364 |
+
"execution_count": 7,
|
| 365 |
+
"id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
|
| 366 |
+
"metadata": {},
|
| 367 |
+
"outputs": [
|
| 368 |
+
{
|
| 369 |
+
"data": {
|
| 370 |
+
"text/html": [
|
| 371 |
+
"<div>\n",
|
| 372 |
+
"<style scoped>\n",
|
| 373 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 374 |
+
" vertical-align: middle;\n",
|
| 375 |
+
" }\n",
|
| 376 |
+
"\n",
|
| 377 |
+
" .dataframe tbody tr th {\n",
|
| 378 |
+
" vertical-align: top;\n",
|
| 379 |
+
" }\n",
|
| 380 |
+
"\n",
|
| 381 |
+
" .dataframe thead th {\n",
|
| 382 |
+
" text-align: right;\n",
|
| 383 |
+
" }\n",
|
| 384 |
+
"</style>\n",
|
| 385 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 386 |
+
" <thead>\n",
|
| 387 |
+
" <tr style=\"text-align: right;\">\n",
|
| 388 |
+
" <th></th>\n",
|
| 389 |
+
" <th>Ligand SMILES</th>\n",
|
| 390 |
+
" <th>IC50 (nM)</th>\n",
|
| 391 |
+
" <th>KEGG ID of Ligand</th>\n",
|
| 392 |
+
" <th>Ki (nM)</th>\n",
|
| 393 |
+
" <th>Kd (nM)</th>\n",
|
| 394 |
+
" <th>EC50 (nM)</th>\n",
|
| 395 |
+
" <th>seq</th>\n",
|
| 396 |
+
" </tr>\n",
|
| 397 |
+
" </thead>\n",
|
| 398 |
+
" <tbody>\n",
|
| 399 |
+
" <tr>\n",
|
| 400 |
+
" <th>4453</th>\n",
|
| 401 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c...</td>\n",
|
| 402 |
+
" <td>9.4</td>\n",
|
| 403 |
+
" <td>None</td>\n",
|
| 404 |
+
" <td>None</td>\n",
|
| 405 |
+
" <td>None</td>\n",
|
| 406 |
+
" <td>None</td>\n",
|
| 407 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 408 |
+
" </tr>\n",
|
| 409 |
+
" <tr>\n",
|
| 410 |
+
" <th>4454</th>\n",
|
| 411 |
+
" <td>CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc...</td>\n",
|
| 412 |
+
" <td>11</td>\n",
|
| 413 |
+
" <td>None</td>\n",
|
| 414 |
+
" <td>None</td>\n",
|
| 415 |
+
" <td>None</td>\n",
|
| 416 |
+
" <td>None</td>\n",
|
| 417 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 418 |
+
" </tr>\n",
|
| 419 |
+
" <tr>\n",
|
| 420 |
+
" <th>4455</th>\n",
|
| 421 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
| 422 |
+
" <td>355</td>\n",
|
| 423 |
+
" <td>None</td>\n",
|
| 424 |
+
" <td>None</td>\n",
|
| 425 |
+
" <td>None</td>\n",
|
| 426 |
+
" <td>None</td>\n",
|
| 427 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 428 |
+
" </tr>\n",
|
| 429 |
+
" <tr>\n",
|
| 430 |
+
" <th>4456</th>\n",
|
| 431 |
+
" <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
|
| 432 |
+
" <td>17</td>\n",
|
| 433 |
+
" <td>None</td>\n",
|
| 434 |
+
" <td>None</td>\n",
|
| 435 |
+
" <td>None</td>\n",
|
| 436 |
+
" <td>None</td>\n",
|
| 437 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 438 |
+
" </tr>\n",
|
| 439 |
+
" <tr>\n",
|
| 440 |
+
" <th>4457</th>\n",
|
| 441 |
+
" <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
| 442 |
+
" <td>76</td>\n",
|
| 443 |
+
" <td>None</td>\n",
|
| 444 |
+
" <td>None</td>\n",
|
| 445 |
+
" <td>None</td>\n",
|
| 446 |
+
" <td>None</td>\n",
|
| 447 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 448 |
+
" </tr>\n",
|
| 449 |
+
" </tbody>\n",
|
| 450 |
+
"</table>\n",
|
| 451 |
+
"</div>"
|
| 452 |
+
],
|
| 453 |
+
"text/plain": [
|
| 454 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
| 455 |
+
"4453 CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c... 9.4 \n",
|
| 456 |
+
"4454 CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc... 11 \n",
|
| 457 |
+
"4455 CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=... 355 \n",
|
| 458 |
+
"4456 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 17 \n",
|
| 459 |
+
"4457 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 76 \n",
|
| 460 |
+
"\n",
|
| 461 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
| 462 |
+
"4453 None None None None \n",
|
| 463 |
+
"4454 None None None None \n",
|
| 464 |
+
"4455 None None None None \n",
|
| 465 |
+
"4456 None None None None \n",
|
| 466 |
+
"4457 None None None None \n",
|
| 467 |
+
"\n",
|
| 468 |
+
" seq \n",
|
| 469 |
+
"4453 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 470 |
+
"4454 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 471 |
+
"4455 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 472 |
+
"4456 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 473 |
+
"4457 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... "
|
| 474 |
+
]
|
| 475 |
+
},
|
| 476 |
+
"execution_count": 7,
|
| 477 |
+
"metadata": {},
|
| 478 |
+
"output_type": "execute_result"
|
| 479 |
+
}
|
| 480 |
+
],
|
| 481 |
+
"source": [
|
| 482 |
+
"ddf_nonnull.tail()"
|
| 483 |
+
]
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"cell_type": "code",
|
| 487 |
+
"execution_count": 8,
|
| 488 |
+
"id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
|
| 489 |
+
"metadata": {},
|
| 490 |
+
"outputs": [],
|
| 491 |
+
"source": [
|
| 492 |
+
"from pint import UnitRegistry\n",
|
| 493 |
+
"import numpy as np\n",
|
| 494 |
+
"import re\n",
|
| 495 |
+
"ureg = UnitRegistry()\n",
|
| 496 |
+
"\n",
|
| 497 |
+
"def to_uM(affinities):\n",
|
| 498 |
+
" ic50, Ki, Kd, ec50 = affinities\n",
|
| 499 |
+
"\n",
|
| 500 |
+
" vals = []\n",
|
| 501 |
+
" try:\n",
|
| 502 |
+
" ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
|
| 503 |
+
" vals.append(ic50)\n",
|
| 504 |
+
" except:\n",
|
| 505 |
+
" pass\n",
|
| 506 |
+
"\n",
|
| 507 |
+
" try:\n",
|
| 508 |
+
" Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
|
| 509 |
+
" vals.append(Ki)\n",
|
| 510 |
+
" except:\n",
|
| 511 |
+
" pass\n",
|
| 512 |
+
"\n",
|
| 513 |
+
" try:\n",
|
| 514 |
+
" Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
|
| 515 |
+
" vals.append(Kd)\n",
|
| 516 |
+
" except:\n",
|
| 517 |
+
" pass\n",
|
| 518 |
+
"\n",
|
| 519 |
+
" try:\n",
|
| 520 |
+
" ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
|
| 521 |
+
" vals.append(ec50)\n",
|
| 522 |
+
" except:\n",
|
| 523 |
+
" pass\n",
|
| 524 |
+
"\n",
|
| 525 |
+
" if len(vals) > 0:\n",
|
| 526 |
+
" vals = np.array(vals)\n",
|
| 527 |
+
" return np.mean(vals[~np.isnan(vals)])\n",
|
| 528 |
+
" \n",
|
| 529 |
+
" return None"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"cell_type": "code",
|
| 534 |
+
"execution_count": 9,
|
| 535 |
+
"id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
|
| 536 |
+
"metadata": {},
|
| 537 |
+
"outputs": [],
|
| 538 |
+
"source": [
|
| 539 |
+
"df_nonnull = ddf_nonnull.compute()"
|
| 540 |
+
]
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"cell_type": "code",
|
| 544 |
+
"execution_count": 10,
|
| 545 |
+
"id": "f11834ef-2b8f-4123-816c-5e54ca92a07a",
|
| 546 |
+
"metadata": {},
|
| 547 |
+
"outputs": [
|
| 548 |
+
{
|
| 549 |
+
"name": "stdout",
|
| 550 |
+
"output_type": "stream",
|
| 551 |
+
"text": [
|
| 552 |
+
"Collecting pandarallel\n",
|
| 553 |
+
" Using cached pandarallel-1.5.2.tar.gz (16 kB)\n",
|
| 554 |
+
"Collecting dill\n",
|
| 555 |
+
" Using cached dill-0.3.3-py2.py3-none-any.whl (81 kB)\n",
|
| 556 |
+
"Building wheels for collected packages: pandarallel\n",
|
| 557 |
+
" Building wheel for pandarallel (setup.py) ... \u001b[?25ldone\n",
|
| 558 |
+
"\u001b[?25h Created wheel for pandarallel: filename=pandarallel-1.5.2-py3-none-any.whl size=18384 sha256=d611c0def59d5c3b807ccd787aeba685a821000f283d6082fce6b37d77b4d542\n",
|
| 559 |
+
" Stored in directory: /autofs/nccs-svm1_home1/glaser/.cache/pip/wheels/6e/10/a9/c46b278fe836832830eb22a6a781a8379262d9a82ae87009c1\n",
|
| 560 |
+
"Successfully built pandarallel\n",
|
| 561 |
+
"Installing collected packages: dill, pandarallel\n",
|
| 562 |
+
"Successfully installed dill-0.3.3 pandarallel-1.5.2\n"
|
| 563 |
+
]
|
| 564 |
+
}
|
| 565 |
+
],
|
| 566 |
+
"source": [
|
| 567 |
+
"!pip install pandarallel"
|
| 568 |
+
]
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"cell_type": "code",
|
| 572 |
+
"execution_count": 12,
|
| 573 |
+
"id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
|
| 574 |
+
"metadata": {},
|
| 575 |
+
"outputs": [
|
| 576 |
+
{
|
| 577 |
+
"name": "stdout",
|
| 578 |
+
"output_type": "stream",
|
| 579 |
+
"text": [
|
| 580 |
+
"INFO: Pandarallel will run on 32 workers.\n",
|
| 581 |
+
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
| 582 |
+
]
|
| 583 |
+
}
|
| 584 |
+
],
|
| 585 |
+
"source": [
|
| 586 |
+
"from pandarallel import pandarallel\n",
|
| 587 |
+
"pandarallel.initialize()\n"
|
| 588 |
+
]
|
| 589 |
+
},
|
| 590 |
+
{
|
| 591 |
+
"cell_type": "code",
|
| 592 |
+
"execution_count": 13,
|
| 593 |
+
"id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
|
| 594 |
+
"metadata": {},
|
| 595 |
+
"outputs": [],
|
| 596 |
+
"source": [
|
| 597 |
+
"df_affinity = df_nonnull.copy()\n",
|
| 598 |
+
"df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
|
| 599 |
+
]
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"cell_type": "code",
|
| 603 |
+
"execution_count": 15,
|
| 604 |
+
"id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
|
| 605 |
+
"metadata": {},
|
| 606 |
+
"outputs": [],
|
| 607 |
+
"source": [
|
| 608 |
+
"df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
|
| 609 |
+
]
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"cell_type": "code",
|
| 613 |
+
"execution_count": 18,
|
| 614 |
+
"id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
|
| 615 |
+
"metadata": {},
|
| 616 |
+
"outputs": [
|
| 617 |
+
{
|
| 618 |
+
"data": {
|
| 619 |
+
"text/html": [
|
| 620 |
+
"<div>\n",
|
| 621 |
+
"<style scoped>\n",
|
| 622 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 623 |
+
" vertical-align: middle;\n",
|
| 624 |
+
" }\n",
|
| 625 |
+
"\n",
|
| 626 |
+
" .dataframe tbody tr th {\n",
|
| 627 |
+
" vertical-align: top;\n",
|
| 628 |
+
" }\n",
|
| 629 |
+
"\n",
|
| 630 |
+
" .dataframe thead th {\n",
|
| 631 |
+
" text-align: right;\n",
|
| 632 |
+
" }\n",
|
| 633 |
+
"</style>\n",
|
| 634 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 635 |
+
" <thead>\n",
|
| 636 |
+
" <tr style=\"text-align: right;\">\n",
|
| 637 |
+
" <th></th>\n",
|
| 638 |
+
" <th>Ligand SMILES</th>\n",
|
| 639 |
+
" <th>IC50 (nM)</th>\n",
|
| 640 |
+
" <th>KEGG ID of Ligand</th>\n",
|
| 641 |
+
" <th>Ki (nM)</th>\n",
|
| 642 |
+
" <th>Kd (nM)</th>\n",
|
| 643 |
+
" <th>EC50 (nM)</th>\n",
|
| 644 |
+
" <th>seq</th>\n",
|
| 645 |
+
" <th>affinity_uM</th>\n",
|
| 646 |
+
" </tr>\n",
|
| 647 |
+
" </thead>\n",
|
| 648 |
+
" <tbody>\n",
|
| 649 |
+
" <tr>\n",
|
| 650 |
+
" <th>0</th>\n",
|
| 651 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
| 652 |
+
" <td>None</td>\n",
|
| 653 |
+
" <td>None</td>\n",
|
| 654 |
+
" <td>0.24</td>\n",
|
| 655 |
+
" <td>None</td>\n",
|
| 656 |
+
" <td>None</td>\n",
|
| 657 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 658 |
+
" <td>0.00024</td>\n",
|
| 659 |
+
" </tr>\n",
|
| 660 |
+
" <tr>\n",
|
| 661 |
+
" <th>1</th>\n",
|
| 662 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
| 663 |
+
" <td>None</td>\n",
|
| 664 |
+
" <td>None</td>\n",
|
| 665 |
+
" <td>0.25</td>\n",
|
| 666 |
+
" <td>None</td>\n",
|
| 667 |
+
" <td>None</td>\n",
|
| 668 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 669 |
+
" <td>0.00025</td>\n",
|
| 670 |
+
" </tr>\n",
|
| 671 |
+
" <tr>\n",
|
| 672 |
+
" <th>2</th>\n",
|
| 673 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
| 674 |
+
" <td>None</td>\n",
|
| 675 |
+
" <td>None</td>\n",
|
| 676 |
+
" <td>0.41</td>\n",
|
| 677 |
+
" <td>None</td>\n",
|
| 678 |
+
" <td>None</td>\n",
|
| 679 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 680 |
+
" <td>0.00041</td>\n",
|
| 681 |
+
" </tr>\n",
|
| 682 |
+
" <tr>\n",
|
| 683 |
+
" <th>3</th>\n",
|
| 684 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
| 685 |
+
" <td>None</td>\n",
|
| 686 |
+
" <td>None</td>\n",
|
| 687 |
+
" <td>0.8</td>\n",
|
| 688 |
+
" <td>None</td>\n",
|
| 689 |
+
" <td>None</td>\n",
|
| 690 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 691 |
+
" <td>0.00080</td>\n",
|
| 692 |
+
" </tr>\n",
|
| 693 |
+
" <tr>\n",
|
| 694 |
+
" <th>4</th>\n",
|
| 695 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
| 696 |
+
" <td>None</td>\n",
|
| 697 |
+
" <td>None</td>\n",
|
| 698 |
+
" <td>0.99</td>\n",
|
| 699 |
+
" <td>None</td>\n",
|
| 700 |
+
" <td>None</td>\n",
|
| 701 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 702 |
+
" <td>0.00099</td>\n",
|
| 703 |
+
" </tr>\n",
|
| 704 |
+
" </tbody>\n",
|
| 705 |
+
"</table>\n",
|
| 706 |
+
"</div>"
|
| 707 |
+
],
|
| 708 |
+
"text/plain": [
|
| 709 |
+
" Ligand SMILES IC50 (nM) \\\n",
|
| 710 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
|
| 711 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
|
| 712 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
|
| 713 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
|
| 714 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
|
| 715 |
+
"\n",
|
| 716 |
+
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
|
| 717 |
+
"0 None 0.24 None None \n",
|
| 718 |
+
"1 None 0.25 None None \n",
|
| 719 |
+
"2 None 0.41 None None \n",
|
| 720 |
+
"3 None 0.8 None None \n",
|
| 721 |
+
"4 None 0.99 None None \n",
|
| 722 |
+
"\n",
|
| 723 |
+
" seq affinity_uM \n",
|
| 724 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
|
| 725 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
|
| 726 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
|
| 727 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
|
| 728 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 "
|
| 729 |
+
]
|
| 730 |
+
},
|
| 731 |
+
"execution_count": 18,
|
| 732 |
+
"metadata": {},
|
| 733 |
+
"output_type": "execute_result"
|
| 734 |
+
}
|
| 735 |
+
],
|
| 736 |
+
"source": [
|
| 737 |
+
"df_affinity.head()"
|
| 738 |
+
]
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"cell_type": "code",
|
| 742 |
+
"execution_count": 17,
|
| 743 |
+
"id": "603fd298-0aa6-4097-b298-c55db013548c",
|
| 744 |
+
"metadata": {},
|
| 745 |
+
"outputs": [
|
| 746 |
+
{
|
| 747 |
+
"data": {
|
| 748 |
+
"text/plain": [
|
| 749 |
+
"2391969"
|
| 750 |
+
]
|
| 751 |
+
},
|
| 752 |
+
"execution_count": 17,
|
| 753 |
+
"metadata": {},
|
| 754 |
+
"output_type": "execute_result"
|
| 755 |
+
}
|
| 756 |
+
],
|
| 757 |
+
"source": [
|
| 758 |
+
"len(df_affinity)"
|
| 759 |
+
]
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"cell_type": "code",
|
| 763 |
+
"execution_count": null,
|
| 764 |
+
"id": "c6ea5a79-facf-4a50-9d7c-2e1864ebad3d",
|
| 765 |
+
"metadata": {},
|
| 766 |
+
"outputs": [],
|
| 767 |
+
"source": []
|
| 768 |
+
}
|
| 769 |
+
],
|
| 770 |
+
"metadata": {
|
| 771 |
+
"kernelspec": {
|
| 772 |
+
"display_name": "Python 3",
|
| 773 |
+
"language": "python",
|
| 774 |
+
"name": "python3"
|
| 775 |
+
},
|
| 776 |
+
"language_info": {
|
| 777 |
+
"codemirror_mode": {
|
| 778 |
+
"name": "ipython",
|
| 779 |
+
"version": 3
|
| 780 |
+
},
|
| 781 |
+
"file_extension": ".py",
|
| 782 |
+
"mimetype": "text/x-python",
|
| 783 |
+
"name": "python",
|
| 784 |
+
"nbconvert_exporter": "python",
|
| 785 |
+
"pygments_lexer": "ipython3",
|
| 786 |
+
"version": "3.9.4"
|
| 787 |
+
}
|
| 788 |
+
},
|
| 789 |
+
"nbformat": 4,
|
| 790 |
+
"nbformat_minor": 5
|
| 791 |
+
}
|
biolip.ipynb
ADDED
|
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "ee43bf48-5491-4dc4-aa09-cb4a0f460f97",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from openbabel import pybel\n",
|
| 11 |
+
"from Bio.PDB import * \n"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 2,
|
| 17 |
+
"id": "26bc18a2-a6eb-49d3-be80-876ddc7dd8e1",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"import pandas as pd"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 3,
|
| 27 |
+
"id": "3b59cfb4-c42a-425d-9653-44f07f9e864e",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])\n",
|
| 32 |
+
"df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',\n",
|
| 33 |
+
" 13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',\n",
|
| 34 |
+
" 19: 'seq'})"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": 4,
|
| 40 |
+
"id": "01123edd-2b98-4fcc-a2e9-28213b9bed82",
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"base = 'biolip/data/ligand_nr/'\n",
|
| 45 |
+
"df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": 5,
|
| 51 |
+
"id": "bd8671da-66ad-40ad-b221-e33228be65f4",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"df_complex = pd.read_parquet('data/biolip_complex.parquet')"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": 97,
|
| 61 |
+
"id": "08b04d75-c01e-4b26-ae2d-622efae3bd1f",
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"outputs": [],
|
| 64 |
+
"source": [
|
| 65 |
+
"df_affinity = df_complex[~df_complex['affinity_lit'].isnull() | ~df_complex['affinity_moad'].isnull() \n",
|
| 66 |
+
" | ~df_complex['affinity_pdbbind-cn'].isnull() | ~df_complex['affinity_bindingdb'].isnull()].copy()"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 98,
|
| 72 |
+
"id": "97af5533-10fe-4419-a998-ed80b7d26690",
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"source": [
|
| 76 |
+
"from pint import UnitRegistry\n",
|
| 77 |
+
"import numpy as np\n",
|
| 78 |
+
"import re\n",
|
| 79 |
+
"ureg = UnitRegistry()\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"def to_uM(affinities):\n",
|
| 82 |
+
" lit, moad, pdbbind, bindingdb = affinities\n",
|
| 83 |
+
"\n",
|
| 84 |
+
" vals = []\n",
|
| 85 |
+
" try:\n",
|
| 86 |
+
" lit = re.split('[=~<>]',str(lit))[1].split(' ')[0]\n",
|
| 87 |
+
" lit = ureg(lit).m_as(ureg.uM)\n",
|
| 88 |
+
" vals.append(lit)\n",
|
| 89 |
+
" except:\n",
|
| 90 |
+
" pass\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" try:\n",
|
| 93 |
+
" moad = re.split('[=~<>]',str(moad))[1].split(' ')[0]\n",
|
| 94 |
+
" moad = ureg(moad).m_as(ureg.uM)\n",
|
| 95 |
+
" vals.append(moad)\n",
|
| 96 |
+
" except:\n",
|
| 97 |
+
" pass\n",
|
| 98 |
+
"\n",
|
| 99 |
+
" try:\n",
|
| 100 |
+
" pdbbind = re.split('[=~<>]',str(pdbbind))[1].split(' ')[0]\n",
|
| 101 |
+
" pdbbind = ureg(bindingdb).m_as(ureg.uM)\n",
|
| 102 |
+
" vals.append(pdbbind)\n",
|
| 103 |
+
" except:\n",
|
| 104 |
+
" pass\n",
|
| 105 |
+
"\n",
|
| 106 |
+
" try:\n",
|
| 107 |
+
" bindingdb = re.split('[=~<>]',str(bindingdb))[1].split(' ')[0]\n",
|
| 108 |
+
" bindingdb = ureg(bindingdb).m_as(ureg.uM)\n",
|
| 109 |
+
" vals.append(bindingdb)\n",
|
| 110 |
+
" except:\n",
|
| 111 |
+
" pass\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" if len(vals) > 0:\n",
|
| 114 |
+
" vals = np.array(vals)\n",
|
| 115 |
+
" return np.mean(vals[~np.isnan(vals)])\n",
|
| 116 |
+
" \n",
|
| 117 |
+
" return None"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": 99,
|
| 123 |
+
"id": "e21154a9-d3a0-4aa3-986f-cfeebc280da6",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"df_affinity['affinity_uM'] = df_affinity[['affinity_lit','affinity_moad','affinity_pdbbind-cn','affinity_bindingdb']].apply(to_uM,axis=1)"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": 101,
|
| 133 |
+
"id": "0fc94de0-823d-4f4f-9904-1c4d1e722c2e",
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [
|
| 136 |
+
{
|
| 137 |
+
"data": {
|
| 138 |
+
"text/html": [
|
| 139 |
+
"<div>\n",
|
| 140 |
+
"<style scoped>\n",
|
| 141 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 142 |
+
" vertical-align: middle;\n",
|
| 143 |
+
" }\n",
|
| 144 |
+
"\n",
|
| 145 |
+
" .dataframe tbody tr th {\n",
|
| 146 |
+
" vertical-align: top;\n",
|
| 147 |
+
" }\n",
|
| 148 |
+
"\n",
|
| 149 |
+
" .dataframe thead th {\n",
|
| 150 |
+
" text-align: right;\n",
|
| 151 |
+
" }\n",
|
| 152 |
+
"</style>\n",
|
| 153 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 154 |
+
" <thead>\n",
|
| 155 |
+
" <tr style=\"text-align: right;\">\n",
|
| 156 |
+
" <th></th>\n",
|
| 157 |
+
" <th>pdb</th>\n",
|
| 158 |
+
" <th>chain</th>\n",
|
| 159 |
+
" <th>l_id</th>\n",
|
| 160 |
+
" <th>l_chain</th>\n",
|
| 161 |
+
" <th>affinity_lit</th>\n",
|
| 162 |
+
" <th>affinity_moad</th>\n",
|
| 163 |
+
" <th>affinity_pdbbind-cn</th>\n",
|
| 164 |
+
" <th>affinity_bindingdb</th>\n",
|
| 165 |
+
" <th>seq</th>\n",
|
| 166 |
+
" <th>ligand_fn</th>\n",
|
| 167 |
+
" <th>smiles</th>\n",
|
| 168 |
+
" <th>affinity_uM</th>\n",
|
| 169 |
+
" </tr>\n",
|
| 170 |
+
" </thead>\n",
|
| 171 |
+
" <tbody>\n",
|
| 172 |
+
" <tr>\n",
|
| 173 |
+
" <th>38</th>\n",
|
| 174 |
+
" <td>11gs</td>\n",
|
| 175 |
+
" <td>EAA</td>\n",
|
| 176 |
+
" <td>A</td>\n",
|
| 177 |
+
" <td>1</td>\n",
|
| 178 |
+
" <td>None</td>\n",
|
| 179 |
+
" <td>ki=1.5uM (GTT EAA)</td>\n",
|
| 180 |
+
" <td>Ki=1.5uM (GTT-EAA)</td>\n",
|
| 181 |
+
" <td>None</td>\n",
|
| 182 |
+
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
| 183 |
+
" <td>biolip/data/ligand_nr/11gs_EAA_A_1.pdb</td>\n",
|
| 184 |
+
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
| 185 |
+
" <td>1.500</td>\n",
|
| 186 |
+
" </tr>\n",
|
| 187 |
+
" <tr>\n",
|
| 188 |
+
" <th>43</th>\n",
|
| 189 |
+
" <td>13gs</td>\n",
|
| 190 |
+
" <td>SAS</td>\n",
|
| 191 |
+
" <td>A</td>\n",
|
| 192 |
+
" <td>1</td>\n",
|
| 193 |
+
" <td>None</td>\n",
|
| 194 |
+
" <td>ki=24uM (SAS)</td>\n",
|
| 195 |
+
" <td>Ki=24uM (SAS)</td>\n",
|
| 196 |
+
" <td>None</td>\n",
|
| 197 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
| 198 |
+
" <td>biolip/data/ligand_nr/13gs_SAS_A_1.pdb</td>\n",
|
| 199 |
+
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
| 200 |
+
" <td>24.000</td>\n",
|
| 201 |
+
" </tr>\n",
|
| 202 |
+
" <tr>\n",
|
| 203 |
+
" <th>54</th>\n",
|
| 204 |
+
" <td>17gs</td>\n",
|
| 205 |
+
" <td>GTX</td>\n",
|
| 206 |
+
" <td>A</td>\n",
|
| 207 |
+
" <td>1</td>\n",
|
| 208 |
+
" <td>None</td>\n",
|
| 209 |
+
" <td>None</td>\n",
|
| 210 |
+
" <td>None</td>\n",
|
| 211 |
+
" <td>Kd=10000nM</td>\n",
|
| 212 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
| 213 |
+
" <td>biolip/data/ligand_nr/17gs_GTX_A_1.pdb</td>\n",
|
| 214 |
+
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
| 215 |
+
" <td>10.000</td>\n",
|
| 216 |
+
" </tr>\n",
|
| 217 |
+
" <tr>\n",
|
| 218 |
+
" <th>55</th>\n",
|
| 219 |
+
" <td>181l</td>\n",
|
| 220 |
+
" <td>BNZ</td>\n",
|
| 221 |
+
" <td>A</td>\n",
|
| 222 |
+
" <td>1</td>\n",
|
| 223 |
+
" <td>None</td>\n",
|
| 224 |
+
" <td>Ka=5700M^-1 (BNZ)</td>\n",
|
| 225 |
+
" <td>None</td>\n",
|
| 226 |
+
" <td>Kd=175000nM</td>\n",
|
| 227 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
| 228 |
+
" <td>biolip/data/ligand_nr/181l_BNZ_A_1.pdb</td>\n",
|
| 229 |
+
" <td>c1ccccc1</td>\n",
|
| 230 |
+
" <td>175.000</td>\n",
|
| 231 |
+
" </tr>\n",
|
| 232 |
+
" <tr>\n",
|
| 233 |
+
" <th>56</th>\n",
|
| 234 |
+
" <td>182l</td>\n",
|
| 235 |
+
" <td>BZF</td>\n",
|
| 236 |
+
" <td>A</td>\n",
|
| 237 |
+
" <td>1</td>\n",
|
| 238 |
+
" <td>None</td>\n",
|
| 239 |
+
" <td>Ka=8900M^-1 (BZF)</td>\n",
|
| 240 |
+
" <td>None</td>\n",
|
| 241 |
+
" <td>Kd=112000nM</td>\n",
|
| 242 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
| 243 |
+
" <td>biolip/data/ligand_nr/182l_BZF_A_1.pdb</td>\n",
|
| 244 |
+
" <td>c1ccc2c(c1)occ2</td>\n",
|
| 245 |
+
" <td>112.000</td>\n",
|
| 246 |
+
" </tr>\n",
|
| 247 |
+
" <tr>\n",
|
| 248 |
+
" <th>...</th>\n",
|
| 249 |
+
" <td>...</td>\n",
|
| 250 |
+
" <td>...</td>\n",
|
| 251 |
+
" <td>...</td>\n",
|
| 252 |
+
" <td>...</td>\n",
|
| 253 |
+
" <td>...</td>\n",
|
| 254 |
+
" <td>...</td>\n",
|
| 255 |
+
" <td>...</td>\n",
|
| 256 |
+
" <td>...</td>\n",
|
| 257 |
+
" <td>...</td>\n",
|
| 258 |
+
" <td>...</td>\n",
|
| 259 |
+
" <td>...</td>\n",
|
| 260 |
+
" <td>...</td>\n",
|
| 261 |
+
" </tr>\n",
|
| 262 |
+
" <tr>\n",
|
| 263 |
+
" <th>105087</th>\n",
|
| 264 |
+
" <td>8kme</td>\n",
|
| 265 |
+
" <td>III</td>\n",
|
| 266 |
+
" <td>3</td>\n",
|
| 267 |
+
" <td>1</td>\n",
|
| 268 |
+
" <td>None</td>\n",
|
| 269 |
+
" <td>ki=8uM (BNN CUC TRG LEU PRO)</td>\n",
|
| 270 |
+
" <td>None</td>\n",
|
| 271 |
+
" <td>None</td>\n",
|
| 272 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 273 |
+
" <td>biolip/data/ligand_nr/8kme_III_3_1.pdb</td>\n",
|
| 274 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
| 275 |
+
" <td>8.000</td>\n",
|
| 276 |
+
" </tr>\n",
|
| 277 |
+
" <tr>\n",
|
| 278 |
+
" <th>105088</th>\n",
|
| 279 |
+
" <td>8kme</td>\n",
|
| 280 |
+
" <td>III</td>\n",
|
| 281 |
+
" <td>4</td>\n",
|
| 282 |
+
" <td>1</td>\n",
|
| 283 |
+
" <td>None</td>\n",
|
| 284 |
+
" <td>ki=8uM (BNN CUC TRG LEU PRO)</td>\n",
|
| 285 |
+
" <td>None</td>\n",
|
| 286 |
+
" <td>None</td>\n",
|
| 287 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 288 |
+
" <td>biolip/data/ligand_nr/8kme_III_4_1.pdb</td>\n",
|
| 289 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
| 290 |
+
" <td>8.000</td>\n",
|
| 291 |
+
" </tr>\n",
|
| 292 |
+
" <tr>\n",
|
| 293 |
+
" <th>105106</th>\n",
|
| 294 |
+
" <td>966c</td>\n",
|
| 295 |
+
" <td>RS2</td>\n",
|
| 296 |
+
" <td>A</td>\n",
|
| 297 |
+
" <td>1</td>\n",
|
| 298 |
+
" <td>None</td>\n",
|
| 299 |
+
" <td>ki=23nM (RS2)</td>\n",
|
| 300 |
+
" <td>Ki=23nM (RS2)</td>\n",
|
| 301 |
+
" <td>None</td>\n",
|
| 302 |
+
" <td>RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS...</td>\n",
|
| 303 |
+
" <td>biolip/data/ligand_nr/966c_RS2_A_1.pdb</td>\n",
|
| 304 |
+
" <td>ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1</td>\n",
|
| 305 |
+
" <td>0.023</td>\n",
|
| 306 |
+
" </tr>\n",
|
| 307 |
+
" <tr>\n",
|
| 308 |
+
" <th>105124</th>\n",
|
| 309 |
+
" <td>9icd</td>\n",
|
| 310 |
+
" <td>NAP</td>\n",
|
| 311 |
+
" <td>A</td>\n",
|
| 312 |
+
" <td>1</td>\n",
|
| 313 |
+
" <td>None</td>\n",
|
| 314 |
+
" <td>kd=125uM (NAP)</td>\n",
|
| 315 |
+
" <td>Kd=125uM (NAP)</td>\n",
|
| 316 |
+
" <td>None</td>\n",
|
| 317 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
| 318 |
+
" <td>biolip/data/ligand_nr/9icd_NAP_A_1.pdb</td>\n",
|
| 319 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
| 320 |
+
" <td>125.000</td>\n",
|
| 321 |
+
" </tr>\n",
|
| 322 |
+
" <tr>\n",
|
| 323 |
+
" <th>105138</th>\n",
|
| 324 |
+
" <td>9nse</td>\n",
|
| 325 |
+
" <td>ISU</td>\n",
|
| 326 |
+
" <td>B</td>\n",
|
| 327 |
+
" <td>2</td>\n",
|
| 328 |
+
" <td>None</td>\n",
|
| 329 |
+
" <td>Ki=0.039uM (ISU)</td>\n",
|
| 330 |
+
" <td>None</td>\n",
|
| 331 |
+
" <td>None</td>\n",
|
| 332 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
| 333 |
+
" <td>biolip/data/ligand_nr/9nse_ISU_B_2.pdb</td>\n",
|
| 334 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
| 335 |
+
" <td>0.039</td>\n",
|
| 336 |
+
" </tr>\n",
|
| 337 |
+
" </tbody>\n",
|
| 338 |
+
"</table>\n",
|
| 339 |
+
"<p>7588 rows × 12 columns</p>\n",
|
| 340 |
+
"</div>"
|
| 341 |
+
],
|
| 342 |
+
"text/plain": [
|
| 343 |
+
" pdb chain l_id l_chain affinity_lit affinity_moad \\\n",
|
| 344 |
+
"38 11gs EAA A 1 None ki=1.5uM (GTT EAA) \n",
|
| 345 |
+
"43 13gs SAS A 1 None ki=24uM (SAS) \n",
|
| 346 |
+
"54 17gs GTX A 1 None None \n",
|
| 347 |
+
"55 181l BNZ A 1 None Ka=5700M^-1 (BNZ) \n",
|
| 348 |
+
"56 182l BZF A 1 None Ka=8900M^-1 (BZF) \n",
|
| 349 |
+
"... ... ... ... ... ... ... \n",
|
| 350 |
+
"105087 8kme III 3 1 None ki=8uM (BNN CUC TRG LEU PRO) \n",
|
| 351 |
+
"105088 8kme III 4 1 None ki=8uM (BNN CUC TRG LEU PRO) \n",
|
| 352 |
+
"105106 966c RS2 A 1 None ki=23nM (RS2) \n",
|
| 353 |
+
"105124 9icd NAP A 1 None kd=125uM (NAP) \n",
|
| 354 |
+
"105138 9nse ISU B 2 None Ki=0.039uM (ISU) \n",
|
| 355 |
+
"\n",
|
| 356 |
+
" affinity_pdbbind-cn affinity_bindingdb \\\n",
|
| 357 |
+
"38 Ki=1.5uM (GTT-EAA) None \n",
|
| 358 |
+
"43 Ki=24uM (SAS) None \n",
|
| 359 |
+
"54 None Kd=10000nM \n",
|
| 360 |
+
"55 None Kd=175000nM \n",
|
| 361 |
+
"56 None Kd=112000nM \n",
|
| 362 |
+
"... ... ... \n",
|
| 363 |
+
"105087 None None \n",
|
| 364 |
+
"105088 None None \n",
|
| 365 |
+
"105106 Ki=23nM (RS2) None \n",
|
| 366 |
+
"105124 Kd=125uM (NAP) None \n",
|
| 367 |
+
"105138 None None \n",
|
| 368 |
+
"\n",
|
| 369 |
+
" seq \\\n",
|
| 370 |
+
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
| 371 |
+
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
| 372 |
+
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
| 373 |
+
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
| 374 |
+
"56 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
| 375 |
+
"... ... \n",
|
| 376 |
+
"105087 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 377 |
+
"105088 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 378 |
+
"105106 RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS... \n",
|
| 379 |
+
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
| 380 |
+
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
| 381 |
+
"\n",
|
| 382 |
+
" ligand_fn \\\n",
|
| 383 |
+
"38 biolip/data/ligand_nr/11gs_EAA_A_1.pdb \n",
|
| 384 |
+
"43 biolip/data/ligand_nr/13gs_SAS_A_1.pdb \n",
|
| 385 |
+
"54 biolip/data/ligand_nr/17gs_GTX_A_1.pdb \n",
|
| 386 |
+
"55 biolip/data/ligand_nr/181l_BNZ_A_1.pdb \n",
|
| 387 |
+
"56 biolip/data/ligand_nr/182l_BZF_A_1.pdb \n",
|
| 388 |
+
"... ... \n",
|
| 389 |
+
"105087 biolip/data/ligand_nr/8kme_III_3_1.pdb \n",
|
| 390 |
+
"105088 biolip/data/ligand_nr/8kme_III_4_1.pdb \n",
|
| 391 |
+
"105106 biolip/data/ligand_nr/966c_RS2_A_1.pdb \n",
|
| 392 |
+
"105124 biolip/data/ligand_nr/9icd_NAP_A_1.pdb \n",
|
| 393 |
+
"105138 biolip/data/ligand_nr/9nse_ISU_B_2.pdb \n",
|
| 394 |
+
"\n",
|
| 395 |
+
" smiles affinity_uM \n",
|
| 396 |
+
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.500 \n",
|
| 397 |
+
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.000 \n",
|
| 398 |
+
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.000 \n",
|
| 399 |
+
"55 c1ccccc1 175.000 \n",
|
| 400 |
+
"56 c1ccc2c(c1)occ2 112.000 \n",
|
| 401 |
+
"... ... ... \n",
|
| 402 |
+
"105087 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
| 403 |
+
"105088 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
| 404 |
+
"105106 ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1 0.023 \n",
|
| 405 |
+
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
| 406 |
+
"105138 CC[Se]C(=N)N 0.039 \n",
|
| 407 |
+
"\n",
|
| 408 |
+
"[7588 rows x 12 columns]"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
"execution_count": 101,
|
| 412 |
+
"metadata": {},
|
| 413 |
+
"output_type": "execute_result"
|
| 414 |
+
}
|
| 415 |
+
],
|
| 416 |
+
"source": [
|
| 417 |
+
"df_affinity[~df_affinity['affinity_uM'].isnull()]"
|
| 418 |
+
]
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"cell_type": "code",
|
| 422 |
+
"execution_count": 102,
|
| 423 |
+
"id": "2b483565-3c99-4c42-b2a9-f7b97cd8e80e",
|
| 424 |
+
"metadata": {},
|
| 425 |
+
"outputs": [],
|
| 426 |
+
"source": [
|
| 427 |
+
"df_affinity.to_parquet('data/biolip.parquet')"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"cell_type": "code",
|
| 432 |
+
"execution_count": null,
|
| 433 |
+
"id": "68dd5e45-b31d-492d-a47e-39072b67fa72",
|
| 434 |
+
"metadata": {},
|
| 435 |
+
"outputs": [],
|
| 436 |
+
"source": []
|
| 437 |
+
}
|
| 438 |
+
],
|
| 439 |
+
"metadata": {
|
| 440 |
+
"kernelspec": {
|
| 441 |
+
"display_name": "Python 3",
|
| 442 |
+
"language": "python",
|
| 443 |
+
"name": "python3"
|
| 444 |
+
},
|
| 445 |
+
"language_info": {
|
| 446 |
+
"codemirror_mode": {
|
| 447 |
+
"name": "ipython",
|
| 448 |
+
"version": 3
|
| 449 |
+
},
|
| 450 |
+
"file_extension": ".py",
|
| 451 |
+
"mimetype": "text/x-python",
|
| 452 |
+
"name": "python",
|
| 453 |
+
"nbconvert_exporter": "python",
|
| 454 |
+
"pygments_lexer": "ipython3",
|
| 455 |
+
"version": "3.9.4"
|
| 456 |
+
}
|
| 457 |
+
},
|
| 458 |
+
"nbformat": 4,
|
| 459 |
+
"nbformat_minor": 5
|
| 460 |
+
}
|
biolip.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mpi4py import MPI
|
| 2 |
+
from mpi4py.futures import MPICommExecutor
|
| 3 |
+
|
| 4 |
+
from openbabel import pybel
|
| 5 |
+
from Bio.PDB import *
|
| 6 |
+
parser = PDBParser()
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
molecular_weight_cutoff = 2500
|
| 10 |
+
def parse_ligand(fn):
|
| 11 |
+
print(fn)
|
| 12 |
+
try:
|
| 13 |
+
struct = parser.get_structure('lig',fn)
|
| 14 |
+
if len(list(struct.get_atoms())) > molecular_weight_cutoff:
|
| 15 |
+
raise ValueError
|
| 16 |
+
mol = next(pybel.readfile('pdb',fn))
|
| 17 |
+
if mol.molwt > molecular_weight_cutoff:
|
| 18 |
+
raise ValueError
|
| 19 |
+
smi = mol.write('can').split('\t')[0]
|
| 20 |
+
return smi
|
| 21 |
+
except:
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
if __name__ == '__main__':
|
| 26 |
+
import glob
|
| 27 |
+
|
| 28 |
+
comm = MPI.COMM_WORLD
|
| 29 |
+
with MPICommExecutor(comm, root=0) as executor:
|
| 30 |
+
if executor is not None:
|
| 31 |
+
import pandas as pd
|
| 32 |
+
|
| 33 |
+
df = pd.read_table('biolip/data/BioLiP_2013-03-6_nr.txt',sep='\t',header=None,usecols=[0,4,5,6,13,14,15,16,19])
|
| 34 |
+
df = df.rename(columns={0:'pdb',4:'chain',5:'l_id',6:'l_chain',
|
| 35 |
+
13: 'affinity_lit',14: 'affinity_moad',15: 'affinity_pdbbind-cn',16:'affinity_bindingdb',
|
| 36 |
+
19: 'seq'})
|
| 37 |
+
base = 'biolip/data/ligand_nr/'
|
| 38 |
+
df['ligand_fn'] = base + df['pdb']+'_'+df['chain']+'_'+df['l_id'].astype(str)+'_'+df['l_chain'].astype(str)+'.pdb'
|
| 39 |
+
smiles = list(executor.map(parse_ligand, df['ligand_fn']))
|
| 40 |
+
df['smiles'] = smiles
|
| 41 |
+
df.to_parquet('data/biolip_complex.parquet')
|
combine_dbs.ipynb
ADDED
|
@@ -0,0 +1,1477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pandas as pd"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 84,
|
| 16 |
+
"id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
|
| 21 |
+
"df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 85,
|
| 27 |
+
"id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"data": {
|
| 32 |
+
"text/html": [
|
| 33 |
+
"<div>\n",
|
| 34 |
+
"<style scoped>\n",
|
| 35 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 36 |
+
" vertical-align: middle;\n",
|
| 37 |
+
" }\n",
|
| 38 |
+
"\n",
|
| 39 |
+
" .dataframe tbody tr th {\n",
|
| 40 |
+
" vertical-align: top;\n",
|
| 41 |
+
" }\n",
|
| 42 |
+
"\n",
|
| 43 |
+
" .dataframe thead th {\n",
|
| 44 |
+
" text-align: right;\n",
|
| 45 |
+
" }\n",
|
| 46 |
+
"</style>\n",
|
| 47 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 48 |
+
" <thead>\n",
|
| 49 |
+
" <tr style=\"text-align: right;\">\n",
|
| 50 |
+
" <th></th>\n",
|
| 51 |
+
" <th>seq</th>\n",
|
| 52 |
+
" <th>smiles</th>\n",
|
| 53 |
+
" <th>affinity_uM</th>\n",
|
| 54 |
+
" </tr>\n",
|
| 55 |
+
" </thead>\n",
|
| 56 |
+
" <tbody>\n",
|
| 57 |
+
" <tr>\n",
|
| 58 |
+
" <th>0</th>\n",
|
| 59 |
+
" <td>MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE...</td>\n",
|
| 60 |
+
" <td>CCCCCCCCCCCCCCCCCCC[C-](=O)=O</td>\n",
|
| 61 |
+
" <td>0.026</td>\n",
|
| 62 |
+
" </tr>\n",
|
| 63 |
+
" <tr>\n",
|
| 64 |
+
" <th>1</th>\n",
|
| 65 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
| 66 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
| 67 |
+
" <td>500.000</td>\n",
|
| 68 |
+
" </tr>\n",
|
| 69 |
+
" <tr>\n",
|
| 70 |
+
" <th>2</th>\n",
|
| 71 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
| 72 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
| 73 |
+
" <td>0.023</td>\n",
|
| 74 |
+
" </tr>\n",
|
| 75 |
+
" <tr>\n",
|
| 76 |
+
" <th>3</th>\n",
|
| 77 |
+
" <td>AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM...</td>\n",
|
| 78 |
+
" <td>OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)[C-](=O)=O)NC...</td>\n",
|
| 79 |
+
" <td>6.430</td>\n",
|
| 80 |
+
" </tr>\n",
|
| 81 |
+
" <tr>\n",
|
| 82 |
+
" <th>4</th>\n",
|
| 83 |
+
" <td>GSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGA...</td>\n",
|
| 84 |
+
" <td>O=[C-](=O)[C@@H](NC1=NC(C)(C)Cc2c1cccc2)Cc1ccccc1</td>\n",
|
| 85 |
+
" <td>27.200</td>\n",
|
| 86 |
+
" </tr>\n",
|
| 87 |
+
" </tbody>\n",
|
| 88 |
+
"</table>\n",
|
| 89 |
+
"</div>"
|
| 90 |
+
],
|
| 91 |
+
"text/plain": [
|
| 92 |
+
" seq \\\n",
|
| 93 |
+
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
|
| 94 |
+
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
| 95 |
+
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
| 96 |
+
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
|
| 97 |
+
"4 GSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGA... \n",
|
| 98 |
+
"\n",
|
| 99 |
+
" smiles affinity_uM \n",
|
| 100 |
+
"0 CCCCCCCCCCCCCCCCCCC[C-](=O)=O 0.026 \n",
|
| 101 |
+
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
| 102 |
+
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
| 103 |
+
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)[C-](=O)=O)NC... 6.430 \n",
|
| 104 |
+
"4 O=[C-](=O)[C@@H](NC1=NC(C)(C)Cc2c1cccc2)Cc1ccccc1 27.200 "
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"execution_count": 85,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"output_type": "execute_result"
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"source": [
|
| 113 |
+
"df_pdbbind.head()"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 119,
|
| 119 |
+
"id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"from rdkit import Chem\n",
|
| 124 |
+
"from rdkit.Chem import MACCSkeys\n",
|
| 125 |
+
"import numpy as np\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"def get_maccs(smi):\n",
|
| 128 |
+
" try:\n",
|
| 129 |
+
" mol = Chem.MolFromSmiles(smi)\n",
|
| 130 |
+
" arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
|
| 131 |
+
" return np.pad(arr,(0,3)).view(np.uint32)\n",
|
| 132 |
+
" except Exception:\n",
|
| 133 |
+
" pass"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": 120,
|
| 139 |
+
"id": "84f522d5-aee8-4d0f-9186-2d90bfc62342",
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [
|
| 142 |
+
{
|
| 143 |
+
"data": {
|
| 144 |
+
"text/html": [
|
| 145 |
+
"<div>\n",
|
| 146 |
+
"<style scoped>\n",
|
| 147 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 148 |
+
" vertical-align: middle;\n",
|
| 149 |
+
" }\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" .dataframe tbody tr th {\n",
|
| 152 |
+
" vertical-align: top;\n",
|
| 153 |
+
" }\n",
|
| 154 |
+
"\n",
|
| 155 |
+
" .dataframe thead th {\n",
|
| 156 |
+
" text-align: right;\n",
|
| 157 |
+
" }\n",
|
| 158 |
+
"</style>\n",
|
| 159 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 160 |
+
" <thead>\n",
|
| 161 |
+
" <tr style=\"text-align: right;\">\n",
|
| 162 |
+
" <th></th>\n",
|
| 163 |
+
" <th>seq</th>\n",
|
| 164 |
+
" <th>smiles</th>\n",
|
| 165 |
+
" <th>affinity_uM</th>\n",
|
| 166 |
+
" </tr>\n",
|
| 167 |
+
" </thead>\n",
|
| 168 |
+
" <tbody>\n",
|
| 169 |
+
" <tr>\n",
|
| 170 |
+
" <th>0</th>\n",
|
| 171 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 172 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
| 173 |
+
" <td>0.00024</td>\n",
|
| 174 |
+
" </tr>\n",
|
| 175 |
+
" <tr>\n",
|
| 176 |
+
" <th>1</th>\n",
|
| 177 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 178 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
| 179 |
+
" <td>0.00025</td>\n",
|
| 180 |
+
" </tr>\n",
|
| 181 |
+
" <tr>\n",
|
| 182 |
+
" <th>2</th>\n",
|
| 183 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 184 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
| 185 |
+
" <td>0.00041</td>\n",
|
| 186 |
+
" </tr>\n",
|
| 187 |
+
" <tr>\n",
|
| 188 |
+
" <th>3</th>\n",
|
| 189 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 190 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
| 191 |
+
" <td>0.00080</td>\n",
|
| 192 |
+
" </tr>\n",
|
| 193 |
+
" <tr>\n",
|
| 194 |
+
" <th>4</th>\n",
|
| 195 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 196 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
| 197 |
+
" <td>0.00099</td>\n",
|
| 198 |
+
" </tr>\n",
|
| 199 |
+
" <tr>\n",
|
| 200 |
+
" <th>...</th>\n",
|
| 201 |
+
" <td>...</td>\n",
|
| 202 |
+
" <td>...</td>\n",
|
| 203 |
+
" <td>...</td>\n",
|
| 204 |
+
" </tr>\n",
|
| 205 |
+
" <tr>\n",
|
| 206 |
+
" <th>4453</th>\n",
|
| 207 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 208 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c...</td>\n",
|
| 209 |
+
" <td>0.00940</td>\n",
|
| 210 |
+
" </tr>\n",
|
| 211 |
+
" <tr>\n",
|
| 212 |
+
" <th>4454</th>\n",
|
| 213 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 214 |
+
" <td>CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc...</td>\n",
|
| 215 |
+
" <td>0.01100</td>\n",
|
| 216 |
+
" </tr>\n",
|
| 217 |
+
" <tr>\n",
|
| 218 |
+
" <th>4455</th>\n",
|
| 219 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 220 |
+
" <td>CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
| 221 |
+
" <td>0.35500</td>\n",
|
| 222 |
+
" </tr>\n",
|
| 223 |
+
" <tr>\n",
|
| 224 |
+
" <th>4456</th>\n",
|
| 225 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 226 |
+
" <td>COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(...</td>\n",
|
| 227 |
+
" <td>0.01700</td>\n",
|
| 228 |
+
" </tr>\n",
|
| 229 |
+
" <tr>\n",
|
| 230 |
+
" <th>4457</th>\n",
|
| 231 |
+
" <td>MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE...</td>\n",
|
| 232 |
+
" <td>CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=...</td>\n",
|
| 233 |
+
" <td>0.07600</td>\n",
|
| 234 |
+
" </tr>\n",
|
| 235 |
+
" </tbody>\n",
|
| 236 |
+
"</table>\n",
|
| 237 |
+
"<p>2389700 rows × 3 columns</p>\n",
|
| 238 |
+
"</div>"
|
| 239 |
+
],
|
| 240 |
+
"text/plain": [
|
| 241 |
+
" seq \\\n",
|
| 242 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 243 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 244 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 245 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 246 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 247 |
+
"... ... \n",
|
| 248 |
+
"4453 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 249 |
+
"4454 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 250 |
+
"4455 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 251 |
+
"4456 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 252 |
+
"4457 MSYDRAITVFSPDGHLFQVEYAQEAVKKGSTAVGVRGRDIVVLGVE... \n",
|
| 253 |
+
"\n",
|
| 254 |
+
" smiles affinity_uM \n",
|
| 255 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
|
| 256 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
|
| 257 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
|
| 258 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
|
| 259 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 \n",
|
| 260 |
+
"... ... ... \n",
|
| 261 |
+
"4453 CC(C)C[C@H](NC(=O)N1CCC(CC1)C(=O)Nc1ccc(cc1)-c... 0.00940 \n",
|
| 262 |
+
"4454 CC(C)C[C@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)c1cncc... 0.01100 \n",
|
| 263 |
+
"4455 CC(C)C[C@H](NC(=O)N1CCCC(C1)C(=O)Nc1cnccn1)C(=... 0.35500 \n",
|
| 264 |
+
"4456 COc1ccc(NC(=O)N2CCC(CC2)C(=O)N[C@@H](CC(C)C)C(... 0.01700 \n",
|
| 265 |
+
"4457 CC(C)C[C@H](NC(=O)C1CCN(CC1)C(=O)Nc1cnccn1)C(=... 0.07600 \n",
|
| 266 |
+
"\n",
|
| 267 |
+
"[2389700 rows x 3 columns]"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
"execution_count": 120,
|
| 271 |
+
"metadata": {},
|
| 272 |
+
"output_type": "execute_result"
|
| 273 |
+
}
|
| 274 |
+
],
|
| 275 |
+
"source": [
|
| 276 |
+
"df_bindingdb"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": 88,
|
| 282 |
+
"id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
|
| 283 |
+
"metadata": {},
|
| 284 |
+
"outputs": [],
|
| 285 |
+
"source": [
|
| 286 |
+
"df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
|
| 287 |
+
"df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 89,
|
| 293 |
+
"id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [
|
| 296 |
+
{
|
| 297 |
+
"data": {
|
| 298 |
+
"text/html": [
|
| 299 |
+
"<div>\n",
|
| 300 |
+
"<style scoped>\n",
|
| 301 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 302 |
+
" vertical-align: middle;\n",
|
| 303 |
+
" }\n",
|
| 304 |
+
"\n",
|
| 305 |
+
" .dataframe tbody tr th {\n",
|
| 306 |
+
" vertical-align: top;\n",
|
| 307 |
+
" }\n",
|
| 308 |
+
"\n",
|
| 309 |
+
" .dataframe thead th {\n",
|
| 310 |
+
" text-align: right;\n",
|
| 311 |
+
" }\n",
|
| 312 |
+
"</style>\n",
|
| 313 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 314 |
+
" <thead>\n",
|
| 315 |
+
" <tr style=\"text-align: right;\">\n",
|
| 316 |
+
" <th></th>\n",
|
| 317 |
+
" <th>seq</th>\n",
|
| 318 |
+
" <th>smiles</th>\n",
|
| 319 |
+
" <th>affinity_uM</th>\n",
|
| 320 |
+
" </tr>\n",
|
| 321 |
+
" </thead>\n",
|
| 322 |
+
" <tbody>\n",
|
| 323 |
+
" <tr>\n",
|
| 324 |
+
" <th>0</th>\n",
|
| 325 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 326 |
+
" <td>COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1</td>\n",
|
| 327 |
+
" <td>0.00024</td>\n",
|
| 328 |
+
" </tr>\n",
|
| 329 |
+
" <tr>\n",
|
| 330 |
+
" <th>1</th>\n",
|
| 331 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 332 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...</td>\n",
|
| 333 |
+
" <td>0.00025</td>\n",
|
| 334 |
+
" </tr>\n",
|
| 335 |
+
" <tr>\n",
|
| 336 |
+
" <th>2</th>\n",
|
| 337 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 338 |
+
" <td>O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...</td>\n",
|
| 339 |
+
" <td>0.00041</td>\n",
|
| 340 |
+
" </tr>\n",
|
| 341 |
+
" <tr>\n",
|
| 342 |
+
" <th>3</th>\n",
|
| 343 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 344 |
+
" <td>OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...</td>\n",
|
| 345 |
+
" <td>0.00080</td>\n",
|
| 346 |
+
" </tr>\n",
|
| 347 |
+
" <tr>\n",
|
| 348 |
+
" <th>4</th>\n",
|
| 349 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...</td>\n",
|
| 350 |
+
" <td>OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...</td>\n",
|
| 351 |
+
" <td>0.00099</td>\n",
|
| 352 |
+
" </tr>\n",
|
| 353 |
+
" </tbody>\n",
|
| 354 |
+
"</table>\n",
|
| 355 |
+
"</div>"
|
| 356 |
+
],
|
| 357 |
+
"text/plain": [
|
| 358 |
+
" seq \\\n",
|
| 359 |
+
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 360 |
+
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 361 |
+
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 362 |
+
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 363 |
+
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
|
| 364 |
+
"\n",
|
| 365 |
+
" smiles affinity_uM \n",
|
| 366 |
+
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
|
| 367 |
+
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
|
| 368 |
+
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
|
| 369 |
+
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
|
| 370 |
+
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
"execution_count": 89,
|
| 374 |
+
"metadata": {},
|
| 375 |
+
"output_type": "execute_result"
|
| 376 |
+
}
|
| 377 |
+
],
|
| 378 |
+
"source": [
|
| 379 |
+
"df_bindingdb.head()"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": 93,
|
| 385 |
+
"id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"outputs": [],
|
| 388 |
+
"source": [
|
| 389 |
+
"df_moad = pd.read_parquet('data/moad.parquet')\n",
|
| 390 |
+
"df_moad = df_moad[['seq','smiles','affinity_uM']]"
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"cell_type": "code",
|
| 395 |
+
"execution_count": 94,
|
| 396 |
+
"id": "25553199-1715-40fb-9260-427bdd6c3706",
|
| 397 |
+
"metadata": {},
|
| 398 |
+
"outputs": [
|
| 399 |
+
{
|
| 400 |
+
"data": {
|
| 401 |
+
"text/html": [
|
| 402 |
+
"<div>\n",
|
| 403 |
+
"<style scoped>\n",
|
| 404 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 405 |
+
" vertical-align: middle;\n",
|
| 406 |
+
" }\n",
|
| 407 |
+
"\n",
|
| 408 |
+
" .dataframe tbody tr th {\n",
|
| 409 |
+
" vertical-align: top;\n",
|
| 410 |
+
" }\n",
|
| 411 |
+
"\n",
|
| 412 |
+
" .dataframe thead th {\n",
|
| 413 |
+
" text-align: right;\n",
|
| 414 |
+
" }\n",
|
| 415 |
+
"</style>\n",
|
| 416 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 417 |
+
" <thead>\n",
|
| 418 |
+
" <tr style=\"text-align: right;\">\n",
|
| 419 |
+
" <th></th>\n",
|
| 420 |
+
" <th>seq</th>\n",
|
| 421 |
+
" <th>smiles</th>\n",
|
| 422 |
+
" <th>affinity_uM</th>\n",
|
| 423 |
+
" </tr>\n",
|
| 424 |
+
" </thead>\n",
|
| 425 |
+
" <tbody>\n",
|
| 426 |
+
" <tr>\n",
|
| 427 |
+
" <th>0</th>\n",
|
| 428 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
| 429 |
+
" <td>NP(=O)(N)O</td>\n",
|
| 430 |
+
" <td>0.000620</td>\n",
|
| 431 |
+
" </tr>\n",
|
| 432 |
+
" <tr>\n",
|
| 433 |
+
" <th>2</th>\n",
|
| 434 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
| 435 |
+
" <td>CC(=O)NO</td>\n",
|
| 436 |
+
" <td>2.600000</td>\n",
|
| 437 |
+
" </tr>\n",
|
| 438 |
+
" <tr>\n",
|
| 439 |
+
" <th>7</th>\n",
|
| 440 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
| 441 |
+
" <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
|
| 442 |
+
" <td>0.580000</td>\n",
|
| 443 |
+
" </tr>\n",
|
| 444 |
+
" <tr>\n",
|
| 445 |
+
" <th>16</th>\n",
|
| 446 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
| 447 |
+
" <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
|
| 448 |
+
" <td>0.770000</td>\n",
|
| 449 |
+
" </tr>\n",
|
| 450 |
+
" <tr>\n",
|
| 451 |
+
" <th>17</th>\n",
|
| 452 |
+
" <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
|
| 453 |
+
" <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
|
| 454 |
+
" <td>15.000000</td>\n",
|
| 455 |
+
" </tr>\n",
|
| 456 |
+
" <tr>\n",
|
| 457 |
+
" <th>...</th>\n",
|
| 458 |
+
" <td>...</td>\n",
|
| 459 |
+
" <td>...</td>\n",
|
| 460 |
+
" <td>...</td>\n",
|
| 461 |
+
" </tr>\n",
|
| 462 |
+
" <tr>\n",
|
| 463 |
+
" <th>51900</th>\n",
|
| 464 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 465 |
+
" <td>None</td>\n",
|
| 466 |
+
" <td>127.226463</td>\n",
|
| 467 |
+
" </tr>\n",
|
| 468 |
+
" <tr>\n",
|
| 469 |
+
" <th>51901</th>\n",
|
| 470 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 471 |
+
" <td>None</td>\n",
|
| 472 |
+
" <td>127.226463</td>\n",
|
| 473 |
+
" </tr>\n",
|
| 474 |
+
" <tr>\n",
|
| 475 |
+
" <th>51902</th>\n",
|
| 476 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 477 |
+
" <td>None</td>\n",
|
| 478 |
+
" <td>169.204738</td>\n",
|
| 479 |
+
" </tr>\n",
|
| 480 |
+
" <tr>\n",
|
| 481 |
+
" <th>51903</th>\n",
|
| 482 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 483 |
+
" <td>None</td>\n",
|
| 484 |
+
" <td>169.204738</td>\n",
|
| 485 |
+
" </tr>\n",
|
| 486 |
+
" <tr>\n",
|
| 487 |
+
" <th>51904</th>\n",
|
| 488 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 489 |
+
" <td>None</td>\n",
|
| 490 |
+
" <td>169.204738</td>\n",
|
| 491 |
+
" </tr>\n",
|
| 492 |
+
" </tbody>\n",
|
| 493 |
+
"</table>\n",
|
| 494 |
+
"<p>25425 rows × 3 columns</p>\n",
|
| 495 |
+
"</div>"
|
| 496 |
+
],
|
| 497 |
+
"text/plain": [
|
| 498 |
+
" seq \\\n",
|
| 499 |
+
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
| 500 |
+
"2 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
| 501 |
+
"7 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
| 502 |
+
"16 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
| 503 |
+
"17 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
|
| 504 |
+
"... ... \n",
|
| 505 |
+
"51900 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 506 |
+
"51901 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 507 |
+
"51902 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 508 |
+
"51903 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 509 |
+
"51904 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 510 |
+
"\n",
|
| 511 |
+
" smiles affinity_uM \n",
|
| 512 |
+
"0 NP(=O)(N)O 0.000620 \n",
|
| 513 |
+
"2 CC(=O)NO 2.600000 \n",
|
| 514 |
+
"7 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
|
| 515 |
+
"16 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
|
| 516 |
+
"17 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
|
| 517 |
+
"... ... ... \n",
|
| 518 |
+
"51900 None 127.226463 \n",
|
| 519 |
+
"51901 None 127.226463 \n",
|
| 520 |
+
"51902 None 169.204738 \n",
|
| 521 |
+
"51903 None 169.204738 \n",
|
| 522 |
+
"51904 None 169.204738 \n",
|
| 523 |
+
"\n",
|
| 524 |
+
"[25425 rows x 3 columns]"
|
| 525 |
+
]
|
| 526 |
+
},
|
| 527 |
+
"execution_count": 94,
|
| 528 |
+
"metadata": {},
|
| 529 |
+
"output_type": "execute_result"
|
| 530 |
+
}
|
| 531 |
+
],
|
| 532 |
+
"source": [
|
| 533 |
+
"df_moad"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"cell_type": "code",
|
| 538 |
+
"execution_count": 97,
|
| 539 |
+
"id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
|
| 540 |
+
"metadata": {},
|
| 541 |
+
"outputs": [],
|
| 542 |
+
"source": [
|
| 543 |
+
"df_biolip = pd.read_parquet('data/biolip.parquet')\n",
|
| 544 |
+
"df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
|
| 545 |
+
]
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"cell_type": "code",
|
| 549 |
+
"execution_count": 98,
|
| 550 |
+
"id": "cee93018-601d-458b-af44-bd978da7a2bc",
|
| 551 |
+
"metadata": {},
|
| 552 |
+
"outputs": [
|
| 553 |
+
{
|
| 554 |
+
"data": {
|
| 555 |
+
"text/html": [
|
| 556 |
+
"<div>\n",
|
| 557 |
+
"<style scoped>\n",
|
| 558 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 559 |
+
" vertical-align: middle;\n",
|
| 560 |
+
" }\n",
|
| 561 |
+
"\n",
|
| 562 |
+
" .dataframe tbody tr th {\n",
|
| 563 |
+
" vertical-align: top;\n",
|
| 564 |
+
" }\n",
|
| 565 |
+
"\n",
|
| 566 |
+
" .dataframe thead th {\n",
|
| 567 |
+
" text-align: right;\n",
|
| 568 |
+
" }\n",
|
| 569 |
+
"</style>\n",
|
| 570 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 571 |
+
" <thead>\n",
|
| 572 |
+
" <tr style=\"text-align: right;\">\n",
|
| 573 |
+
" <th></th>\n",
|
| 574 |
+
" <th>seq</th>\n",
|
| 575 |
+
" <th>smiles</th>\n",
|
| 576 |
+
" <th>affinity_uM</th>\n",
|
| 577 |
+
" </tr>\n",
|
| 578 |
+
" </thead>\n",
|
| 579 |
+
" <tbody>\n",
|
| 580 |
+
" <tr>\n",
|
| 581 |
+
" <th>38</th>\n",
|
| 582 |
+
" <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
|
| 583 |
+
" <td>CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C</td>\n",
|
| 584 |
+
" <td>1.500</td>\n",
|
| 585 |
+
" </tr>\n",
|
| 586 |
+
" <tr>\n",
|
| 587 |
+
" <th>43</th>\n",
|
| 588 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
| 589 |
+
" <td>OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c...</td>\n",
|
| 590 |
+
" <td>24.000</td>\n",
|
| 591 |
+
" </tr>\n",
|
| 592 |
+
" <tr>\n",
|
| 593 |
+
" <th>53</th>\n",
|
| 594 |
+
" <td>EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...</td>\n",
|
| 595 |
+
" <td>O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(...</td>\n",
|
| 596 |
+
" <td>NaN</td>\n",
|
| 597 |
+
" </tr>\n",
|
| 598 |
+
" <tr>\n",
|
| 599 |
+
" <th>54</th>\n",
|
| 600 |
+
" <td>MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA...</td>\n",
|
| 601 |
+
" <td>CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(...</td>\n",
|
| 602 |
+
" <td>10.000</td>\n",
|
| 603 |
+
" </tr>\n",
|
| 604 |
+
" <tr>\n",
|
| 605 |
+
" <th>55</th>\n",
|
| 606 |
+
" <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
|
| 607 |
+
" <td>c1ccccc1</td>\n",
|
| 608 |
+
" <td>175.000</td>\n",
|
| 609 |
+
" </tr>\n",
|
| 610 |
+
" <tr>\n",
|
| 611 |
+
" <th>...</th>\n",
|
| 612 |
+
" <td>...</td>\n",
|
| 613 |
+
" <td>...</td>\n",
|
| 614 |
+
" <td>...</td>\n",
|
| 615 |
+
" </tr>\n",
|
| 616 |
+
" <tr>\n",
|
| 617 |
+
" <th>105118</th>\n",
|
| 618 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
| 619 |
+
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
| 620 |
+
" <td>NaN</td>\n",
|
| 621 |
+
" </tr>\n",
|
| 622 |
+
" <tr>\n",
|
| 623 |
+
" <th>105119</th>\n",
|
| 624 |
+
" <td>PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM...</td>\n",
|
| 625 |
+
" <td>O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=...</td>\n",
|
| 626 |
+
" <td>NaN</td>\n",
|
| 627 |
+
" </tr>\n",
|
| 628 |
+
" <tr>\n",
|
| 629 |
+
" <th>105124</th>\n",
|
| 630 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
| 631 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
| 632 |
+
" <td>125.000</td>\n",
|
| 633 |
+
" </tr>\n",
|
| 634 |
+
" <tr>\n",
|
| 635 |
+
" <th>105133</th>\n",
|
| 636 |
+
" <td>ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...</td>\n",
|
| 637 |
+
" <td>CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]...</td>\n",
|
| 638 |
+
" <td>NaN</td>\n",
|
| 639 |
+
" </tr>\n",
|
| 640 |
+
" <tr>\n",
|
| 641 |
+
" <th>105138</th>\n",
|
| 642 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
| 643 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
| 644 |
+
" <td>0.039</td>\n",
|
| 645 |
+
" </tr>\n",
|
| 646 |
+
" </tbody>\n",
|
| 647 |
+
"</table>\n",
|
| 648 |
+
"<p>13645 rows × 3 columns</p>\n",
|
| 649 |
+
"</div>"
|
| 650 |
+
],
|
| 651 |
+
"text/plain": [
|
| 652 |
+
" seq \\\n",
|
| 653 |
+
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
|
| 654 |
+
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
| 655 |
+
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
|
| 656 |
+
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
|
| 657 |
+
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
|
| 658 |
+
"... ... \n",
|
| 659 |
+
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
| 660 |
+
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
|
| 661 |
+
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
| 662 |
+
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
|
| 663 |
+
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
| 664 |
+
"\n",
|
| 665 |
+
" smiles affinity_uM \n",
|
| 666 |
+
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.500 \n",
|
| 667 |
+
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.000 \n",
|
| 668 |
+
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... NaN \n",
|
| 669 |
+
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.000 \n",
|
| 670 |
+
"55 c1ccccc1 175.000 \n",
|
| 671 |
+
"... ... ... \n",
|
| 672 |
+
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... NaN \n",
|
| 673 |
+
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... NaN \n",
|
| 674 |
+
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
| 675 |
+
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... NaN \n",
|
| 676 |
+
"105138 CC[Se]C(=N)N 0.039 \n",
|
| 677 |
+
"\n",
|
| 678 |
+
"[13645 rows x 3 columns]"
|
| 679 |
+
]
|
| 680 |
+
},
|
| 681 |
+
"execution_count": 98,
|
| 682 |
+
"metadata": {},
|
| 683 |
+
"output_type": "execute_result"
|
| 684 |
+
}
|
| 685 |
+
],
|
| 686 |
+
"source": [
|
| 687 |
+
"df_biolip"
|
| 688 |
+
]
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"cell_type": "code",
|
| 692 |
+
"execution_count": 134,
|
| 693 |
+
"id": "195f92db-fe06-4d03-8500-8d6c310a3347",
|
| 694 |
+
"metadata": {},
|
| 695 |
+
"outputs": [],
|
| 696 |
+
"source": [
|
| 697 |
+
"df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
|
| 698 |
+
]
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"cell_type": "code",
|
| 702 |
+
"execution_count": 135,
|
| 703 |
+
"id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
|
| 704 |
+
"metadata": {},
|
| 705 |
+
"outputs": [
|
| 706 |
+
{
|
| 707 |
+
"data": {
|
| 708 |
+
"text/plain": [
|
| 709 |
+
"2446422"
|
| 710 |
+
]
|
| 711 |
+
},
|
| 712 |
+
"execution_count": 135,
|
| 713 |
+
"metadata": {},
|
| 714 |
+
"output_type": "execute_result"
|
| 715 |
+
}
|
| 716 |
+
],
|
| 717 |
+
"source": [
|
| 718 |
+
"len(df_all)"
|
| 719 |
+
]
|
| 720 |
+
},
|
| 721 |
+
{
|
| 722 |
+
"cell_type": "code",
|
| 723 |
+
"execution_count": 105,
|
| 724 |
+
"id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
|
| 725 |
+
"metadata": {},
|
| 726 |
+
"outputs": [
|
| 727 |
+
{
|
| 728 |
+
"name": "stdout",
|
| 729 |
+
"output_type": "stream",
|
| 730 |
+
"text": [
|
| 731 |
+
"INFO: Pandarallel will run on 32 workers.\n",
|
| 732 |
+
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
|
| 733 |
+
]
|
| 734 |
+
}
|
| 735 |
+
],
|
| 736 |
+
"source": [
|
| 737 |
+
"from pandarallel import pandarallel\n",
|
| 738 |
+
"pandarallel.initialize()"
|
| 739 |
+
]
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"cell_type": "code",
|
| 743 |
+
"execution_count": null,
|
| 744 |
+
"id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
|
| 745 |
+
"metadata": {},
|
| 746 |
+
"outputs": [],
|
| 747 |
+
"source": [
|
| 748 |
+
"df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
|
| 749 |
+
]
|
| 750 |
+
},
|
| 751 |
+
{
|
| 752 |
+
"cell_type": "code",
|
| 753 |
+
"execution_count": 108,
|
| 754 |
+
"id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
|
| 755 |
+
"metadata": {},
|
| 756 |
+
"outputs": [],
|
| 757 |
+
"source": [
|
| 758 |
+
"df_all.to_parquet('data/all_maccs.parquet')"
|
| 759 |
+
]
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"cell_type": "code",
|
| 763 |
+
"execution_count": 6,
|
| 764 |
+
"id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
|
| 765 |
+
"metadata": {},
|
| 766 |
+
"outputs": [],
|
| 767 |
+
"source": [
|
| 768 |
+
"import numpy as np"
|
| 769 |
+
]
|
| 770 |
+
},
|
| 771 |
+
{
|
| 772 |
+
"cell_type": "code",
|
| 773 |
+
"execution_count": 14,
|
| 774 |
+
"id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
|
| 775 |
+
"metadata": {},
|
| 776 |
+
"outputs": [],
|
| 777 |
+
"source": [
|
| 778 |
+
"df_all = pd.read_parquet('data/all_maccs.parquet')\n",
|
| 779 |
+
"df_all = df_all.dropna().reset_index(drop=True)"
|
| 780 |
+
]
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"cell_type": "code",
|
| 784 |
+
"execution_count": 15,
|
| 785 |
+
"id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
|
| 786 |
+
"metadata": {},
|
| 787 |
+
"outputs": [
|
| 788 |
+
{
|
| 789 |
+
"data": {
|
| 790 |
+
"text/plain": [
|
| 791 |
+
"2430135"
|
| 792 |
+
]
|
| 793 |
+
},
|
| 794 |
+
"execution_count": 15,
|
| 795 |
+
"metadata": {},
|
| 796 |
+
"output_type": "execute_result"
|
| 797 |
+
}
|
| 798 |
+
],
|
| 799 |
+
"source": [
|
| 800 |
+
"len(df_all)"
|
| 801 |
+
]
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"cell_type": "code",
|
| 805 |
+
"execution_count": 16,
|
| 806 |
+
"id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
|
| 807 |
+
"metadata": {},
|
| 808 |
+
"outputs": [],
|
| 809 |
+
"source": [
|
| 810 |
+
"maccs = df_all['maccs'].to_numpy()\n",
|
| 811 |
+
"#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
|
| 812 |
+
]
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"cell_type": "code",
|
| 816 |
+
"execution_count": 17,
|
| 817 |
+
"id": "80c15210-1af3-436e-970b-f81fc596fb41",
|
| 818 |
+
"metadata": {},
|
| 819 |
+
"outputs": [],
|
| 820 |
+
"source": [
|
| 821 |
+
"df_maccs = pd.DataFrame(np.vstack(maccs))"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"cell_type": "code",
|
| 826 |
+
"execution_count": 18,
|
| 827 |
+
"id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
|
| 828 |
+
"metadata": {},
|
| 829 |
+
"outputs": [
|
| 830 |
+
{
|
| 831 |
+
"data": {
|
| 832 |
+
"text/plain": [
|
| 833 |
+
"0 int64\n",
|
| 834 |
+
"1 int64\n",
|
| 835 |
+
"2 int64\n",
|
| 836 |
+
"3 int64\n",
|
| 837 |
+
"4 int64\n",
|
| 838 |
+
"5 int64\n",
|
| 839 |
+
"dtype: object"
|
| 840 |
+
]
|
| 841 |
+
},
|
| 842 |
+
"execution_count": 18,
|
| 843 |
+
"metadata": {},
|
| 844 |
+
"output_type": "execute_result"
|
| 845 |
+
}
|
| 846 |
+
],
|
| 847 |
+
"source": [
|
| 848 |
+
"df_maccs.dtypes"
|
| 849 |
+
]
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"cell_type": "code",
|
| 853 |
+
"execution_count": 19,
|
| 854 |
+
"id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
|
| 855 |
+
"metadata": {},
|
| 856 |
+
"outputs": [],
|
| 857 |
+
"source": [
|
| 858 |
+
"df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
|
| 859 |
+
]
|
| 860 |
+
},
|
| 861 |
+
{
|
| 862 |
+
"cell_type": "code",
|
| 863 |
+
"execution_count": 21,
|
| 864 |
+
"id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
|
| 865 |
+
"metadata": {},
|
| 866 |
+
"outputs": [
|
| 867 |
+
{
|
| 868 |
+
"data": {
|
| 869 |
+
"text/html": [
|
| 870 |
+
"<div>\n",
|
| 871 |
+
"<style scoped>\n",
|
| 872 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 873 |
+
" vertical-align: middle;\n",
|
| 874 |
+
" }\n",
|
| 875 |
+
"\n",
|
| 876 |
+
" .dataframe tbody tr th {\n",
|
| 877 |
+
" vertical-align: top;\n",
|
| 878 |
+
" }\n",
|
| 879 |
+
"\n",
|
| 880 |
+
" .dataframe thead th {\n",
|
| 881 |
+
" text-align: right;\n",
|
| 882 |
+
" }\n",
|
| 883 |
+
"</style>\n",
|
| 884 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 885 |
+
" <thead>\n",
|
| 886 |
+
" <tr style=\"text-align: right;\">\n",
|
| 887 |
+
" <th></th>\n",
|
| 888 |
+
" <th>seq</th>\n",
|
| 889 |
+
" <th>smiles</th>\n",
|
| 890 |
+
" <th>affinity_uM</th>\n",
|
| 891 |
+
" <th>0</th>\n",
|
| 892 |
+
" <th>1</th>\n",
|
| 893 |
+
" <th>2</th>\n",
|
| 894 |
+
" <th>3</th>\n",
|
| 895 |
+
" <th>4</th>\n",
|
| 896 |
+
" <th>5</th>\n",
|
| 897 |
+
" </tr>\n",
|
| 898 |
+
" </thead>\n",
|
| 899 |
+
" <tbody>\n",
|
| 900 |
+
" <tr>\n",
|
| 901 |
+
" <th>0</th>\n",
|
| 902 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
| 903 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
| 904 |
+
" <td>500.000</td>\n",
|
| 905 |
+
" <td>2147483648</td>\n",
|
| 906 |
+
" <td>3242590208</td>\n",
|
| 907 |
+
" <td>1914732547</td>\n",
|
| 908 |
+
" <td>994116706</td>\n",
|
| 909 |
+
" <td>3748288829</td>\n",
|
| 910 |
+
" <td>124</td>\n",
|
| 911 |
+
" </tr>\n",
|
| 912 |
+
" <tr>\n",
|
| 913 |
+
" <th>1</th>\n",
|
| 914 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
| 915 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
| 916 |
+
" <td>0.023</td>\n",
|
| 917 |
+
" <td>131072</td>\n",
|
| 918 |
+
" <td>1109655552</td>\n",
|
| 919 |
+
" <td>2123376961</td>\n",
|
| 920 |
+
" <td>3477340882</td>\n",
|
| 921 |
+
" <td>2951175957</td>\n",
|
| 922 |
+
" <td>252</td>\n",
|
| 923 |
+
" </tr>\n",
|
| 924 |
+
" <tr>\n",
|
| 925 |
+
" <th>2</th>\n",
|
| 926 |
+
" <td>GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA...</td>\n",
|
| 927 |
+
" <td>O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H...</td>\n",
|
| 928 |
+
" <td>6300.000</td>\n",
|
| 929 |
+
" <td>67108864</td>\n",
|
| 930 |
+
" <td>1082523648</td>\n",
|
| 931 |
+
" <td>1879080960</td>\n",
|
| 932 |
+
" <td>461382690</td>\n",
|
| 933 |
+
" <td>3576355128</td>\n",
|
| 934 |
+
" <td>28</td>\n",
|
| 935 |
+
" </tr>\n",
|
| 936 |
+
" <tr>\n",
|
| 937 |
+
" <th>3</th>\n",
|
| 938 |
+
" <td>SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP...</td>\n",
|
| 939 |
+
" <td>OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(...</td>\n",
|
| 940 |
+
" <td>0.210</td>\n",
|
| 941 |
+
" <td>2147484672</td>\n",
|
| 942 |
+
" <td>36176898</td>\n",
|
| 943 |
+
" <td>850664773</td>\n",
|
| 944 |
+
" <td>3978479102</td>\n",
|
| 945 |
+
" <td>1599828989</td>\n",
|
| 946 |
+
" <td>252</td>\n",
|
| 947 |
+
" </tr>\n",
|
| 948 |
+
" <tr>\n",
|
| 949 |
+
" <th>4</th>\n",
|
| 950 |
+
" <td>EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI...</td>\n",
|
| 951 |
+
" <td>O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2...</td>\n",
|
| 952 |
+
" <td>0.050</td>\n",
|
| 953 |
+
" <td>0</td>\n",
|
| 954 |
+
" <td>1858306115</td>\n",
|
| 955 |
+
" <td>4223456596</td>\n",
|
| 956 |
+
" <td>4018595822</td>\n",
|
| 957 |
+
" <td>4282121085</td>\n",
|
| 958 |
+
" <td>124</td>\n",
|
| 959 |
+
" </tr>\n",
|
| 960 |
+
" <tr>\n",
|
| 961 |
+
" <th>...</th>\n",
|
| 962 |
+
" <td>...</td>\n",
|
| 963 |
+
" <td>...</td>\n",
|
| 964 |
+
" <td>...</td>\n",
|
| 965 |
+
" <td>...</td>\n",
|
| 966 |
+
" <td>...</td>\n",
|
| 967 |
+
" <td>...</td>\n",
|
| 968 |
+
" <td>...</td>\n",
|
| 969 |
+
" <td>...</td>\n",
|
| 970 |
+
" <td>...</td>\n",
|
| 971 |
+
" </tr>\n",
|
| 972 |
+
" <tr>\n",
|
| 973 |
+
" <th>2430130</th>\n",
|
| 974 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 975 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
| 976 |
+
" <td>8.000</td>\n",
|
| 977 |
+
" <td>0</td>\n",
|
| 978 |
+
" <td>612865025</td>\n",
|
| 979 |
+
" <td>3107729684</td>\n",
|
| 980 |
+
" <td>2146870234</td>\n",
|
| 981 |
+
" <td>4286578680</td>\n",
|
| 982 |
+
" <td>252</td>\n",
|
| 983 |
+
" </tr>\n",
|
| 984 |
+
" <tr>\n",
|
| 985 |
+
" <th>2430131</th>\n",
|
| 986 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 987 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
| 988 |
+
" <td>8.000</td>\n",
|
| 989 |
+
" <td>0</td>\n",
|
| 990 |
+
" <td>136194</td>\n",
|
| 991 |
+
" <td>1025390336</td>\n",
|
| 992 |
+
" <td>1612680088</td>\n",
|
| 993 |
+
" <td>2071973584</td>\n",
|
| 994 |
+
" <td>252</td>\n",
|
| 995 |
+
" </tr>\n",
|
| 996 |
+
" <tr>\n",
|
| 997 |
+
" <th>2430132</th>\n",
|
| 998 |
+
" <td>RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS...</td>\n",
|
| 999 |
+
" <td>ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1</td>\n",
|
| 1000 |
+
" <td>0.023</td>\n",
|
| 1001 |
+
" <td>2147483648</td>\n",
|
| 1002 |
+
" <td>2081488896</td>\n",
|
| 1003 |
+
" <td>3124936893</td>\n",
|
| 1004 |
+
" <td>264668962</td>\n",
|
| 1005 |
+
" <td>4286183928</td>\n",
|
| 1006 |
+
" <td>124</td>\n",
|
| 1007 |
+
" </tr>\n",
|
| 1008 |
+
" <tr>\n",
|
| 1009 |
+
" <th>2430133</th>\n",
|
| 1010 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
| 1011 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
| 1012 |
+
" <td>125.000</td>\n",
|
| 1013 |
+
" <td>67108864</td>\n",
|
| 1014 |
+
" <td>1115688962</td>\n",
|
| 1015 |
+
" <td>1771869508</td>\n",
|
| 1016 |
+
" <td>4018431718</td>\n",
|
| 1017 |
+
" <td>3744193341</td>\n",
|
| 1018 |
+
" <td>124</td>\n",
|
| 1019 |
+
" </tr>\n",
|
| 1020 |
+
" <tr>\n",
|
| 1021 |
+
" <th>2430134</th>\n",
|
| 1022 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
| 1023 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
| 1024 |
+
" <td>0.039</td>\n",
|
| 1025 |
+
" <td>16</td>\n",
|
| 1026 |
+
" <td>6144</td>\n",
|
| 1027 |
+
" <td>537396736</td>\n",
|
| 1028 |
+
" <td>2170880</td>\n",
|
| 1029 |
+
" <td>1510015504</td>\n",
|
| 1030 |
+
" <td>192</td>\n",
|
| 1031 |
+
" </tr>\n",
|
| 1032 |
+
" </tbody>\n",
|
| 1033 |
+
"</table>\n",
|
| 1034 |
+
"<p>2430135 rows × 9 columns</p>\n",
|
| 1035 |
+
"</div>"
|
| 1036 |
+
],
|
| 1037 |
+
"text/plain": [
|
| 1038 |
+
" seq \\\n",
|
| 1039 |
+
"0 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
| 1040 |
+
"1 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
| 1041 |
+
"2 GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA... \n",
|
| 1042 |
+
"3 SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP... \n",
|
| 1043 |
+
"4 EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI... \n",
|
| 1044 |
+
"... ... \n",
|
| 1045 |
+
"2430130 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 1046 |
+
"2430131 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 1047 |
+
"2430132 RWEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVS... \n",
|
| 1048 |
+
"2430133 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
| 1049 |
+
"2430134 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
| 1050 |
+
"\n",
|
| 1051 |
+
" smiles affinity_uM \\\n",
|
| 1052 |
+
"0 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
| 1053 |
+
"1 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
| 1054 |
+
"2 O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H... 6300.000 \n",
|
| 1055 |
+
"3 OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(... 0.210 \n",
|
| 1056 |
+
"4 O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2... 0.050 \n",
|
| 1057 |
+
"... ... ... \n",
|
| 1058 |
+
"2430130 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
| 1059 |
+
"2430131 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
| 1060 |
+
"2430132 ONC(=O)CC1(CCOCC1)S(=O)(=O)c1ccc(cc1)Oc1ccccc1 0.023 \n",
|
| 1061 |
+
"2430133 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
| 1062 |
+
"2430134 CC[Se]C(=N)N 0.039 \n",
|
| 1063 |
+
"\n",
|
| 1064 |
+
" 0 1 2 3 4 5 \n",
|
| 1065 |
+
"0 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
|
| 1066 |
+
"1 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
|
| 1067 |
+
"2 67108864 1082523648 1879080960 461382690 3576355128 28 \n",
|
| 1068 |
+
"3 2147484672 36176898 850664773 3978479102 1599828989 252 \n",
|
| 1069 |
+
"4 0 1858306115 4223456596 4018595822 4282121085 124 \n",
|
| 1070 |
+
"... ... ... ... ... ... ... \n",
|
| 1071 |
+
"2430130 0 612865025 3107729684 2146870234 4286578680 252 \n",
|
| 1072 |
+
"2430131 0 136194 1025390336 1612680088 2071973584 252 \n",
|
| 1073 |
+
"2430132 2147483648 2081488896 3124936893 264668962 4286183928 124 \n",
|
| 1074 |
+
"2430133 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
|
| 1075 |
+
"2430134 16 6144 537396736 2170880 1510015504 192 \n",
|
| 1076 |
+
"\n",
|
| 1077 |
+
"[2430135 rows x 9 columns]"
|
| 1078 |
+
]
|
| 1079 |
+
},
|
| 1080 |
+
"execution_count": 21,
|
| 1081 |
+
"metadata": {},
|
| 1082 |
+
"output_type": "execute_result"
|
| 1083 |
+
}
|
| 1084 |
+
],
|
| 1085 |
+
"source": [
|
| 1086 |
+
"df_expand"
|
| 1087 |
+
]
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"cell_type": "code",
|
| 1091 |
+
"execution_count": 22,
|
| 1092 |
+
"id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
|
| 1093 |
+
"metadata": {},
|
| 1094 |
+
"outputs": [
|
| 1095 |
+
{
|
| 1096 |
+
"data": {
|
| 1097 |
+
"text/plain": [
|
| 1098 |
+
"Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
|
| 1099 |
+
]
|
| 1100 |
+
},
|
| 1101 |
+
"execution_count": 22,
|
| 1102 |
+
"metadata": {},
|
| 1103 |
+
"output_type": "execute_result"
|
| 1104 |
+
}
|
| 1105 |
+
],
|
| 1106 |
+
"source": [
|
| 1107 |
+
"df_expand.columns"
|
| 1108 |
+
]
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"cell_type": "code",
|
| 1112 |
+
"execution_count": 23,
|
| 1113 |
+
"id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
|
| 1114 |
+
"metadata": {},
|
| 1115 |
+
"outputs": [],
|
| 1116 |
+
"source": [
|
| 1117 |
+
"df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
|
| 1118 |
+
]
|
| 1119 |
+
},
|
| 1120 |
+
{
|
| 1121 |
+
"cell_type": "code",
|
| 1122 |
+
"execution_count": 24,
|
| 1123 |
+
"id": "27fa2150-8152-444b-ba5b-24bea39fc098",
|
| 1124 |
+
"metadata": {},
|
| 1125 |
+
"outputs": [
|
| 1126 |
+
{
|
| 1127 |
+
"data": {
|
| 1128 |
+
"text/plain": [
|
| 1129 |
+
"Index(['smiles', 'affinity_uM'], dtype='object')"
|
| 1130 |
+
]
|
| 1131 |
+
},
|
| 1132 |
+
"execution_count": 24,
|
| 1133 |
+
"metadata": {},
|
| 1134 |
+
"output_type": "execute_result"
|
| 1135 |
+
}
|
| 1136 |
+
],
|
| 1137 |
+
"source": [
|
| 1138 |
+
"df_reindex.columns"
|
| 1139 |
+
]
|
| 1140 |
+
},
|
| 1141 |
+
{
|
| 1142 |
+
"cell_type": "code",
|
| 1143 |
+
"execution_count": 67,
|
| 1144 |
+
"id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
|
| 1145 |
+
"metadata": {},
|
| 1146 |
+
"outputs": [],
|
| 1147 |
+
"source": [
|
| 1148 |
+
"df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
|
| 1149 |
+
"df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
|
| 1150 |
+
]
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"cell_type": "code",
|
| 1154 |
+
"execution_count": 68,
|
| 1155 |
+
"id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
|
| 1156 |
+
"metadata": {},
|
| 1157 |
+
"outputs": [],
|
| 1158 |
+
"source": [
|
| 1159 |
+
"# final sanity checks"
|
| 1160 |
+
]
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"cell_type": "code",
|
| 1164 |
+
"execution_count": 69,
|
| 1165 |
+
"id": "0cad3882-975d-4693-aad1-63ec26646bd0",
|
| 1166 |
+
"metadata": {},
|
| 1167 |
+
"outputs": [
|
| 1168 |
+
{
|
| 1169 |
+
"name": "stderr",
|
| 1170 |
+
"output_type": "stream",
|
| 1171 |
+
"text": [
|
| 1172 |
+
"/ccs/proj/stf006/glaser/conda-envs/bio/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
|
| 1173 |
+
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
| 1174 |
+
]
|
| 1175 |
+
}
|
| 1176 |
+
],
|
| 1177 |
+
"source": [
|
| 1178 |
+
"df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
|
| 1179 |
+
]
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"cell_type": "code",
|
| 1183 |
+
"execution_count": 70,
|
| 1184 |
+
"id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
|
| 1185 |
+
"metadata": {},
|
| 1186 |
+
"outputs": [
|
| 1187 |
+
{
|
| 1188 |
+
"data": {
|
| 1189 |
+
"text/html": [
|
| 1190 |
+
"<div>\n",
|
| 1191 |
+
"<style scoped>\n",
|
| 1192 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1193 |
+
" vertical-align: middle;\n",
|
| 1194 |
+
" }\n",
|
| 1195 |
+
"\n",
|
| 1196 |
+
" .dataframe tbody tr th {\n",
|
| 1197 |
+
" vertical-align: top;\n",
|
| 1198 |
+
" }\n",
|
| 1199 |
+
"\n",
|
| 1200 |
+
" .dataframe thead th {\n",
|
| 1201 |
+
" text-align: right;\n",
|
| 1202 |
+
" }\n",
|
| 1203 |
+
"</style>\n",
|
| 1204 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1205 |
+
" <thead>\n",
|
| 1206 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1207 |
+
" <th></th>\n",
|
| 1208 |
+
" <th>seq</th>\n",
|
| 1209 |
+
" <th>smiles</th>\n",
|
| 1210 |
+
" <th>affinity_uM</th>\n",
|
| 1211 |
+
" <th>neg_log10_affinity_M</th>\n",
|
| 1212 |
+
" </tr>\n",
|
| 1213 |
+
" </thead>\n",
|
| 1214 |
+
" <tbody>\n",
|
| 1215 |
+
" <tr>\n",
|
| 1216 |
+
" <th>0</th>\n",
|
| 1217 |
+
" <td>APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE...</td>\n",
|
| 1218 |
+
" <td>OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]...</td>\n",
|
| 1219 |
+
" <td>500.000</td>\n",
|
| 1220 |
+
" <td>3.301030</td>\n",
|
| 1221 |
+
" </tr>\n",
|
| 1222 |
+
" <tr>\n",
|
| 1223 |
+
" <th>1</th>\n",
|
| 1224 |
+
" <td>VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE...</td>\n",
|
| 1225 |
+
" <td>COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)...</td>\n",
|
| 1226 |
+
" <td>0.023</td>\n",
|
| 1227 |
+
" <td>7.638272</td>\n",
|
| 1228 |
+
" </tr>\n",
|
| 1229 |
+
" <tr>\n",
|
| 1230 |
+
" <th>2</th>\n",
|
| 1231 |
+
" <td>GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA...</td>\n",
|
| 1232 |
+
" <td>O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H...</td>\n",
|
| 1233 |
+
" <td>6300.000</td>\n",
|
| 1234 |
+
" <td>2.200659</td>\n",
|
| 1235 |
+
" </tr>\n",
|
| 1236 |
+
" <tr>\n",
|
| 1237 |
+
" <th>3</th>\n",
|
| 1238 |
+
" <td>SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP...</td>\n",
|
| 1239 |
+
" <td>OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(...</td>\n",
|
| 1240 |
+
" <td>0.210</td>\n",
|
| 1241 |
+
" <td>6.677781</td>\n",
|
| 1242 |
+
" </tr>\n",
|
| 1243 |
+
" <tr>\n",
|
| 1244 |
+
" <th>4</th>\n",
|
| 1245 |
+
" <td>EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI...</td>\n",
|
| 1246 |
+
" <td>O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2...</td>\n",
|
| 1247 |
+
" <td>0.050</td>\n",
|
| 1248 |
+
" <td>7.301030</td>\n",
|
| 1249 |
+
" </tr>\n",
|
| 1250 |
+
" <tr>\n",
|
| 1251 |
+
" <th>...</th>\n",
|
| 1252 |
+
" <td>...</td>\n",
|
| 1253 |
+
" <td>...</td>\n",
|
| 1254 |
+
" <td>...</td>\n",
|
| 1255 |
+
" <td>...</td>\n",
|
| 1256 |
+
" </tr>\n",
|
| 1257 |
+
" <tr>\n",
|
| 1258 |
+
" <th>1849400</th>\n",
|
| 1259 |
+
" <td>KQISVRGLAGVENVTELKKNFNRHLHFTLVKDRNVATPRDYYFALA...</td>\n",
|
| 1260 |
+
" <td>O[C@@H]1[C@H](O)[C@H](O[C@H]1n1cnc2c1ncnc2N)CO...</td>\n",
|
| 1261 |
+
" <td>250.000</td>\n",
|
| 1262 |
+
" <td>3.602060</td>\n",
|
| 1263 |
+
" </tr>\n",
|
| 1264 |
+
" <tr>\n",
|
| 1265 |
+
" <th>1849401</th>\n",
|
| 1266 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 1267 |
+
" <td>O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(...</td>\n",
|
| 1268 |
+
" <td>8.000</td>\n",
|
| 1269 |
+
" <td>5.096910</td>\n",
|
| 1270 |
+
" </tr>\n",
|
| 1271 |
+
" <tr>\n",
|
| 1272 |
+
" <th>1849402</th>\n",
|
| 1273 |
+
" <td>IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL...</td>\n",
|
| 1274 |
+
" <td>CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H...</td>\n",
|
| 1275 |
+
" <td>8.000</td>\n",
|
| 1276 |
+
" <td>5.096910</td>\n",
|
| 1277 |
+
" </tr>\n",
|
| 1278 |
+
" <tr>\n",
|
| 1279 |
+
" <th>1849403</th>\n",
|
| 1280 |
+
" <td>SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV...</td>\n",
|
| 1281 |
+
" <td>O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O...</td>\n",
|
| 1282 |
+
" <td>125.000</td>\n",
|
| 1283 |
+
" <td>3.903090</td>\n",
|
| 1284 |
+
" </tr>\n",
|
| 1285 |
+
" <tr>\n",
|
| 1286 |
+
" <th>1849404</th>\n",
|
| 1287 |
+
" <td>KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR...</td>\n",
|
| 1288 |
+
" <td>CC[Se]C(=N)N</td>\n",
|
| 1289 |
+
" <td>0.039</td>\n",
|
| 1290 |
+
" <td>7.408935</td>\n",
|
| 1291 |
+
" </tr>\n",
|
| 1292 |
+
" </tbody>\n",
|
| 1293 |
+
"</table>\n",
|
| 1294 |
+
"<p>1849405 rows × 4 columns</p>\n",
|
| 1295 |
+
"</div>"
|
| 1296 |
+
],
|
| 1297 |
+
"text/plain": [
|
| 1298 |
+
" seq \\\n",
|
| 1299 |
+
"0 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
|
| 1300 |
+
"1 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
|
| 1301 |
+
"2 GMRVYLGADHAGYELKQRIIEHLKQTGHEPIDCGALRYDADDDYPA... \n",
|
| 1302 |
+
"3 SMENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVP... \n",
|
| 1303 |
+
"4 EFSEWFHNILEEAEIIDQRYPVKGMHVWMPHGFMIRKNTLKILRRI... \n",
|
| 1304 |
+
"... ... \n",
|
| 1305 |
+
"1849400 KQISVRGLAGVENVTELKKNFNRHLHFTLVKDRNVATPRDYYFALA... \n",
|
| 1306 |
+
"1849401 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 1307 |
+
"1849402 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
|
| 1308 |
+
"1849403 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
|
| 1309 |
+
"1849404 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
|
| 1310 |
+
"\n",
|
| 1311 |
+
" smiles affinity_uM \\\n",
|
| 1312 |
+
"0 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
|
| 1313 |
+
"1 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
|
| 1314 |
+
"2 O[C@H]1O[C@H](CO[P](=O)(=O)=O)[C@H]([C@H]([C@H... 6300.000 \n",
|
| 1315 |
+
"3 OCC[C@@H]1CCCCN1c1cc(NCC2=CC=CN(C2)O)n2c(n1)c(... 0.210 \n",
|
| 1316 |
+
"4 O[C@@H]1[C@@H](COS(=O)(=O)NC(=O)[C@@H]2CCC[NH2... 0.050 \n",
|
| 1317 |
+
"... ... ... \n",
|
| 1318 |
+
"1849400 O[C@@H]1[C@H](O)[C@H](O[C@H]1n1cnc2c1ncnc2N)CO... 250.000 \n",
|
| 1319 |
+
"1849401 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.000 \n",
|
| 1320 |
+
"1849402 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.000 \n",
|
| 1321 |
+
"1849403 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.000 \n",
|
| 1322 |
+
"1849404 CC[Se]C(=N)N 0.039 \n",
|
| 1323 |
+
"\n",
|
| 1324 |
+
" neg_log10_affinity_M \n",
|
| 1325 |
+
"0 3.301030 \n",
|
| 1326 |
+
"1 7.638272 \n",
|
| 1327 |
+
"2 2.200659 \n",
|
| 1328 |
+
"3 6.677781 \n",
|
| 1329 |
+
"4 7.301030 \n",
|
| 1330 |
+
"... ... \n",
|
| 1331 |
+
"1849400 3.602060 \n",
|
| 1332 |
+
"1849401 5.096910 \n",
|
| 1333 |
+
"1849402 5.096910 \n",
|
| 1334 |
+
"1849403 3.903090 \n",
|
| 1335 |
+
"1849404 7.408935 \n",
|
| 1336 |
+
"\n",
|
| 1337 |
+
"[1849405 rows x 4 columns]"
|
| 1338 |
+
]
|
| 1339 |
+
},
|
| 1340 |
+
"execution_count": 70,
|
| 1341 |
+
"metadata": {},
|
| 1342 |
+
"output_type": "execute_result"
|
| 1343 |
+
}
|
| 1344 |
+
],
|
| 1345 |
+
"source": [
|
| 1346 |
+
"df_nr"
|
| 1347 |
+
]
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"cell_type": "code",
|
| 1351 |
+
"execution_count": 72,
|
| 1352 |
+
"id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
|
| 1353 |
+
"metadata": {},
|
| 1354 |
+
"outputs": [],
|
| 1355 |
+
"source": [
|
| 1356 |
+
"df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])]"
|
| 1357 |
+
]
|
| 1358 |
+
},
|
| 1359 |
+
{
|
| 1360 |
+
"cell_type": "code",
|
| 1361 |
+
"execution_count": 86,
|
| 1362 |
+
"id": "c558f3f6-9fe7-4361-8272-23a54368fdda",
|
| 1363 |
+
"metadata": {},
|
| 1364 |
+
"outputs": [],
|
| 1365 |
+
"source": [
|
| 1366 |
+
"df.to_parquet('data/all.parquet')"
|
| 1367 |
+
]
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"cell_type": "code",
|
| 1371 |
+
"execution_count": 3,
|
| 1372 |
+
"id": "4e2d89f7-f6ea-41de-a13b-4a184b4fd580",
|
| 1373 |
+
"metadata": {},
|
| 1374 |
+
"outputs": [],
|
| 1375 |
+
"source": [
|
| 1376 |
+
"df = pd.read_parquet('data/all.parquet')"
|
| 1377 |
+
]
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"cell_type": "code",
|
| 1381 |
+
"execution_count": 5,
|
| 1382 |
+
"id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
|
| 1383 |
+
"metadata": {},
|
| 1384 |
+
"outputs": [
|
| 1385 |
+
{
|
| 1386 |
+
"data": {
|
| 1387 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbqUlEQVR4nO3df5wddX3v8debIJdIUERkkQQI1tCWGlFcfghc2VjxEaBtsGoLIr8sjVG4SG/qvSkIBpFb+rBYy71gTDFGEBqvxdBcE0GErmgj3gS1LAk/jCFIEiAXxMgCgiuf+8fMwrics/uds+fMnnPyfj4e57Fn5vudmc/kZPdzvt+Z+X4VEZiZmaXYaaIDMDOzzuGkYWZmyZw0zMwsmZOGmZklc9IwM7NkO090AK221157xfTp0ys95tNPP81uu+1W6TFbzefUGXxOnaHdz+muu+56PCJeV6us65PG9OnTWbt2baXH7O/vp6+vr9JjtprPqTP4nDpDu5+TpIfqlVXePSVptqT7JW2QtKBG+amS7s5fqyUdUijbJGlA0o8lVZsJzMys2paGpEnAVcBxwGZgjaQVEbG+UO1B4NiIeFLS8cBi4IhC+ayIeLyyoM3M7EVVtzQOBzZExMaIeB5YBswpVoiI1RHxZL54JzCt4hjNzKyOqpPGVODhwvLmfF09fwF8s7AcwLck3SVpbgviMzOzUVR9IVw11tUc/ErSLLKkcUxh9dERsVXS3sCtku6LiDtqbDsXmAvQ09NDf3//uAMvY3BwsPJjtprPqTP4nDpDJ59T1UljM7BfYXkasHVkJUlvBq4Bjo+IJ4bXR8TW/Oc2ScvJurteljQiYjHZtRB6e3uj6rsU2v3OiEb4nDqDz6kzdPI5Vd09tQaYIelASbsAJwMrihUk7Q98HTgtIh4orN9N0u7D74F3A/dUFrmZmVXb0oiIIUnnArcAk4AlEbFO0ry8fBFwMfBa4GpJAEMR0Qv0AMvzdTsDN0TEzVXGb2a2o6v84b6IWAWsGrFuUeH92cDZNbbbCBwycr2ZmVWn658IN6vK9AUrX3y/6fITJzASs9bxgIVmZpbMScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThq2w5m+YCXTF6xkYMv233ogz8zG5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMk/CZFZHvUmVUiZb8oRM1q3c0jAzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMg9YaJagOACh2Y7MLQ0zM0vmloZZi3mYdOsmThpm4+BuK9vRVN49JWm2pPslbZC0oEb5qZLuzl+rJR2Suq2ZmbVWpUlD0iTgKuB44GDgFEkHj6j2IHBsRLwZuBRYXGJbMzNroapbGocDGyJiY0Q8DywD5hQrRMTqiHgyX7wTmJa6rZmZtVbV1zSmAg8XljcDR4xS/y+Ab5bdVtJcYC5AT08P/f39DYbbmMHBwcqP2WrddE7zZw4B0DM5e1/vvIbrNVOr/w276XMa5nNqL1UnDdVYFzUrSrPIksYxZbeNiMXk3Vq9vb3R19dXOtDx6O/vp+pjtlo3ndOZ+cXr+TOHuGJgZzad2jdqvWaqd6xm6abPaZjPqb1UnTQ2A/sVlqcBW0dWkvRm4Brg+Ih4osy2ZmbWOlVf01gDzJB0oKRdgJOBFcUKkvYHvg6cFhEPlNnWzMxaq9KWRkQMSToXuAWYBCyJiHWS5uXli4CLgdcCV0sCGIqI3nrbVhm/mdmOrvKH+yJiFbBqxLpFhfdnA2enbmtmZtXxE+G2w6tymA8PKWKdzgMWmplZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSXz3VNmBZ4fw2x0bmmYmVkyJw0zM0vmpGFmZsmcNMzMLJmThpmZJXPSMDOzZE4aZmaWzEnDzMySOWmYmVmyUklD0nGtCsTMzNpf2ZbGLZI2SPq4pNe1JCIzM2tbZZPGO4E1wKXAw5JukHRs88MyM7N2VCppRER/RJwCTAUuAnqBf5N0r6SPSXpNK4I0M7P20NCF8Ih4IiI+ExEHAccBjwOfBbZIWippZjODNDOz9jCuu6cknQCcBxwJbAOuBY4FfijpI+MPz8zM2knppCFpH0kXSnoQ+AawB/BBYL+ImAe8EfgCcHEzAzUzs4lXahImSTcCfwT8CvgKcHVErCvWiYjfSLoB+GjTojQzs7ZQdua+GcD5wHURMThKvQFgVqNBmZlZeyqbNP4IeCQifj2yQNLOwL4R8bOIeAr4TjMCNDOz9lH2msaDwFvrlB2Sl5uZWZcqmzQ0StkrgBfGEYuZmbW5MbunJO0B7FlYNVXSG0ZUmwycATzavNDMzKzdpFzT+BjwSSDy17/Uqae8npmZdamUpHETsIksKSwBPg38dESd54D1EXF3M4MzM7P2MmbSiIj/AP4DQFIAKyPi8VYHZmZm7afULbcR8eVWBWJmZu0v5UL47cBHI+K+/P1oIiL+cIz9zQb+EZgEXBMRl48o/z3gS8ChwIUR8feFsk3AU8BvgKGI6B0rfjMza56UlkbxNtudyC6Gp9R9eaE0CbiKbGTczcAaSSsiYn2h2s/JBkE8qc5uZrl7zLrB9AUrX3y/6fITJzASs3Qp1zRmFd73jfN4hwMbImIjgKRlwBzgxaQREduAbZL8W2Rm1mYUMVrDockHk94HzI6Is/Pl04AjIuLcGnUXAoMjuqceBJ4ka+18ISIW1znOXGAuQE9Pz9uWLVvW7FMZ1eDgIFOmTKn0mK3WTec0sGU7AD2T4bFnJziY3Mypr27Kfrrpcxrmc6rerFmz7qrX/Z9yTeMdZQ4WEXeMtrtam5TY/dERsVXS3sCtku6rdbw8mSwG6O3tjb6+vhKHGL/+/n6qPmarddM5nZl3C82fOcQVA2WHX2uNTaf2NWU/3fQ5DfM5tZeU35h+0v6wK683aZQ6m4H9CsvTgK0J+wYgIrbmP7dJWk7W3TVakjIzsyZKSRrNHOJ8DTBD0oHAFuBk4AMpG0raDdgpIp7K378b+FQTYzMzszGkXAhv2hDnETEk6VzgFrIWyZKIWCdpXl6+SNI+wFrgVcALks4HDgb2ApZLGo77hoi4uVmxmZnZ2Crv0I2IVcCqEesWFd4/StZtNdIvyYZfNzOzCVL5w31m9nJ+ZsM6RaUP95mZWWer+uE+s8r427tZ85Wduc/MzHZgpS+E5zP5/RXwdmAq2a2zq4HPRcQvmhmcmZm1l1ItDUmHAD8B/gbYlWzMqF2BC4AHJM1seoRmZtY2yrY0rgSeAHoj4qHhlZKmAzcD/xPoa1ZwZmbWXspe0zgMuKiYMAAiYhPZ/OCHNykuMzNrQ2WTxhNk84HX8qu83MzMulTZpPF54OOSdi2ulDQZ+GuyCZbMzKxLpTwRXhwUUMABwM8krQIeA3qAE4BngVe2IkgzM2sPKRfCP1Fn/ek11l0IXNx4OGatUXzQz8wal/JEuB8ANDMzwE+Em5lZCU4aZmaWrHTSkDRX0o8kPSPpNyNfrQjSzMzaQ9lhRE4ne+p7DdnwIV8CvkI2QdJP8fSrZmZdrWxL43zgb4GP5MtXR8QZwBvIbrn1w31mZl2sbNKYAdwBvJC/dgGIiCeBy4CPNTU6MzNrK2WTxrPAThERwKNkLYxhg8C+zQrMzMzaT9lRbgeANwLfBr4LXCDpQWAIWAjc19TozMysrZRNGot5qXVxEVny+F6+/BRwUnPCMjOzdlQqaUTEVwvvN0j6A+AoYDKwOiIeb3J8ZmbWRkpP91oUEU8DtzYpFjMza3ONzBE+iWywwpFzhF8XEX64z8ysi5V9uO8AYB3wRWA2sHf+cwlwT15uZmZdquwtt/8LeBVwTETsHxGHRcT+wH8GXk32tLiZmXWpsknjncDfRMTq4sqI+HfggrzczMy6VNmkMQhsq1O2DXhmfOGYmVk7K5s0vgLMq1P2YeDa8YVjZmbtLGWO8A8VFn8CvF/SAHAjL80R/j5gd+CbrQjSzMzaQ8ott9fUWDcN+IMa668CFo0rIjMza1spSePAlkdhZmYdYcykEREPVRGImZm1v4bmCJf0JknnSLpI0kclvanEtrMl3S9pg6QFNcp/T9L3JT0n6a/LbGtmZq1VahgRSTsDS4FTABWKQtINwJmjDSWSD0FyFXAcsBlYI2lFRKwvVPs5cB4jRsxN3NbMzFqobEvjk8CfAReTXeuYnP+8GPjz/OdoDgc2RMTGiHgeWAbMKVaIiG0RsQb4ddltzcystZRNwpdYOZtwaUlEXFqj7GLgrIioe+Fc0vuA2RFxdr58GnBERJxbo+5CYDAi/r6BbecCcwF6enretmzZsuRzbIbBwUGmTJlS6TFbrRPPaWDL9lHLeybDY89WFEyDZk59dan6nfg5jcXnVL1Zs2bdFRG9tcrKjnK7L/D9OmWrgQvH2F411qVmreRtI2Ix2YRR9Pb2Rl9fX+IhmqO/v5+qj9lqnXhOZy5YOWr5/JlDXDEwrtkBWm7TqX2l6nfi5zQWn1N7Kds9tRU4uk7ZUXn5aDYD+xWWpyVs04xtzcysCcp+zboeuFDSC/n7R4B9gJPJWhl/N8b2a4AZkg4km4fjZOADiccez7ZmZtYEZZPGQrI5wi/J3w8T8M/5+roiYkjSucAtwCSy6yPrJM3LyxdJ2gdYSzYE+wuSzgcOjohf1tq2ZPxmZjYOZecIHwI+IOky4B3AnmS3yH4n9dbXiFgFrBqxblHh/aNkXU9J25qZWXWSk4akXYBHyZ7FWEE2g5+Zme1Aki+E589GDAG/al04ZmbWzsrePXUT2TDoZma2Ayp7IfybwJWS/oUsgTzCiGclIuL25oRmZmbtpmzSuDH/+af5a1iQ3UEVZHc2mVVmeuEhvk2XnziBkZh1v7JJY1ZLojAzs45Q9pbb7wBIehXwJmAq2YN290TEL5sfntmOza0oazelB97JByacD0zhpS6pQUmfiYhPNzk+MzNrI2Xn07gEuIhs3vBlwGNAD9n8GpdI2jkiFjY7SDMzaw9lWxp/CVwRER8vrFsH3C5pO9lw5AubFJtZadPHGNnWzMan7HMaryYb+6mWm/NyMzPrUmWTxg+Aw+qUHZaXm5lZlyrbPXUesFzSEPA1Xrqm8WfAh4A5kl5MRBHxQrMCNTOziVc2adyd/7w8fxUJGCgsRwP7NzOzNlb2j/qnSJ+e1czMukzZh/sWtigOMzPrAGUvhJuZ2Q7MScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpbMScPMzJI5aZiZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpas8qQhabak+yVtkLSgRrkkXZmX3y3p0ELZJkkDkn4saW21kZuZWdk5wsdF0iTgKuA4YDOwRtKKiFhfqHY8MCN/HQF8Pv85bFZEPF5RyGZmVlB1S+NwYENEbIyI54FlwJwRdeYA10bmTmAPSa+vOE4zM6uh0pYGMBV4uLC8md9uRdSrMxV4BAjgW5IC+EJELK51EElzgbkAPT099Pf3NyX4VIODg5Ufs9Xa+ZzmzxxqaLueyY1vOxFS/v3b+XNqlM+pvVSdNFRjXZSoc3REbJW0N3CrpPsi4o6XVc6SyWKA3t7e6OvrG0fI5fX391P1MVutnc/pzAUrG9pu/swhrhio+ldgHAaefvHtpstPrFmlnT+nRvmc2kvV3VObgf0Ky9OAral1ImL45zZgOVl3l5mZVaTqpLEGmCHpQEm7ACcDK0bUWQGcnt9FdSSwPSIekbSbpN0BJO0GvBu4p8rgzcx2dJW2zSNiSNK5wC3AJGBJRKyTNC8vXwSsAk4ANgDPAGflm/cAyyUNx31DRNxcZfxmZju6yjt0I2IVWWIorltUeB/AOTW22wgc0vIAzcysLj8RbmZmyZw0zMwsWQfdb2j2kukN3mZrZuPjloaZmSVz0jAzs2ROGmZmlszXNMw6UPGaTr0hRcxawS0NMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4aZmSVz0jAzs2Qe5daswxVHvF06e7cJjMR2BE4a1jE8xavZxHP3lJmZJXPSMDOzZO6esrbmLimz9uKWhpmZJXPSMDOzZE4aZmaWzEnDzMySOWmYdZGBLduZvmClbyCwlnHSMDOzZL7l1qxLFVsbmy4/cQIjsW7ipGFtx10rZu3LScMmjJNDddzqsGap/JqGpNmS7pe0QdKCGuWSdGVefrekQ1O3NbOxDV8od9K2RlSaNCRNAq4CjgcOBk6RdPCIascDM/LXXODzJbY1M7MWqrp76nBgQ0RsBJC0DJgDrC/UmQNcGxEB3ClpD0mvB6YnbDuhhr+5zZ85RN/EhtJ0A1u2c6a/mXad1NaGu7RsWNVJYyrwcGF5M3BEQp2pidsCIGkuWSsFYFDS/eOIubTzYK/zPsjjVR6zAntBd53TeT6nZPq7Zu+xlK77nGj/czqgXkHVSUM11kVinZRts5URi4HF5UJrHklrI6J3oo7fCj6nzuBz6gydfE5VJ43NwH6F5WnA1sQ6uyRsa2ZmLVT13VNrgBmSDpS0C3AysGJEnRXA6fldVEcC2yPikcRtzcyshSptaUTEkKRzgVuAScCSiFgnaV5evghYBZwAbACeAc4abdsq4y9hwrrGWsjn1Bl8Tp2hY89J2U1KZmZmY/OAhWZmlsxJw8zMkjlptICkhZK2SPpx/jphomNqVLcO3SJpk6SB/PNZO9HxNELSEknbJN1TWLenpFsl/ST/+ZqJjLGsOufU0b9PkvaT9G+S7pW0TtLH8vUd+Vk5abTOP0TEW/LXqokOphE7wNAts/LPpyPvlweWArNHrFsA3BYRM4Db8uVOspSXnxN09u/TEDA/In4fOBI4J/896sjPyknDRvPisC8R8TwwPHSLtYGIuAP4+YjVc4Av5++/DJxUZUzjVeecOlpEPBIRP8zfPwXcSzbCRUd+Vk4arXNuPkrvkk5pdtZQb0iXbhDAtyTdlQ870y168ueayH/uPcHxNEs3/D4haTrwVuAHdOhn5aTRIEnflnRPjdccspF5fwd4C/AIcMVExjoOyUO3dKCjI+JQsq63cyS9Y6IDsrq64vdJ0hTgRuD8iPjlRMfTKE/C1KCIeFdKPUn/BHyjxeG0SsqwLx0pIrbmP7dJWk7WFXfHxEbVFI9Jen1EPJKPDr1togMar4h4bPh9p/4+SXoFWcK4PiK+nq/uyM/KLY0WyP8DDHsPcE+9um2uK4dukbSbpN2H3wPvpnM/o5FWAGfk788A/nUCY2mKTv99kiTgi8C9EfHZQlFHflZ+IrwFJF1H1pQOYBPw4eG+y06T3974OV4auuWyiY1o/CS9AVieL+4M3NCJ5yXpn4E+smG2HwM+CdwE/G9gf+BnwPsjomMuLNc5pz46+PdJ0jHAd4EB4IV89QVk1zU67rNy0jAzs2TunjIzs2ROGmZmlsxJw8zMkjlpmJlZMicNMzNL5qRhZmbJnDTMzCyZk4a1lXzuhK58eEjSh/K5E56X9IvR1jf671BrO0knSfqvDca8VFLkr/4RZWcWyg6qsW1fofxd+bpPFNZtbiQmm1hOGmYVkLQvsBhYDbwTeNdo64FrgLc3cKha250ENJQ0co/m+/xonfKngNNqrD89Lyv6Ur6vTpsTw3IesNCsGjPIhmL5ckR8b6z1EbGZbMDIUhrdbgzPRcSdo5R/HfigpIsjH2JC0mTgvWSD9J1ZiG8LsEXS/2tyjFYRtzSsI+TTzn5f0rOStku6SdLv1qh3iqT7JP0qn871TyT1j+xaaXJsb5R0naQH8/g2Svr88LwPkpYCw8e/Le+aWVpvfb7Nb3UzDS9LmiFppaRBSQ9JuljSTiPrFZaXkg2GN7XQLbRJ0vvy94fUOJ9+Sd8v8U9wHXAAcExh3XvIkuGNJfZjHcAtDWt7kmYDK4HbgT8HpgCfAr4n6S35t1ckHQdcTzZ66HyyQe8+B+wKPNDCEPcl+3Z/PvAk8AayAelWkXXFXArcBVwJnAP8EBj+pl1vfT3Lybp4/gH4Y+ASsomyvlSn/qXA64DDgD/J1z1HNnjeVuDDFLqd8kR8LHDWGHEUPUQ2rPxpZAPzQdY1tRwYLLEf6wBOGtYJPg1sBI6PiCGA/JvwA2TJYbi//hJgPfCeQjfJANkf5pYljXyK0hfn4pC0GtgAfFfSWyPiR5LuzYvXF7t66q0fxRURMZwgvi3pncAp1EkaEfHTvCvo+ZH7z+em+CtJH4+Ip/PVHwZ+AXw1IZaia4ErJJ0HvIbs2szxJfdhHcDdUzYhlNm5+KpTbzfgUOCrwwkDICIeBP6d7FsxkiYBvcCNURi6OZ+b+cER+7xA0v2SXpB00oiy35H0PUkPSPqRpN6Ec9kl3+d9kp4Ffs1L37hf1oU2TitHLN9DNrR2IxYDryRLOkjalawr69qIeLbkvr4G/Cey1s+pZBfPb2swLmtjTho2UY4l++NafNXyGrJpZ2vNn/AosGf+fi/gFdSe/eyxEcu3ASdQe6a+RcDSiDgI+G/A9ZJqTXtb9LfAQuArwIlkswD+aV626xjbljVyvoXnGj1GPnvhvwLz8lXvJ/v3/EID+3qKbC6P08i6pq6PiBdG3cg6krunbKLcRdbPPpYnySbf2adG2T7AE/n7x8kSz9416vWQTXIDQET8AGBkLpD0OuBIsoRCRNya13kbsHaUGE8m+3b+6cK+poxSv51cTXYR/m1kXVPfjYj1De7rWrKW0E7krRfrPm5p2ISIiKciYm3xVafe02QJ5v15FxQAkg4AjgK+k9f7Ddkf9vcWWwb5H8MDE8PaH9gaEcVWz0OM3f3zSl7eUipzIbnVngMm1yqIiNuBe4HPAkeTtbQadSvZTHSLImLdOPZjbcwtDesEF5F9g/2GpKvJ7p66BNgOXFGo90ngW8BySYvJuqwWknVjNdpVMlbXFMDNwBn5RfcNZF1TRzV4vFZYD+wp6SNkifVXETFQKF8E/CNZa63hW2TzxO0WRpdzS8PaXkTcTHatYA/yb7Jk346Pyfvlh+vdSnYR9vfJbvf872R3Vz1KlmDG8jNgX0mvKKw7gELXVh3/hew238vI7jranfb643kNsAz4H8D/Bf7PiPKv5T+XRsRzVQZmncdzhFtXkzSN7Nv/ZRFx6YiyfuBzEXFTYd1twLKI+Kf8uY+rgYOii39RJP0l2cXvgyJiw4iypUAf8EYg8tbEeI4lsof+vgj8YURMG8/+rHpuaVjXkDQ5fxL7vZKOlXQWWT/7M2TftofrfSIfLO/twDWSNksavtA+DzhL0gPAZ4BTuzVhSDpY0vADgjeNTBgFB5Bds2nGLbQX5vs6vQn7sgngloZ1DUm7kHUPHQm8Fnia7HmJCyLinomMrR3lLa2jyAZL/ECxq69QZzrZtSGApyLi/nEe8/XA1Hzx+Yi4ezz7s+o5aZiZWTJ3T5mZWTInDTMzS+akYWZmyZw0zMwsmZOGmZklc9IwM7NkThpmZpbs/wPB6FpQggrIqQAAAABJRU5ErkJggg==\n",
|
| 1388 |
+
"text/plain": [
|
| 1389 |
+
"<Figure size 432x288 with 1 Axes>"
|
| 1390 |
+
]
|
| 1391 |
+
},
|
| 1392 |
+
"metadata": {
|
| 1393 |
+
"needs_background": "light"
|
| 1394 |
+
},
|
| 1395 |
+
"output_type": "display_data"
|
| 1396 |
+
}
|
| 1397 |
+
],
|
| 1398 |
+
"source": [
|
| 1399 |
+
"ax = df['neg_log10_affinity_M'].hist(bins=100,density=True)\n",
|
| 1400 |
+
"ax.set_xlabel('-$\\log_{10}$ affinity[M]',fontsize=16)\n",
|
| 1401 |
+
"ax.set_ylabel('probability',fontsize=16)\n",
|
| 1402 |
+
"ax.figure.savefig('affinity.pdf')"
|
| 1403 |
+
]
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"cell_type": "code",
|
| 1407 |
+
"execution_count": 6,
|
| 1408 |
+
"id": "11571486-901c-474b-a8ec-215ec5c9e661",
|
| 1409 |
+
"metadata": {},
|
| 1410 |
+
"outputs": [
|
| 1411 |
+
{
|
| 1412 |
+
"data": {
|
| 1413 |
+
"text/plain": [
|
| 1414 |
+
"1848949"
|
| 1415 |
+
]
|
| 1416 |
+
},
|
| 1417 |
+
"execution_count": 6,
|
| 1418 |
+
"metadata": {},
|
| 1419 |
+
"output_type": "execute_result"
|
| 1420 |
+
}
|
| 1421 |
+
],
|
| 1422 |
+
"source": [
|
| 1423 |
+
"len(df)"
|
| 1424 |
+
]
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"cell_type": "code",
|
| 1428 |
+
"execution_count": 7,
|
| 1429 |
+
"id": "9ca8df46-15d3-40f9-b304-dd6e5597be5e",
|
| 1430 |
+
"metadata": {},
|
| 1431 |
+
"outputs": [
|
| 1432 |
+
{
|
| 1433 |
+
"data": {
|
| 1434 |
+
"text/plain": [
|
| 1435 |
+
"5.142857142857143"
|
| 1436 |
+
]
|
| 1437 |
+
},
|
| 1438 |
+
"execution_count": 7,
|
| 1439 |
+
"metadata": {},
|
| 1440 |
+
"output_type": "execute_result"
|
| 1441 |
+
}
|
| 1442 |
+
],
|
| 1443 |
+
"source": [
|
| 1444 |
+
"1.8/0.35"
|
| 1445 |
+
]
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"cell_type": "code",
|
| 1449 |
+
"execution_count": null,
|
| 1450 |
+
"id": "88cf855d-704f-4ed4-827e-9f4e3288b3a0",
|
| 1451 |
+
"metadata": {},
|
| 1452 |
+
"outputs": [],
|
| 1453 |
+
"source": []
|
| 1454 |
+
}
|
| 1455 |
+
],
|
| 1456 |
+
"metadata": {
|
| 1457 |
+
"kernelspec": {
|
| 1458 |
+
"display_name": "Python 3",
|
| 1459 |
+
"language": "python",
|
| 1460 |
+
"name": "python3"
|
| 1461 |
+
},
|
| 1462 |
+
"language_info": {
|
| 1463 |
+
"codemirror_mode": {
|
| 1464 |
+
"name": "ipython",
|
| 1465 |
+
"version": 3
|
| 1466 |
+
},
|
| 1467 |
+
"file_extension": ".py",
|
| 1468 |
+
"mimetype": "text/x-python",
|
| 1469 |
+
"name": "python",
|
| 1470 |
+
"nbconvert_exporter": "python",
|
| 1471 |
+
"pygments_lexer": "ipython3",
|
| 1472 |
+
"version": "3.9.4"
|
| 1473 |
+
}
|
| 1474 |
+
},
|
| 1475 |
+
"nbformat": 4,
|
| 1476 |
+
"nbformat_minor": 5
|
| 1477 |
+
}
|
moad.ipynb
ADDED
|
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "c47a32d8-c857-41de-a70a-cec48046df12",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pandas as pd"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 92,
|
| 16 |
+
"id": "e0c6bd53-3417-44bd-b1b4-81802b37fbfc",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"df = pd.read_csv('binding_moad/every.csv',header=None,skiprows=2)\n",
|
| 21 |
+
"df = df.rename(columns={2:'pdb',3: 'ligand_name', 4: 'ligand_valid', 7: 'affinity_val', 8: 'affinity_unit', 9:'smiles'})\n",
|
| 22 |
+
"#df = df[df['ligand_valid']!='invalid'].copy()"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 93,
|
| 28 |
+
"id": "e40b1ddc-9a98-4a3b-b8a6-45e3940a3ea2",
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"df['is_sep'] = df[1] == 'Family. Representative Entry is '"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 94,
|
| 38 |
+
"id": "4f00a0d1-78db-4f32-9d12-5e035b70ef98",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"df['cum_sum'] = df['is_sep'].cumsum()"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 95,
|
| 48 |
+
"id": "52c0c66c-1eb0-415b-b019-bc77419ccbd7",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"from pint import UnitRegistry\n",
|
| 53 |
+
"ureg = UnitRegistry()\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"def to_uM(affinity_unit):\n",
|
| 56 |
+
" try:\n",
|
| 57 |
+
" val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
|
| 58 |
+
" return val.m_as(ureg.uM)\n",
|
| 59 |
+
" except Exception:\n",
|
| 60 |
+
" pass\n",
|
| 61 |
+
" \n",
|
| 62 |
+
" try:\n",
|
| 63 |
+
" val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
|
| 64 |
+
" return 1/val.m_as(1/ureg.uM)\n",
|
| 65 |
+
" except Exception:\n",
|
| 66 |
+
" pass"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 96,
|
| 72 |
+
"id": "e5b4dd41-1389-408d-bee6-6dbeefc1d5c7",
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"source": [
|
| 76 |
+
"groupby = df.groupby('cum_sum')"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 121,
|
| 82 |
+
"id": "61b8276c-54fe-4989-af5f-723994e1df7e",
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"def group(df):\n",
|
| 87 |
+
" pdb = df[df['is_sep']]['pdb'].values\n",
|
| 88 |
+
" if len(pdb) > 0:\n",
|
| 89 |
+
" pdb = pdb[0]\n",
|
| 90 |
+
" df['pdb_ref'] = pdb\n",
|
| 91 |
+
" return df[df['ligand_valid']=='valid']\n",
|
| 92 |
+
"df_expand = groupby.apply(group).reset_index(drop=True)"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": 124,
|
| 98 |
+
"id": "8bb2dfac-5f11-455c-9dee-3607b47b4232",
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [],
|
| 101 |
+
"source": [
|
| 102 |
+
"df_expand['affinity_uM'] = df_expand[['affinity_val','affinity_unit']].apply(to_uM,axis=1)"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": 125,
|
| 108 |
+
"id": "0dc39f62-5b18-4a86-9a44-17d1925da2ad",
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"df_complex = pd.read_parquet('data/moad_complex.parquet')\n",
|
| 113 |
+
"df_complex['name'] = df_complex['name'].str.upper()"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 128,
|
| 119 |
+
"id": "6d158a41-64c6-4fa2-92d5-562aa11e8924",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"df_all = df_expand.merge(df_complex,left_on='pdb_ref',right_on='name')"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": 129,
|
| 129 |
+
"id": "901fe6c6-dc8c-4ce4-82c6-1fb0b718287a",
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": [
|
| 133 |
+
"df_all = df_all[~df_all['affinity_val'].isnull()]"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": 130,
|
| 139 |
+
"id": "383f9a1c-ffc6-43da-ac5a-5bcb815be28b",
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [
|
| 142 |
+
{
|
| 143 |
+
"data": {
|
| 144 |
+
"text/html": [
|
| 145 |
+
"<div>\n",
|
| 146 |
+
"<style scoped>\n",
|
| 147 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 148 |
+
" vertical-align: middle;\n",
|
| 149 |
+
" }\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" .dataframe tbody tr th {\n",
|
| 152 |
+
" vertical-align: top;\n",
|
| 153 |
+
" }\n",
|
| 154 |
+
"\n",
|
| 155 |
+
" .dataframe thead th {\n",
|
| 156 |
+
" text-align: right;\n",
|
| 157 |
+
" }\n",
|
| 158 |
+
"</style>\n",
|
| 159 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 160 |
+
" <thead>\n",
|
| 161 |
+
" <tr style=\"text-align: right;\">\n",
|
| 162 |
+
" <th></th>\n",
|
| 163 |
+
" <th>0</th>\n",
|
| 164 |
+
" <th>1</th>\n",
|
| 165 |
+
" <th>pdb</th>\n",
|
| 166 |
+
" <th>ligand_name</th>\n",
|
| 167 |
+
" <th>ligand_valid</th>\n",
|
| 168 |
+
" <th>5</th>\n",
|
| 169 |
+
" <th>6</th>\n",
|
| 170 |
+
" <th>affinity_val</th>\n",
|
| 171 |
+
" <th>affinity_unit</th>\n",
|
| 172 |
+
" <th>smiles</th>\n",
|
| 173 |
+
" <th>10</th>\n",
|
| 174 |
+
" <th>is_sep</th>\n",
|
| 175 |
+
" <th>cum_sum</th>\n",
|
| 176 |
+
" <th>pdb_ref</th>\n",
|
| 177 |
+
" <th>affinity_uM</th>\n",
|
| 178 |
+
" <th>name</th>\n",
|
| 179 |
+
" <th>seq</th>\n",
|
| 180 |
+
" </tr>\n",
|
| 181 |
+
" </thead>\n",
|
| 182 |
+
" <tbody>\n",
|
| 183 |
+
" <tr>\n",
|
| 184 |
+
" <th>0</th>\n",
|
| 185 |
+
" <td>NaN</td>\n",
|
| 186 |
+
" <td>NaN</td>\n",
|
| 187 |
+
" <td>NaN</td>\n",
|
| 188 |
+
" <td>2PA:C:613</td>\n",
|
| 189 |
+
" <td>valid</td>\n",
|
| 190 |
+
" <td>Ki</td>\n",
|
| 191 |
+
" <td>=</td>\n",
|
| 192 |
+
" <td>0.62</td>\n",
|
| 193 |
+
" <td>nM</td>\n",
|
| 194 |
+
" <td>NP(=O)(N)O</td>\n",
|
| 195 |
+
" <td>NaN</td>\n",
|
| 196 |
+
" <td>False</td>\n",
|
| 197 |
+
" <td>1</td>\n",
|
| 198 |
+
" <td>6H8J</td>\n",
|
| 199 |
+
" <td>0.000620</td>\n",
|
| 200 |
+
" <td>6H8J</td>\n",
|
| 201 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
| 202 |
+
" </tr>\n",
|
| 203 |
+
" <tr>\n",
|
| 204 |
+
" <th>2</th>\n",
|
| 205 |
+
" <td>NaN</td>\n",
|
| 206 |
+
" <td>NaN</td>\n",
|
| 207 |
+
" <td>NaN</td>\n",
|
| 208 |
+
" <td>HAE:C:800</td>\n",
|
| 209 |
+
" <td>valid</td>\n",
|
| 210 |
+
" <td>Ki</td>\n",
|
| 211 |
+
" <td>=</td>\n",
|
| 212 |
+
" <td>2.60</td>\n",
|
| 213 |
+
" <td>uM</td>\n",
|
| 214 |
+
" <td>CC(=O)NO</td>\n",
|
| 215 |
+
" <td>NaN</td>\n",
|
| 216 |
+
" <td>False</td>\n",
|
| 217 |
+
" <td>1</td>\n",
|
| 218 |
+
" <td>6H8J</td>\n",
|
| 219 |
+
" <td>2.600000</td>\n",
|
| 220 |
+
" <td>6H8J</td>\n",
|
| 221 |
+
" <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
|
| 222 |
+
" </tr>\n",
|
| 223 |
+
" <tr>\n",
|
| 224 |
+
" <th>7</th>\n",
|
| 225 |
+
" <td>NaN</td>\n",
|
| 226 |
+
" <td>NaN</td>\n",
|
| 227 |
+
" <td>NaN</td>\n",
|
| 228 |
+
" <td>43W:A:902</td>\n",
|
| 229 |
+
" <td>valid</td>\n",
|
| 230 |
+
" <td>ic50</td>\n",
|
| 231 |
+
" <td>=</td>\n",
|
| 232 |
+
" <td>580.00</td>\n",
|
| 233 |
+
" <td>nM</td>\n",
|
| 234 |
+
" <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
|
| 235 |
+
" <td>NaN</td>\n",
|
| 236 |
+
" <td>False</td>\n",
|
| 237 |
+
" <td>2</td>\n",
|
| 238 |
+
" <td>4S3F</td>\n",
|
| 239 |
+
" <td>0.580000</td>\n",
|
| 240 |
+
" <td>4S3F</td>\n",
|
| 241 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
| 242 |
+
" </tr>\n",
|
| 243 |
+
" <tr>\n",
|
| 244 |
+
" <th>16</th>\n",
|
| 245 |
+
" <td>NaN</td>\n",
|
| 246 |
+
" <td>NaN</td>\n",
|
| 247 |
+
" <td>NaN</td>\n",
|
| 248 |
+
" <td>0CG:A:902</td>\n",
|
| 249 |
+
" <td>valid</td>\n",
|
| 250 |
+
" <td>ic50</td>\n",
|
| 251 |
+
" <td>=</td>\n",
|
| 252 |
+
" <td>770.00</td>\n",
|
| 253 |
+
" <td>nM</td>\n",
|
| 254 |
+
" <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
|
| 255 |
+
" <td>NaN</td>\n",
|
| 256 |
+
" <td>False</td>\n",
|
| 257 |
+
" <td>2</td>\n",
|
| 258 |
+
" <td>4S3F</td>\n",
|
| 259 |
+
" <td>0.770000</td>\n",
|
| 260 |
+
" <td>4S3F</td>\n",
|
| 261 |
+
" <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
|
| 262 |
+
" </tr>\n",
|
| 263 |
+
" <tr>\n",
|
| 264 |
+
" <th>17</th>\n",
|
| 265 |
+
" <td>NaN</td>\n",
|
| 266 |
+
" <td>NaN</td>\n",
|
| 267 |
+
" <td>NaN</td>\n",
|
| 268 |
+
" <td>ADN:A:901</td>\n",
|
| 269 |
+
" <td>valid</td>\n",
|
| 270 |
+
" <td>Kd</td>\n",
|
| 271 |
+
" <td>=</td>\n",
|
| 272 |
+
" <td>15.00</td>\n",
|
| 273 |
+
" <td>uM</td>\n",
|
| 274 |
+
" <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
|
| 275 |
+
" <td>NaN</td>\n",
|
| 276 |
+
" <td>False</td>\n",
|
| 277 |
+
" <td>5</td>\n",
|
| 278 |
+
" <td>2GL0</td>\n",
|
| 279 |
+
" <td>15.000000</td>\n",
|
| 280 |
+
" <td>2GL0</td>\n",
|
| 281 |
+
" <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
|
| 282 |
+
" </tr>\n",
|
| 283 |
+
" <tr>\n",
|
| 284 |
+
" <th>...</th>\n",
|
| 285 |
+
" <td>...</td>\n",
|
| 286 |
+
" <td>...</td>\n",
|
| 287 |
+
" <td>...</td>\n",
|
| 288 |
+
" <td>...</td>\n",
|
| 289 |
+
" <td>...</td>\n",
|
| 290 |
+
" <td>...</td>\n",
|
| 291 |
+
" <td>...</td>\n",
|
| 292 |
+
" <td>...</td>\n",
|
| 293 |
+
" <td>...</td>\n",
|
| 294 |
+
" <td>...</td>\n",
|
| 295 |
+
" <td>...</td>\n",
|
| 296 |
+
" <td>...</td>\n",
|
| 297 |
+
" <td>...</td>\n",
|
| 298 |
+
" <td>...</td>\n",
|
| 299 |
+
" <td>...</td>\n",
|
| 300 |
+
" <td>...</td>\n",
|
| 301 |
+
" <td>...</td>\n",
|
| 302 |
+
" </tr>\n",
|
| 303 |
+
" <tr>\n",
|
| 304 |
+
" <th>51900</th>\n",
|
| 305 |
+
" <td>NaN</td>\n",
|
| 306 |
+
" <td>NaN</td>\n",
|
| 307 |
+
" <td>NaN</td>\n",
|
| 308 |
+
" <td>MAN NAG:G:1</td>\n",
|
| 309 |
+
" <td>valid</td>\n",
|
| 310 |
+
" <td>Ka</td>\n",
|
| 311 |
+
" <td>=</td>\n",
|
| 312 |
+
" <td>7860.00</td>\n",
|
| 313 |
+
" <td>M^-1</td>\n",
|
| 314 |
+
" <td>NaN</td>\n",
|
| 315 |
+
" <td>NaN</td>\n",
|
| 316 |
+
" <td>False</td>\n",
|
| 317 |
+
" <td>10499</td>\n",
|
| 318 |
+
" <td>2WDB</td>\n",
|
| 319 |
+
" <td>127.226463</td>\n",
|
| 320 |
+
" <td>2WDB</td>\n",
|
| 321 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 322 |
+
" </tr>\n",
|
| 323 |
+
" <tr>\n",
|
| 324 |
+
" <th>51901</th>\n",
|
| 325 |
+
" <td>NaN</td>\n",
|
| 326 |
+
" <td>NaN</td>\n",
|
| 327 |
+
" <td>NaN</td>\n",
|
| 328 |
+
" <td>MAN NAG:F:1</td>\n",
|
| 329 |
+
" <td>valid</td>\n",
|
| 330 |
+
" <td>Ka</td>\n",
|
| 331 |
+
" <td>=</td>\n",
|
| 332 |
+
" <td>7860.00</td>\n",
|
| 333 |
+
" <td>M^-1</td>\n",
|
| 334 |
+
" <td>NaN</td>\n",
|
| 335 |
+
" <td>NaN</td>\n",
|
| 336 |
+
" <td>False</td>\n",
|
| 337 |
+
" <td>10499</td>\n",
|
| 338 |
+
" <td>2WDB</td>\n",
|
| 339 |
+
" <td>127.226463</td>\n",
|
| 340 |
+
" <td>2WDB</td>\n",
|
| 341 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 342 |
+
" </tr>\n",
|
| 343 |
+
" <tr>\n",
|
| 344 |
+
" <th>51902</th>\n",
|
| 345 |
+
" <td>NaN</td>\n",
|
| 346 |
+
" <td>NaN</td>\n",
|
| 347 |
+
" <td>NaN</td>\n",
|
| 348 |
+
" <td>NGA NAG:F:1</td>\n",
|
| 349 |
+
" <td>valid</td>\n",
|
| 350 |
+
" <td>Ka</td>\n",
|
| 351 |
+
" <td>=</td>\n",
|
| 352 |
+
" <td>5910.00</td>\n",
|
| 353 |
+
" <td>M^-1</td>\n",
|
| 354 |
+
" <td>NaN</td>\n",
|
| 355 |
+
" <td>NaN</td>\n",
|
| 356 |
+
" <td>False</td>\n",
|
| 357 |
+
" <td>10499</td>\n",
|
| 358 |
+
" <td>2WDB</td>\n",
|
| 359 |
+
" <td>169.204738</td>\n",
|
| 360 |
+
" <td>2WDB</td>\n",
|
| 361 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 362 |
+
" </tr>\n",
|
| 363 |
+
" <tr>\n",
|
| 364 |
+
" <th>51903</th>\n",
|
| 365 |
+
" <td>NaN</td>\n",
|
| 366 |
+
" <td>NaN</td>\n",
|
| 367 |
+
" <td>NaN</td>\n",
|
| 368 |
+
" <td>NGA NAG:E:1</td>\n",
|
| 369 |
+
" <td>valid</td>\n",
|
| 370 |
+
" <td>Ka</td>\n",
|
| 371 |
+
" <td>=</td>\n",
|
| 372 |
+
" <td>5910.00</td>\n",
|
| 373 |
+
" <td>M^-1</td>\n",
|
| 374 |
+
" <td>NaN</td>\n",
|
| 375 |
+
" <td>NaN</td>\n",
|
| 376 |
+
" <td>False</td>\n",
|
| 377 |
+
" <td>10499</td>\n",
|
| 378 |
+
" <td>2WDB</td>\n",
|
| 379 |
+
" <td>169.204738</td>\n",
|
| 380 |
+
" <td>2WDB</td>\n",
|
| 381 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 382 |
+
" </tr>\n",
|
| 383 |
+
" <tr>\n",
|
| 384 |
+
" <th>51904</th>\n",
|
| 385 |
+
" <td>NaN</td>\n",
|
| 386 |
+
" <td>NaN</td>\n",
|
| 387 |
+
" <td>NaN</td>\n",
|
| 388 |
+
" <td>NGA NAG:H:1</td>\n",
|
| 389 |
+
" <td>valid</td>\n",
|
| 390 |
+
" <td>Ka</td>\n",
|
| 391 |
+
" <td>=</td>\n",
|
| 392 |
+
" <td>5910.00</td>\n",
|
| 393 |
+
" <td>M^-1</td>\n",
|
| 394 |
+
" <td>NaN</td>\n",
|
| 395 |
+
" <td>NaN</td>\n",
|
| 396 |
+
" <td>False</td>\n",
|
| 397 |
+
" <td>10499</td>\n",
|
| 398 |
+
" <td>2WDB</td>\n",
|
| 399 |
+
" <td>169.204738</td>\n",
|
| 400 |
+
" <td>2WDB</td>\n",
|
| 401 |
+
" <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
|
| 402 |
+
" </tr>\n",
|
| 403 |
+
" </tbody>\n",
|
| 404 |
+
"</table>\n",
|
| 405 |
+
"<p>25425 rows × 17 columns</p>\n",
|
| 406 |
+
"</div>"
|
| 407 |
+
],
|
| 408 |
+
"text/plain": [
|
| 409 |
+
" 0 1 pdb ligand_name ligand_valid 5 6 affinity_val \\\n",
|
| 410 |
+
"0 NaN NaN NaN 2PA:C:613 valid Ki = 0.62 \n",
|
| 411 |
+
"2 NaN NaN NaN HAE:C:800 valid Ki = 2.60 \n",
|
| 412 |
+
"7 NaN NaN NaN 43W:A:902 valid ic50 = 580.00 \n",
|
| 413 |
+
"16 NaN NaN NaN 0CG:A:902 valid ic50 = 770.00 \n",
|
| 414 |
+
"17 NaN NaN NaN ADN:A:901 valid Kd = 15.00 \n",
|
| 415 |
+
"... ... ... ... ... ... ... .. ... \n",
|
| 416 |
+
"51900 NaN NaN NaN MAN NAG:G:1 valid Ka = 7860.00 \n",
|
| 417 |
+
"51901 NaN NaN NaN MAN NAG:F:1 valid Ka = 7860.00 \n",
|
| 418 |
+
"51902 NaN NaN NaN NGA NAG:F:1 valid Ka = 5910.00 \n",
|
| 419 |
+
"51903 NaN NaN NaN NGA NAG:E:1 valid Ka = 5910.00 \n",
|
| 420 |
+
"51904 NaN NaN NaN NGA NAG:H:1 valid Ka = 5910.00 \n",
|
| 421 |
+
"\n",
|
| 422 |
+
" affinity_unit smiles 10 \\\n",
|
| 423 |
+
"0 nM NP(=O)(N)O NaN \n",
|
| 424 |
+
"2 uM CC(=O)NO NaN \n",
|
| 425 |
+
"7 nM C#CCCOP(=O)(O)OP(=O)(O)O NaN \n",
|
| 426 |
+
"16 nM C#CCOP(=O)(O)OP(=O)(O)O NaN \n",
|
| 427 |
+
"17 uM c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... NaN \n",
|
| 428 |
+
"... ... ... .. \n",
|
| 429 |
+
"51900 M^-1 NaN NaN \n",
|
| 430 |
+
"51901 M^-1 NaN NaN \n",
|
| 431 |
+
"51902 M^-1 NaN NaN \n",
|
| 432 |
+
"51903 M^-1 NaN NaN \n",
|
| 433 |
+
"51904 M^-1 NaN NaN \n",
|
| 434 |
+
"\n",
|
| 435 |
+
" is_sep cum_sum pdb_ref affinity_uM name \\\n",
|
| 436 |
+
"0 False 1 6H8J 0.000620 6H8J \n",
|
| 437 |
+
"2 False 1 6H8J 2.600000 6H8J \n",
|
| 438 |
+
"7 False 2 4S3F 0.580000 4S3F \n",
|
| 439 |
+
"16 False 2 4S3F 0.770000 4S3F \n",
|
| 440 |
+
"17 False 5 2GL0 15.000000 2GL0 \n",
|
| 441 |
+
"... ... ... ... ... ... \n",
|
| 442 |
+
"51900 False 10499 2WDB 127.226463 2WDB \n",
|
| 443 |
+
"51901 False 10499 2WDB 127.226463 2WDB \n",
|
| 444 |
+
"51902 False 10499 2WDB 169.204738 2WDB \n",
|
| 445 |
+
"51903 False 10499 2WDB 169.204738 2WDB \n",
|
| 446 |
+
"51904 False 10499 2WDB 169.204738 2WDB \n",
|
| 447 |
+
"\n",
|
| 448 |
+
" seq \n",
|
| 449 |
+
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
| 450 |
+
"2 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
|
| 451 |
+
"7 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
| 452 |
+
"16 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
|
| 453 |
+
"17 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
|
| 454 |
+
"... ... \n",
|
| 455 |
+
"51900 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 456 |
+
"51901 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 457 |
+
"51902 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 458 |
+
"51903 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 459 |
+
"51904 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
|
| 460 |
+
"\n",
|
| 461 |
+
"[25425 rows x 17 columns]"
|
| 462 |
+
]
|
| 463 |
+
},
|
| 464 |
+
"execution_count": 130,
|
| 465 |
+
"metadata": {},
|
| 466 |
+
"output_type": "execute_result"
|
| 467 |
+
}
|
| 468 |
+
],
|
| 469 |
+
"source": [
|
| 470 |
+
"df_all"
|
| 471 |
+
]
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"cell_type": "code",
|
| 475 |
+
"execution_count": 133,
|
| 476 |
+
"id": "bebc962b-10f7-478c-8e23-e2d3722e875c",
|
| 477 |
+
"metadata": {},
|
| 478 |
+
"outputs": [],
|
| 479 |
+
"source": [
|
| 480 |
+
"df_all[['pdb','ligand_name','smiles','name','affinity_uM','seq']].to_parquet('data/moad.parquet')"
|
| 481 |
+
]
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"cell_type": "code",
|
| 485 |
+
"execution_count": null,
|
| 486 |
+
"id": "6ceb8706-273c-4a83-8cda-c7e33fc87e38",
|
| 487 |
+
"metadata": {},
|
| 488 |
+
"outputs": [],
|
| 489 |
+
"source": []
|
| 490 |
+
}
|
| 491 |
+
],
|
| 492 |
+
"metadata": {
|
| 493 |
+
"kernelspec": {
|
| 494 |
+
"display_name": "Python 3",
|
| 495 |
+
"language": "python",
|
| 496 |
+
"name": "python3"
|
| 497 |
+
},
|
| 498 |
+
"language_info": {
|
| 499 |
+
"codemirror_mode": {
|
| 500 |
+
"name": "ipython",
|
| 501 |
+
"version": 3
|
| 502 |
+
},
|
| 503 |
+
"file_extension": ".py",
|
| 504 |
+
"mimetype": "text/x-python",
|
| 505 |
+
"name": "python",
|
| 506 |
+
"nbconvert_exporter": "python",
|
| 507 |
+
"pygments_lexer": "ipython3",
|
| 508 |
+
"version": "3.9.4"
|
| 509 |
+
}
|
| 510 |
+
},
|
| 511 |
+
"nbformat": 4,
|
| 512 |
+
"nbformat_minor": 5
|
| 513 |
+
}
|
moad.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mpi4py import MPI
|
| 2 |
+
from mpi4py.futures import MPICommExecutor
|
| 3 |
+
|
| 4 |
+
from openbabel import pybel
|
| 5 |
+
from Bio import SeqIO
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
def parse_complex(fn):
|
| 9 |
+
try:
|
| 10 |
+
name = os.path.basename(fn).split('.')[0]
|
| 11 |
+
print(name)
|
| 12 |
+
seq = str(next(SeqIO.parse(fn, "pdb-seqres")).seq)
|
| 13 |
+
return name, seq
|
| 14 |
+
except:
|
| 15 |
+
return None
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
if __name__ == '__main__':
|
| 19 |
+
import glob
|
| 20 |
+
|
| 21 |
+
filenames = glob.glob('binding_moad/BindingMOAD_2020/*.bio1')
|
| 22 |
+
comm = MPI.COMM_WORLD
|
| 23 |
+
with MPICommExecutor(comm, root=0) as executor:
|
| 24 |
+
if executor is not None:
|
| 25 |
+
result = executor.map(parse_complex, filenames)
|
| 26 |
+
result = list(result)
|
| 27 |
+
names = [r[0] for r in result if r is not None]
|
| 28 |
+
seqs = [r[1] for r in result if r is not None]
|
| 29 |
+
|
| 30 |
+
import pandas as pd
|
| 31 |
+
df = pd.DataFrame({'name': names, 'seq': seqs})
|
| 32 |
+
df.to_parquet('data/moad_complex.parquet')
|
pdbbind.ipynb
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "834aeced-c3c5-42a0-bad1-41e009dd86ee",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"### Preprocessing"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 16,
|
| 14 |
+
"id": "86476f6e-802a-463b-a1b0-2ae228bb92af",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"import pandas as pd"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"id": "0cde27df-2f77-4e62-8c65-7b7a4e76b404",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"complex = pd.read_parquet('')"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": 49,
|
| 34 |
+
"id": "9b2be11c-f4bb-4107-af49-abd78052afcf",
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"df = pd.read_table('pdbbind/data/plain-text-index/index/INDEX_general_PL_data.2019',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n",
|
| 39 |
+
"df = df.rename(columns={'#': 'name','release': 'affinity'})"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": 50,
|
| 45 |
+
"id": "16e0fe44-96aa-4d3a-ae42-3609e895418b",
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"from numericalunits import mL, nm"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": 136,
|
| 55 |
+
"id": "3acbca3c-9c0b-43a1-a45e-331bf153bcfa",
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [],
|
| 58 |
+
"source": [
|
| 59 |
+
"from pint import UnitRegistry\n",
|
| 60 |
+
"ureg = UnitRegistry()\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"def to_uM(affinity):\n",
|
| 63 |
+
" val = ureg(affinity)\n",
|
| 64 |
+
" try:\n",
|
| 65 |
+
" return val.m_as(ureg.uM)\n",
|
| 66 |
+
" except Exception:\n",
|
| 67 |
+
" pass\n",
|
| 68 |
+
" \n",
|
| 69 |
+
" try:\n",
|
| 70 |
+
" return 1/val.m_as(1/ureg.uM)\n",
|
| 71 |
+
" except Exception:\n",
|
| 72 |
+
" pass"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 137,
|
| 78 |
+
"id": "58e5748b-2cea-43ff-ab51-85a5021bd50b",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"df['affinity_uM'] = df['affinity'].str.split('[=\\~><]').str[1].apply(to_uM)"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": 138,
|
| 88 |
+
"id": "d92f0004-68c1-4487-94b9-56b4fd598de4",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [
|
| 91 |
+
{
|
| 92 |
+
"data": {
|
| 93 |
+
"text/html": [
|
| 94 |
+
"<div>\n",
|
| 95 |
+
"<style scoped>\n",
|
| 96 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 97 |
+
" vertical-align: middle;\n",
|
| 98 |
+
" }\n",
|
| 99 |
+
"\n",
|
| 100 |
+
" .dataframe tbody tr th {\n",
|
| 101 |
+
" vertical-align: top;\n",
|
| 102 |
+
" }\n",
|
| 103 |
+
"\n",
|
| 104 |
+
" .dataframe thead th {\n",
|
| 105 |
+
" text-align: right;\n",
|
| 106 |
+
" }\n",
|
| 107 |
+
"</style>\n",
|
| 108 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 109 |
+
" <thead>\n",
|
| 110 |
+
" <tr style=\"text-align: right;\">\n",
|
| 111 |
+
" <th></th>\n",
|
| 112 |
+
" <th>name</th>\n",
|
| 113 |
+
" <th>affinity</th>\n",
|
| 114 |
+
" <th>affinity_uM</th>\n",
|
| 115 |
+
" </tr>\n",
|
| 116 |
+
" </thead>\n",
|
| 117 |
+
" <tbody>\n",
|
| 118 |
+
" <tr>\n",
|
| 119 |
+
" <th>1</th>\n",
|
| 120 |
+
" <td>3zzf</td>\n",
|
| 121 |
+
" <td>Ki=400mM</td>\n",
|
| 122 |
+
" <td>4.000000e+05</td>\n",
|
| 123 |
+
" </tr>\n",
|
| 124 |
+
" <tr>\n",
|
| 125 |
+
" <th>2</th>\n",
|
| 126 |
+
" <td>3gww</td>\n",
|
| 127 |
+
" <td>IC50=355mM</td>\n",
|
| 128 |
+
" <td>3.550000e+05</td>\n",
|
| 129 |
+
" </tr>\n",
|
| 130 |
+
" <tr>\n",
|
| 131 |
+
" <th>3</th>\n",
|
| 132 |
+
" <td>1w8l</td>\n",
|
| 133 |
+
" <td>Ki=320mM</td>\n",
|
| 134 |
+
" <td>3.200000e+05</td>\n",
|
| 135 |
+
" </tr>\n",
|
| 136 |
+
" <tr>\n",
|
| 137 |
+
" <th>4</th>\n",
|
| 138 |
+
" <td>3fqa</td>\n",
|
| 139 |
+
" <td>IC50=320mM</td>\n",
|
| 140 |
+
" <td>3.200000e+05</td>\n",
|
| 141 |
+
" </tr>\n",
|
| 142 |
+
" <tr>\n",
|
| 143 |
+
" <th>5</th>\n",
|
| 144 |
+
" <td>1zsb</td>\n",
|
| 145 |
+
" <td>Kd=250mM</td>\n",
|
| 146 |
+
" <td>2.500000e+05</td>\n",
|
| 147 |
+
" </tr>\n",
|
| 148 |
+
" <tr>\n",
|
| 149 |
+
" <th>...</th>\n",
|
| 150 |
+
" <td>...</td>\n",
|
| 151 |
+
" <td>...</td>\n",
|
| 152 |
+
" <td>...</td>\n",
|
| 153 |
+
" </tr>\n",
|
| 154 |
+
" <tr>\n",
|
| 155 |
+
" <th>17675</th>\n",
|
| 156 |
+
" <td>7cpa</td>\n",
|
| 157 |
+
" <td>Ki=11fM</td>\n",
|
| 158 |
+
" <td>1.100000e-08</td>\n",
|
| 159 |
+
" </tr>\n",
|
| 160 |
+
" <tr>\n",
|
| 161 |
+
" <th>17676</th>\n",
|
| 162 |
+
" <td>2xuf</td>\n",
|
| 163 |
+
" <td>Kd=4.1fM</td>\n",
|
| 164 |
+
" <td>4.100000e-09</td>\n",
|
| 165 |
+
" </tr>\n",
|
| 166 |
+
" <tr>\n",
|
| 167 |
+
" <th>17677</th>\n",
|
| 168 |
+
" <td>1avd</td>\n",
|
| 169 |
+
" <td>Kd=1fM</td>\n",
|
| 170 |
+
" <td>1.000000e-09</td>\n",
|
| 171 |
+
" </tr>\n",
|
| 172 |
+
" <tr>\n",
|
| 173 |
+
" <th>17678</th>\n",
|
| 174 |
+
" <td>2xui</td>\n",
|
| 175 |
+
" <td>Kd=1.0fM</td>\n",
|
| 176 |
+
" <td>1.000000e-09</td>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" <tr>\n",
|
| 179 |
+
" <th>17679</th>\n",
|
| 180 |
+
" <td>2avi</td>\n",
|
| 181 |
+
" <td>Kd=0.6fM</td>\n",
|
| 182 |
+
" <td>6.000000e-10</td>\n",
|
| 183 |
+
" </tr>\n",
|
| 184 |
+
" </tbody>\n",
|
| 185 |
+
"</table>\n",
|
| 186 |
+
"<p>17679 rows × 3 columns</p>\n",
|
| 187 |
+
"</div>"
|
| 188 |
+
],
|
| 189 |
+
"text/plain": [
|
| 190 |
+
" name affinity affinity_uM\n",
|
| 191 |
+
"1 3zzf Ki=400mM 4.000000e+05\n",
|
| 192 |
+
"2 3gww IC50=355mM 3.550000e+05\n",
|
| 193 |
+
"3 1w8l Ki=320mM 3.200000e+05\n",
|
| 194 |
+
"4 3fqa IC50=320mM 3.200000e+05\n",
|
| 195 |
+
"5 1zsb Kd=250mM 2.500000e+05\n",
|
| 196 |
+
"... ... ... ...\n",
|
| 197 |
+
"17675 7cpa Ki=11fM 1.100000e-08\n",
|
| 198 |
+
"17676 2xuf Kd=4.1fM 4.100000e-09\n",
|
| 199 |
+
"17677 1avd Kd=1fM 1.000000e-09\n",
|
| 200 |
+
"17678 2xui Kd=1.0fM 1.000000e-09\n",
|
| 201 |
+
"17679 2avi Kd=0.6fM 6.000000e-10\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"[17679 rows x 3 columns]"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
"execution_count": 138,
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"output_type": "execute_result"
|
| 209 |
+
}
|
| 210 |
+
],
|
| 211 |
+
"source": [
|
| 212 |
+
"df"
|
| 213 |
+
]
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"cell_type": "code",
|
| 217 |
+
"execution_count": 139,
|
| 218 |
+
"id": "d6dda488-f709-4fe7-b372-080042cf7c66",
|
| 219 |
+
"metadata": {},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"df_complex = pd.read_parquet('data/pdbbind_complex.parquet')"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": 140,
|
| 228 |
+
"id": "df7929e3-c7fd-4e1b-a165-92f8d53b9011",
|
| 229 |
+
"metadata": {},
|
| 230 |
+
"outputs": [],
|
| 231 |
+
"source": [
|
| 232 |
+
"df_all = df_complex.merge(df,on='name').drop('affinity',axis=1)"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": 141,
|
| 238 |
+
"id": "4d105c42-0d11-49db-9012-52fafc9cd299",
|
| 239 |
+
"metadata": {},
|
| 240 |
+
"outputs": [],
|
| 241 |
+
"source": [
|
| 242 |
+
"df_all.to_parquet('data/pdbbind.parquet')"
|
| 243 |
+
]
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"cell_type": "code",
|
| 247 |
+
"execution_count": 142,
|
| 248 |
+
"id": "2955b056-26dd-45fa-8d74-f17661253a9a",
|
| 249 |
+
"metadata": {},
|
| 250 |
+
"outputs": [
|
| 251 |
+
{
|
| 252 |
+
"data": {
|
| 253 |
+
"text/plain": [
|
| 254 |
+
"17652"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
"execution_count": 142,
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"output_type": "execute_result"
|
| 260 |
+
}
|
| 261 |
+
],
|
| 262 |
+
"source": [
|
| 263 |
+
"len(df_all)"
|
| 264 |
+
]
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"cell_type": "code",
|
| 268 |
+
"execution_count": null,
|
| 269 |
+
"id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"outputs": [],
|
| 272 |
+
"source": []
|
| 273 |
+
}
|
| 274 |
+
],
|
| 275 |
+
"metadata": {
|
| 276 |
+
"kernelspec": {
|
| 277 |
+
"display_name": "Python 3",
|
| 278 |
+
"language": "python",
|
| 279 |
+
"name": "python3"
|
| 280 |
+
},
|
| 281 |
+
"language_info": {
|
| 282 |
+
"codemirror_mode": {
|
| 283 |
+
"name": "ipython",
|
| 284 |
+
"version": 3
|
| 285 |
+
},
|
| 286 |
+
"file_extension": ".py",
|
| 287 |
+
"mimetype": "text/x-python",
|
| 288 |
+
"name": "python",
|
| 289 |
+
"nbconvert_exporter": "python",
|
| 290 |
+
"pygments_lexer": "ipython3",
|
| 291 |
+
"version": "3.9.4"
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"nbformat": 4,
|
| 295 |
+
"nbformat_minor": 5
|
| 296 |
+
}
|
pdbbind.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mpi4py import MPI
|
| 2 |
+
from mpi4py.futures import MPICommExecutor
|
| 3 |
+
|
| 4 |
+
from openbabel import pybel
|
| 5 |
+
from Bio import SeqIO
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
def parse_complex(fn):
|
| 9 |
+
try:
|
| 10 |
+
name = os.path.basename(fn)
|
| 11 |
+
seq = str(next(SeqIO.parse(fn+'/'+name+'_protein.pdb', "pdb-seqres")).seq)
|
| 12 |
+
mol = next(pybel.readfile('sdf',fn+'/'+name+'_ligand.sdf'))
|
| 13 |
+
smi = mol.write('can').split('\t')[0]
|
| 14 |
+
return name, seq, smi
|
| 15 |
+
except:
|
| 16 |
+
return None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
if __name__ == '__main__':
|
| 20 |
+
import glob
|
| 21 |
+
|
| 22 |
+
filenames = glob.glob('pdbbind/data/v2019-other-PL/*')
|
| 23 |
+
filenames.extend(glob.glob('pdbbind/data/refined-set/*'))
|
| 24 |
+
comm = MPI.COMM_WORLD
|
| 25 |
+
with MPICommExecutor(comm, root=0) as executor:
|
| 26 |
+
if executor is not None:
|
| 27 |
+
result = executor.map(parse_complex, filenames)
|
| 28 |
+
result = list(result)
|
| 29 |
+
names = [r[0] for r in result if r is not None]
|
| 30 |
+
seqs = [r[1] for r in result if r is not None]
|
| 31 |
+
all_smiles = [r[2] for r in result if r is not None]
|
| 32 |
+
|
| 33 |
+
import pandas as pd
|
| 34 |
+
df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles})
|
| 35 |
+
df.to_parquet('data/pdbbind_complex.parquet')
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mpi4py
|
| 2 |
+
rdkit
|
| 3 |
+
openbabel
|