Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
22
37
Jan-12-2023-bww8_00000006_4
Feb-21-2023-soda3-intloss_00000015_29
Feb-20-2023-bww2-intloss_00000033_2
Feb-27-2023-soda3-intloss_00000017_0
Feb-21-2023-soda3-intloss_00000005_0
Feb-16-2023-cory1-intloss_00000008_3
Jan-12-2023-bww8_00000010_3
Feb-16-2023-cory1-intloss_00000013_3
Feb-09-2023-bww8-intloss_00000022_2
Feb-06-2023-bww8-intloss_00000011_0
Dec-15-2022-bww8_00000020_0
Jan-13-2023-bww8_00000002_2
Feb-23-2023-soda3-intloss_00000015_3
Jan-12-2023-bww8_00000013_5
Feb-20-2023-bww2-intloss_00000028_2
Dec-09-2022-bww8_00000028_0
Feb-20-2023-bww2-intloss_00000005_0
Jan-12-2023-bww8_00000010_16
Feb-27-2023-soda3-intloss_00000002_3
Feb-13-2023-bww8-intloss_00000007_0
Feb-06-2023-bww8-intloss_00000004_1
Feb-21-2023-soda3-intloss_00000014_5
Jan-17-2023-bww8_00000000_8
Feb-21-2023-soda3-intloss_00000004_1
Feb-15-2023-cory1_00000005_0
Feb-20-2023-bww2-intloss_00000034_4
Nov-17-2022-bww8_00000013_1
Dec-12-2022-bww8_00000016_0
Dec-06-2022-bww8_00000019_11
Nov-17-2022-bww8_00000013_0
Dec-06-2022-bww8_00000040_2
Feb-14-2023-bww8-intloss_00000008_37
Jan-12-2023-bww8_00000010_8
Jan-12-2023-bww8_00000004_2
Dec-06-2022-bww8_00000002_2
Feb-09-2023-bww8-intloss_00000045_1
Feb-16-2023-cory1-intloss_00000013_1
Feb-15-2023-cory1_00000003_1
Feb-09-2023-bww8-intloss_00000038_0
Feb-06-2023-bww8-intloss_00000000_3
Dec-12-2022-bww8_00000018_0
Jan-13-2023-bww8_00000001_0
Jan-20-2023-bww8_00000004_13
Feb-27-2023-soda3-intloss_00000027_11
Feb-14-2023-bww8-intloss_00000008_19
Feb-20-2023-bww2-intloss_00000021_1
Feb-21-2023-soda3-intloss_00000015_27
Feb-09-2023-bww8-intloss_00000019_1
Nov-17-2022-bww8_00000018_6
Feb-13-2023-bww8-intloss_00000009_0
Feb-14-2023-bww8-intloss_00000006_0
Jan-12-2023-bww8_00000009_30
Dec-06-2022-bww8_00000010_3
Feb-03-2023-bww8-intloss_00000015_1
Feb-09-2023-bww8-intloss_00000000_2
Feb-16-2023-bww1-intloss_00000049_1
Feb-23-2023-soda3-intloss_00000013_0
Feb-17-2023-soda3_00000008_0
Dec-06-2022-bww8_00000003_1
Feb-16-2023-bww1-intloss_00000012_3
Feb-09-2023-bww8-intloss_00000037_1
Feb-16-2023-bww1-intloss_00000024_3
Feb-27-2023-soda3-intloss_00000018_1
Feb-17-2023-bww2_00000025_1
Feb-14-2023-bww8-intloss_00000001_0
Feb-20-2023-bww2-intloss_00000019_11
Feb-16-2023-bww1-intloss_00000032_4
Jan-12-2023-bww8_00000009_24
Feb-15-2023-cory1_00000006_1
Dec-15-2022-bww8_00000012_2
Feb-21-2023-soda3-intloss_00000005_16
Feb-16-2023-bww1-intloss_00000031_1
Dec-06-2022-bww8_00000001_2
Dec-12-2022-bww8_00000016_1
Jan-20-2023-bww8_00000004_11
Jan-12-2023-bww8_00000007_20
Feb-14-2023-bww8-intloss_00000008_42
Feb-20-2023-bww2-intloss_00000011_1
Feb-09-2023-bww8-intloss_00000041_0
Jan-20-2023-bww8_00000004_19
Feb-21-2023-soda3-intloss_00000011_5
Dec-12-2022-bww8_00000039_10
Feb-16-2023-cory1-intloss_00000013_0
Jan-12-2023-bww8_00000010_25
Feb-15-2023-cory1_00000000_4
Feb-27-2023-soda3-intloss_00000027_3
Jan-12-2023-bww8_00000001_9
Feb-21-2023-soda3-intloss_00000001_0
Feb-27-2023-soda3-intloss_00000014_5
Dec-15-2022-bww8_00000014_0
Feb-20-2023-bww2-intloss_00000027_4
Feb-21-2023-soda3-intloss_00000012_2
Feb-27-2023-soda3-intloss_00000027_8
Jan-12-2023-bww8_00000006_23
Feb-23-2023-soda3-intloss_00000018_7
Jan-20-2023-bww8_00000012_5
Feb-14-2023-bww8-intloss_00000010_1
Feb-20-2023-bww2-intloss_00000018_2
Dec-06-2022-bww8_00000040_1
Feb-21-2023-soda3-intloss_00000011_10
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Huron Sacson HDF5 Dataset

Real-world robot navigation trajectories from ETH Zurich, stored in efficient HDF5 format for faster I/O and easier sharing.

Dataset Overview

The Huron Sacson dataset contains real-world robot navigation trajectories collected from December 2022 to February 2023. This HDF5 version provides a single-file format that significantly improves I/O performance compared to loading individual JPEG files.

Key Statistics

  • Trajectories: 2,955 sequences
  • Samples: ~165,000 valid samples (with 4-4-4 frame configuration)
  • Format: HDF5 with JPEG-encoded frames
  • Image Size: 224x224 pixels (configurable)
  • Date Range: December 2022 - February 2023
  • Dataset Size: ~950MB (HDF5 file)

Frame Configuration

The dataset uses a flexible input/gap/output structure:

  • Input frames: Configurable (default: 4)
  • Gap: Configurable (default: 4)
  • Output frames: Configurable (default: 4)

This allows for various temporal modeling tasks including:

  • Video prediction (predicting future frames)
  • Representation learning (learning from temporal sequences)
  • Contrastive learning (comparing input and target sequences)

Dataset Structure

huron_hdf5/
β”œβ”€β”€ sacson.h5              # Main HDF5 file with train/test splits
β”œβ”€β”€ data_splits/
β”‚   β”œβ”€β”€ train/            # Training split trajectory lists
β”‚   └── test/             # Test split trajectory lists
β”œβ”€β”€ data_config.yaml      # Dataset configuration
└── README.md             # This file

HDF5 File Structure

The sacson.h5 file contains:

  • /train/ group: Training trajectories
    • Each trajectory contains a frames dataset with JPEG-encoded frame bytes
    • Trajectory attributes stored in group metadata
  • /test/ group: Test trajectories
    • Same structure as training set

Usage

Download from Hugging Face

# Download the dataset
huggingface-cli download <username>/huron-sacson-hdf5 \
    --repo-type dataset \
    --local-dir ./datasets/huron_hdf5/

Loading the Dataset

Using PyTorch

from huron_hdf5_dataset import HuronHDF5Dataset

# Create dataset
dataset = HuronHDF5Dataset(
    hdf5_path='datasets/huron_hdf5/sacson.h5',
    split='train',
    dataset_name='sacson',
    input_frames=4,
    output_frames=4,
    gap=4,
    image_size=224,
    transform=None,  # or processor name like 'videomae-base'
    normalize=True
)

# Access samples
sample = dataset[0]
input_frames = sample['input']      # Shape: (4, 3, 224, 224)
target_frames = sample['target']    # Shape: (4, 3, 224, 224)
video_key = sample['video_key']     # Unique identifier

Using PyTorch Lightning

The dataset is integrated with the unified video data module:

data:
  dataset_name: "huron_sacson"
  huron_config:
    hdf5_path: "datasets/huron_hdf5/sacson.h5"
    use_hdf5: true
  input_frames: 4
  output_frames: 4
  gap: 4

Dataset Interface

The HuronHDF5Dataset class implements the BaseVideoDataset interface, providing:

  • __len__(): Get dataset size
  • __getitem__(idx): Get sample by index
  • find_index_by_video_key(key): Find index by video key
  • get_sample_metadata(idx): Get sample metadata
  • get_dataset_metadata(): Get overall dataset metadata

Benefits of HDF5 Format

Compared to the original JPEG file format:

  • Faster I/O: Single file access vs 241K+ individual file operations
  • Easier Sharing: One file to download and manage
  • Better Performance: Reduced filesystem overhead
  • Compatible: Drop-in replacement for JPEG-based loader

Data Splits

The dataset includes pre-computed train/test splits:

  • Training split: Located in data_splits/train/
  • Test split: Located in data_splits/test/

Each split contains trajectory name lists and optional pre-computed indices for faster loading.

Configuration

The data_config.yaml file contains dataset-specific parameters:

  • Action statistics (min/max values)
  • Metric waypoint spacing
  • Other trajectory metadata

Citation

If you use this dataset in your research, please cite the original Huron dataset:

@article{huron2023,
  title={Huron: Real-world Robot Navigation Dataset},
  author={ETH Zurich},
  year={2023},
  note={Dataset collected December 2022 - February 2023}
}

License

Please refer to the original Huron dataset license for usage terms.

Support

For issues or questions:

  • Check the main project README: README.md
  • Review dataset loading code: huron_hdf5_dataset.py
  • Test dataset loading: python scripts/test_huron_hdf5.py

Related Files

  • Dataset Loader: huron_hdf5_dataset.py - Main dataset class
  • Conversion Script: scripts/convert_huron_to_hdf5.py - Convert from JPEG to HDF5
  • Test Script: scripts/test_huron_hdf5.py - Verify dataset integrity
  • Original Dataset: datasets/huron/sacson/ - Original JPEG format
Downloads last month
8