text
stringlengths 22
37
|
|---|
Jan-12-2023-bww8_00000006_4
|
Feb-21-2023-soda3-intloss_00000015_29
|
Feb-20-2023-bww2-intloss_00000033_2
|
Feb-27-2023-soda3-intloss_00000017_0
|
Feb-21-2023-soda3-intloss_00000005_0
|
Feb-16-2023-cory1-intloss_00000008_3
|
Jan-12-2023-bww8_00000010_3
|
Feb-16-2023-cory1-intloss_00000013_3
|
Feb-09-2023-bww8-intloss_00000022_2
|
Feb-06-2023-bww8-intloss_00000011_0
|
Dec-15-2022-bww8_00000020_0
|
Jan-13-2023-bww8_00000002_2
|
Feb-23-2023-soda3-intloss_00000015_3
|
Jan-12-2023-bww8_00000013_5
|
Feb-20-2023-bww2-intloss_00000028_2
|
Dec-09-2022-bww8_00000028_0
|
Feb-20-2023-bww2-intloss_00000005_0
|
Jan-12-2023-bww8_00000010_16
|
Feb-27-2023-soda3-intloss_00000002_3
|
Feb-13-2023-bww8-intloss_00000007_0
|
Feb-06-2023-bww8-intloss_00000004_1
|
Feb-21-2023-soda3-intloss_00000014_5
|
Jan-17-2023-bww8_00000000_8
|
Feb-21-2023-soda3-intloss_00000004_1
|
Feb-15-2023-cory1_00000005_0
|
Feb-20-2023-bww2-intloss_00000034_4
|
Nov-17-2022-bww8_00000013_1
|
Dec-12-2022-bww8_00000016_0
|
Dec-06-2022-bww8_00000019_11
|
Nov-17-2022-bww8_00000013_0
|
Dec-06-2022-bww8_00000040_2
|
Feb-14-2023-bww8-intloss_00000008_37
|
Jan-12-2023-bww8_00000010_8
|
Jan-12-2023-bww8_00000004_2
|
Dec-06-2022-bww8_00000002_2
|
Feb-09-2023-bww8-intloss_00000045_1
|
Feb-16-2023-cory1-intloss_00000013_1
|
Feb-15-2023-cory1_00000003_1
|
Feb-09-2023-bww8-intloss_00000038_0
|
Feb-06-2023-bww8-intloss_00000000_3
|
Dec-12-2022-bww8_00000018_0
|
Jan-13-2023-bww8_00000001_0
|
Jan-20-2023-bww8_00000004_13
|
Feb-27-2023-soda3-intloss_00000027_11
|
Feb-14-2023-bww8-intloss_00000008_19
|
Feb-20-2023-bww2-intloss_00000021_1
|
Feb-21-2023-soda3-intloss_00000015_27
|
Feb-09-2023-bww8-intloss_00000019_1
|
Nov-17-2022-bww8_00000018_6
|
Feb-13-2023-bww8-intloss_00000009_0
|
Feb-14-2023-bww8-intloss_00000006_0
|
Jan-12-2023-bww8_00000009_30
|
Dec-06-2022-bww8_00000010_3
|
Feb-03-2023-bww8-intloss_00000015_1
|
Feb-09-2023-bww8-intloss_00000000_2
|
Feb-16-2023-bww1-intloss_00000049_1
|
Feb-23-2023-soda3-intloss_00000013_0
|
Feb-17-2023-soda3_00000008_0
|
Dec-06-2022-bww8_00000003_1
|
Feb-16-2023-bww1-intloss_00000012_3
|
Feb-09-2023-bww8-intloss_00000037_1
|
Feb-16-2023-bww1-intloss_00000024_3
|
Feb-27-2023-soda3-intloss_00000018_1
|
Feb-17-2023-bww2_00000025_1
|
Feb-14-2023-bww8-intloss_00000001_0
|
Feb-20-2023-bww2-intloss_00000019_11
|
Feb-16-2023-bww1-intloss_00000032_4
|
Jan-12-2023-bww8_00000009_24
|
Feb-15-2023-cory1_00000006_1
|
Dec-15-2022-bww8_00000012_2
|
Feb-21-2023-soda3-intloss_00000005_16
|
Feb-16-2023-bww1-intloss_00000031_1
|
Dec-06-2022-bww8_00000001_2
|
Dec-12-2022-bww8_00000016_1
|
Jan-20-2023-bww8_00000004_11
|
Jan-12-2023-bww8_00000007_20
|
Feb-14-2023-bww8-intloss_00000008_42
|
Feb-20-2023-bww2-intloss_00000011_1
|
Feb-09-2023-bww8-intloss_00000041_0
|
Jan-20-2023-bww8_00000004_19
|
Feb-21-2023-soda3-intloss_00000011_5
|
Dec-12-2022-bww8_00000039_10
|
Feb-16-2023-cory1-intloss_00000013_0
|
Jan-12-2023-bww8_00000010_25
|
Feb-15-2023-cory1_00000000_4
|
Feb-27-2023-soda3-intloss_00000027_3
|
Jan-12-2023-bww8_00000001_9
|
Feb-21-2023-soda3-intloss_00000001_0
|
Feb-27-2023-soda3-intloss_00000014_5
|
Dec-15-2022-bww8_00000014_0
|
Feb-20-2023-bww2-intloss_00000027_4
|
Feb-21-2023-soda3-intloss_00000012_2
|
Feb-27-2023-soda3-intloss_00000027_8
|
Jan-12-2023-bww8_00000006_23
|
Feb-23-2023-soda3-intloss_00000018_7
|
Jan-20-2023-bww8_00000012_5
|
Feb-14-2023-bww8-intloss_00000010_1
|
Feb-20-2023-bww2-intloss_00000018_2
|
Dec-06-2022-bww8_00000040_1
|
Feb-21-2023-soda3-intloss_00000011_10
|
Huron Sacson HDF5 Dataset
Real-world robot navigation trajectories from ETH Zurich, stored in efficient HDF5 format for faster I/O and easier sharing.
Dataset Overview
The Huron Sacson dataset contains real-world robot navigation trajectories collected from December 2022 to February 2023. This HDF5 version provides a single-file format that significantly improves I/O performance compared to loading individual JPEG files.
Key Statistics
- Trajectories: 2,955 sequences
- Samples: ~165,000 valid samples (with 4-4-4 frame configuration)
- Format: HDF5 with JPEG-encoded frames
- Image Size: 224x224 pixels (configurable)
- Date Range: December 2022 - February 2023
- Dataset Size: ~950MB (HDF5 file)
Frame Configuration
The dataset uses a flexible input/gap/output structure:
- Input frames: Configurable (default: 4)
- Gap: Configurable (default: 4)
- Output frames: Configurable (default: 4)
This allows for various temporal modeling tasks including:
- Video prediction (predicting future frames)
- Representation learning (learning from temporal sequences)
- Contrastive learning (comparing input and target sequences)
Dataset Structure
huron_hdf5/
βββ sacson.h5 # Main HDF5 file with train/test splits
βββ data_splits/
β βββ train/ # Training split trajectory lists
β βββ test/ # Test split trajectory lists
βββ data_config.yaml # Dataset configuration
βββ README.md # This file
HDF5 File Structure
The sacson.h5 file contains:
/train/group: Training trajectories- Each trajectory contains a
framesdataset with JPEG-encoded frame bytes - Trajectory attributes stored in group metadata
- Each trajectory contains a
/test/group: Test trajectories- Same structure as training set
Usage
Download from Hugging Face
# Download the dataset
huggingface-cli download <username>/huron-sacson-hdf5 \
--repo-type dataset \
--local-dir ./datasets/huron_hdf5/
Loading the Dataset
Using PyTorch
from huron_hdf5_dataset import HuronHDF5Dataset
# Create dataset
dataset = HuronHDF5Dataset(
hdf5_path='datasets/huron_hdf5/sacson.h5',
split='train',
dataset_name='sacson',
input_frames=4,
output_frames=4,
gap=4,
image_size=224,
transform=None, # or processor name like 'videomae-base'
normalize=True
)
# Access samples
sample = dataset[0]
input_frames = sample['input'] # Shape: (4, 3, 224, 224)
target_frames = sample['target'] # Shape: (4, 3, 224, 224)
video_key = sample['video_key'] # Unique identifier
Using PyTorch Lightning
The dataset is integrated with the unified video data module:
data:
dataset_name: "huron_sacson"
huron_config:
hdf5_path: "datasets/huron_hdf5/sacson.h5"
use_hdf5: true
input_frames: 4
output_frames: 4
gap: 4
Dataset Interface
The HuronHDF5Dataset class implements the BaseVideoDataset interface, providing:
__len__(): Get dataset size__getitem__(idx): Get sample by indexfind_index_by_video_key(key): Find index by video keyget_sample_metadata(idx): Get sample metadataget_dataset_metadata(): Get overall dataset metadata
Benefits of HDF5 Format
Compared to the original JPEG file format:
- Faster I/O: Single file access vs 241K+ individual file operations
- Easier Sharing: One file to download and manage
- Better Performance: Reduced filesystem overhead
- Compatible: Drop-in replacement for JPEG-based loader
Data Splits
The dataset includes pre-computed train/test splits:
- Training split: Located in
data_splits/train/ - Test split: Located in
data_splits/test/
Each split contains trajectory name lists and optional pre-computed indices for faster loading.
Configuration
The data_config.yaml file contains dataset-specific parameters:
- Action statistics (min/max values)
- Metric waypoint spacing
- Other trajectory metadata
Citation
If you use this dataset in your research, please cite the original Huron dataset:
@article{huron2023,
title={Huron: Real-world Robot Navigation Dataset},
author={ETH Zurich},
year={2023},
note={Dataset collected December 2022 - February 2023}
}
License
Please refer to the original Huron dataset license for usage terms.
Support
For issues or questions:
- Check the main project README: README.md
- Review dataset loading code:
huron_hdf5_dataset.py - Test dataset loading:
python scripts/test_huron_hdf5.py
Related Files
- Dataset Loader:
huron_hdf5_dataset.py- Main dataset class - Conversion Script:
scripts/convert_huron_to_hdf5.py- Convert from JPEG to HDF5 - Test Script:
scripts/test_huron_hdf5.py- Verify dataset integrity - Original Dataset:
datasets/huron/sacson/- Original JPEG format
- Downloads last month
- 8