Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed commited on
Commit
1c26f0b
·
verified ·
1 Parent(s): 21f34f6

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md CHANGED
@@ -1,4 +1,25 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: ara-corpus
4
  features:
@@ -2549,4 +2570,123 @@ configs:
2549
  data_files:
2550
  - split: test
2551
  path: zho-queries/test-*
 
 
 
2552
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - tha
6
+ - tur
7
+ - ukr
8
+ - urd
9
+ - uzb
10
+ - vie
11
+ - zho
12
+ license: cc-by-4.0
13
+ multilinguality: multilingual
14
+ source_datasets:
15
+ - PaDaS-Lab/webfaq-retrieval
16
+ task_categories:
17
+ - text-retrieval
18
+ - multiple-choice-qa
19
+ - question-answering
20
+ task_ids:
21
+ - multiple-choice-qa
22
+ - question-answering
23
  dataset_info:
24
  - config_name: ara-corpus
25
  features:
 
2570
  data_files:
2571
  - split: test
2572
  path: zho-queries/test-*
2573
+ tags:
2574
+ - mteb
2575
+ - text
2576
  ---
2577
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
2578
+
2579
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
2580
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">WebFAQRetrieval</h1>
2581
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
2582
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
2583
+ </div>
2584
+
2585
+ WebFAQ is a broad-coverage corpus of natural question-answer pairs in 75 languages, gathered from FAQ pages on the web.
2586
+
2587
+ | | |
2588
+ |---------------|---------------------------------------------|
2589
+ | Task category | t2t |
2590
+ | Domains | Web, Written |
2591
+ | Reference | https://huggingface.co/PaDaS-Lab |
2592
+
2593
+ Source datasets:
2594
+ - [PaDaS-Lab/webfaq-retrieval](https://huggingface.co/datasets/PaDaS-Lab/webfaq-retrieval)
2595
+
2596
+
2597
+ ## How to evaluate on this task
2598
+
2599
+ You can evaluate an embedding model on this dataset using the following code:
2600
+
2601
+ ```python
2602
+ import mteb
2603
+
2604
+ task = mteb.get_task("WebFAQRetrieval")
2605
+ evaluator = mteb.MTEB([task])
2606
+
2607
+ model = mteb.get_model(YOUR_MODEL)
2608
+ evaluator.run(model)
2609
+ ```
2610
+
2611
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
2612
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
2613
+
2614
+ ## Citation
2615
+
2616
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
2617
+
2618
+ ```bibtex
2619
+
2620
+ @misc{dinzinger2025webfaq,
2621
+ archiveprefix = {arXiv},
2622
+ author = {Michael Dinzinger and Laura Caspari and Kanishka Ghosh Dastidar and Jelena Mitrović and Michael Granitzer},
2623
+ eprint = {2502.20936},
2624
+ primaryclass = {cs.CL},
2625
+ title = {WebFAQ: A Multilingual Collection of Natural Q&amp;A Datasets for Dense Retrieval},
2626
+ url = {https://arxiv.org/abs/2502.20936},
2627
+ year = {2025},
2628
+ }
2629
+
2630
+
2631
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
2632
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
2633
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
2634
+ publisher = {arXiv},
2635
+ journal={arXiv preprint arXiv:2502.13595},
2636
+ year={2025},
2637
+ url={https://arxiv.org/abs/2502.13595},
2638
+ doi = {10.48550/arXiv.2502.13595},
2639
+ }
2640
+
2641
+ @article{muennighoff2022mteb,
2642
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
2643
+ title = {MTEB: Massive Text Embedding Benchmark},
2644
+ publisher = {arXiv},
2645
+ journal={arXiv preprint arXiv:2210.07316},
2646
+ year = {2022}
2647
+ url = {https://arxiv.org/abs/2210.07316},
2648
+ doi = {10.48550/ARXIV.2210.07316},
2649
+ }
2650
+ ```
2651
+
2652
+ # Dataset Statistics
2653
+ <details>
2654
+ <summary> Dataset Statistics</summary>
2655
+
2656
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
2657
+
2658
+ ```python
2659
+ import mteb
2660
+
2661
+ task = mteb.get_task("WebFAQRetrieval")
2662
+
2663
+ desc_stats = task.metadata.descriptive_stats
2664
+ ```
2665
+
2666
+ ```json
2667
+ {
2668
+ "test": {
2669
+ "number_of_characters": 35239389,
2670
+ "num_samples": 11434472,
2671
+ "num_queries": 271168,
2672
+ "num_documents": 11163304,
2673
+ "min_document_length": 7,
2674
+ "average_document_length": 1.1567167748903013,
2675
+ "max_document_length": 4317,
2676
+ "unique_documents": 11163304,
2677
+ "min_query_length": 2,
2678
+ "average_query_length": 82.33496577767288,
2679
+ "max_query_length": 2,
2680
+ "unique_queries": 271168,
2681
+ "min_relevant_docs_per_query": 1,
2682
+ "average_relevant_docs_per_query": 1.0,
2683
+ "max_relevant_docs_per_query": 1,
2684
+ "unique_relevant_docs": 271168
2685
+ }
2686
+ }
2687
+ ```
2688
+
2689
+ </details>
2690
+
2691
+ ---
2692
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*