Add files using upload-large-folder tool
Browse files- 20250701/af/README.md +252 -0
- 20250701/af/dataset/10000k.parquet +3 -0
- 20250701/af/dataset/1000k.parquet +3 -0
- 20250701/af/dataset/5000k.parquet +3 -0
- 20250701/af/dataset/full/full_000.parquet +3 -0
- 20250701/af/dataset/full/full_001.parquet +3 -0
- 20250701/af/dataset/full/full_002.parquet +3 -0
- 20250701/af/dataset/full/full_003.parquet +3 -0
- 20250701/af/dataset/full/full_004.parquet +3 -0
- 20250701/af/dataset/full/full_005.parquet +3 -0
- 20250701/af/dataset/full/full_007.parquet +3 -0
- 20250701/af/dataset/full/full_008.parquet +3 -0
- 20250701/af/dataset/full/full_009.parquet +3 -0
- 20250701/af/dataset/full/full_010.parquet +3 -0
- 20250701/af/dataset/full/full_011.parquet +3 -0
- 20250701/af/dataset/full/full_012.parquet +3 -0
- 20250701/af/dataset/full/full_013.parquet +3 -0
- 20250701/af/dataset/full/full_014.parquet +3 -0
- 20250701/af/dataset/full/full_015.parquet +3 -0
- 20250701/af/dataset/full/full_016.parquet +3 -0
- 20250701/af/dataset/full/full_017.parquet +3 -0
- 20250701/af/dataset/full/full_018.parquet +3 -0
- 20250701/af/dataset/full/full_019.parquet +3 -0
- 20250701/af/dataset/full/full_020.parquet +3 -0
- 20250701/af/dataset/full/full_021.parquet +3 -0
- 20250701/af/dataset/full/full_022.parquet +3 -0
- 20250701/af/dataset/full/full_024.parquet +3 -0
- 20250701/af/dataset/train/train_010.parquet +3 -0
- 20250701/af/dataset/train/train_011.parquet +3 -0
- 20250701/af/dataset/train/train_018.parquet +3 -0
- 20250701/af/metadata.json +457 -0
- 20250701/af/models/subword_markov/af_markov1_metadata.json +8 -0
- 20250701/af/models/subword_markov/af_markov2_metadata.json +8 -0
- 20250701/af/models/subword_markov/af_markov3_metadata.json +8 -0
- 20250701/af/models/subword_ngram/af_2gram_metadata.json +9 -0
- 20250701/af/models/subword_ngram/af_3gram_metadata.json +9 -0
- 20250701/af/models/subword_ngram/af_4gram_metadata.json +9 -0
- 20250701/af/models/tokenizer/af_tokenizer_16k.vocab +0 -0
- 20250701/af/models/tokenizer/af_tokenizer_32k.vocab +0 -0
- 20250701/af/models/tokenizer/af_tokenizer_64k.vocab +0 -0
- 20250701/af/models/tokenizer/af_tokenizer_8k.vocab +0 -0
- 20250701/af/models/vocabulary/af_dictionary_metadata.json +40 -0
- 20250701/af/models/word_markov/af_markov1_metadata.json +8 -0
- 20250701/af/models/word_markov/af_markov2_metadata.json +8 -0
- 20250701/af/models/word_markov/af_markov3_metadata.json +8 -0
- 20250701/af/models/word_ngram/af_2gram_metadata.json +9 -0
- 20250701/af/models/word_ngram/af_3gram_metadata.json +9 -0
- 20250701/af/models/word_ngram/af_3gram_model.parquet +3 -0
- 20250701/af/models/word_ngram/af_4gram_metadata.json +9 -0
- 20250701/af/models/word_ngram/af_4gram_model.parquet +3 -0
20250701/af/README.md
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Wikipedia AF Dataset (20250701)
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This dataset contains processed Wikipedia articles for the **af** language, extracted from the Wikipedia dump dated **20250701**. The dataset has been processed through a comprehensive 9-stage pipeline that includes text normalization, tokenization, n-gram analysis, article scoring, and representative sampling.
|
| 6 |
+
|
| 7 |
+
## Dataset Statistics
|
| 8 |
+
|
| 9 |
+
## Dataset Structure
|
| 10 |
+
|
| 11 |
+
This dataset is organized into the following components:
|
| 12 |
+
|
| 13 |
+
### 📰 Full Articles Dataset
|
| 14 |
+
- **Complete Dataset**: All Wikipedia articles in multiple Parquet files for HuggingFace compatibility
|
| 15 |
+
- **Location**: `/dataset/full_part_XXX.parquet`
|
| 16 |
+
- **Schema**: id, title, url, text, namespace, raw_mediawiki
|
| 17 |
+
- **Optimization**: Small row groups (1000 rows) for efficient multi-reading
|
| 18 |
+
|
| 19 |
+
### 🤖 Tokenizer Models
|
| 20 |
+
- **Location**: `/models/tokenizer/`
|
| 21 |
+
- **Multiple Sizes**: 8k, 16k, 32k, and 64k vocabulary sizes
|
| 22 |
+
- **SentencePiece Models**: Trained subword tokenizers for different use cases
|
| 23 |
+
- **Vocabulary Files**: Complete vocabularies with token mappings for each size
|
| 24 |
+
|
| 25 |
+
### 📊 Subword N-gram Models (Parquet Format)
|
| 26 |
+
- **Location**: `/models/subword_ngram/`
|
| 27 |
+
- **2-gram Model**: Subword bigram frequencies and IDF scores in Parquet format
|
| 28 |
+
- **3-gram Model**: Subword trigram frequencies and IDF scores in Parquet format
|
| 29 |
+
- **4-gram Model**: Subword 4-gram frequencies and IDF scores in Parquet format
|
| 30 |
+
- **Top N-grams**: Most frequent subword n-grams in separate Parquet files
|
| 31 |
+
- **Optimization**: Small row groups for efficient querying and multi-reading
|
| 32 |
+
|
| 33 |
+
### 📝 Word N-gram Models (Parquet Format)
|
| 34 |
+
- **Location**: `/models/word_ngram/`
|
| 35 |
+
- **2-gram Model**: Word-level bigram frequencies and IDF scores in Parquet format
|
| 36 |
+
- **3-gram Model**: Word-level trigram frequencies and IDF scores in Parquet format
|
| 37 |
+
- **4-gram Model**: Word-level 4-gram frequencies and IDF scores in Parquet format
|
| 38 |
+
- **Top N-grams**: Most frequent word n-grams in separate Parquet files
|
| 39 |
+
- **Tokenization**: Simple whitespace and punctuation-based word splitting
|
| 40 |
+
|
| 41 |
+
### 🔗 Subword Markov Chain Models (Parquet Format)
|
| 42 |
+
- **Location**: `/models/subword_markov/`
|
| 43 |
+
- **2-gram Context**: Subword transition probabilities for text generation
|
| 44 |
+
- **3-gram Context**: Higher-order subword context for better text generation
|
| 45 |
+
- **4-gram Context**: Maximum subword context for sophisticated text generation
|
| 46 |
+
- **Schema**: context (JSON), next_token, probability, context_count
|
| 47 |
+
|
| 48 |
+
### 🔗 Word Markov Chain Models (Parquet Format)
|
| 49 |
+
- **Location**: `/models/word_markov/`
|
| 50 |
+
- **2-gram Context**: Word-level transition probabilities for text generation
|
| 51 |
+
- **3-gram Context**: Higher-order word context for better text generation
|
| 52 |
+
- **4-gram Context**: Maximum word context for sophisticated text generation
|
| 53 |
+
- **Schema**: context (JSON), next_token, probability, context_count
|
| 54 |
+
|
| 55 |
+
### 📚 Vocabulary Models
|
| 56 |
+
- **Location**: `/models/vocabulary/`
|
| 57 |
+
- **Language Dictionary**: Vocabulous-based language detection model
|
| 58 |
+
- **Word-Language Frequencies**: Statistical language identification data
|
| 59 |
+
|
| 60 |
+
### 📈 Statistics & Reports
|
| 61 |
+
- **Comprehensive Statistics**: Detailed corpus analysis in JSON format
|
| 62 |
+
- **Human-Readable Summary**: Key statistics and insights
|
| 63 |
+
|
| 64 |
+
### 🎯 Representative Sample Datasets
|
| 65 |
+
- **Location**: `/dataset/`
|
| 66 |
+
- **Sample Sizes**: 1k.parquet, 5k.parquet, 10k.parquet (only created if enough articles available)
|
| 67 |
+
- **Coverage-Optimized**: Samples maximize n-gram coverage of the full corpus
|
| 68 |
+
- **Schema**: id, title, url, text, tokens (JSON), scores (JSON), features (JSON), individual score columns
|
| 69 |
+
- **Optimization**: Small row groups for efficient filtering and analysis
|
| 70 |
+
- **Note**: Sample sizes larger than available articles are automatically skipped
|
| 71 |
+
|
| 72 |
+
## Processing Pipeline
|
| 73 |
+
|
| 74 |
+
This dataset was created using a 9-stage processing pipeline:
|
| 75 |
+
|
| 76 |
+
1. **Data Acquisition**: Download and parse Wikipedia XML dumps
|
| 77 |
+
2. **Text Normalization**: Clean and normalize text using unscript
|
| 78 |
+
3. **Tokenizer Training**: Train SentencePiece subword tokenizers
|
| 79 |
+
4. **Dictionary Building**: Build language detection models with vocabulous
|
| 80 |
+
5. **N-gram Analysis**: Generate comprehensive n-gram models
|
| 81 |
+
6. **Article Scoring**: Score articles for representativeness and quality
|
| 82 |
+
7. **Sample Generation**: Create coverage-optimized representative samples
|
| 83 |
+
8. **Statistics Generation**: Generate comprehensive corpus statistics
|
| 84 |
+
9. **Publication**: Upload all artifacts to Hugging Face Hub
|
| 85 |
+
|
| 86 |
+
## Usage Examples
|
| 87 |
+
|
| 88 |
+
### Loading Full Articles Dump
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
import pandas as pd
|
| 92 |
+
|
| 93 |
+
# Load all articles
|
| 94 |
+
df = pd.read_parquet('articles/af_articles.parquet')
|
| 95 |
+
|
| 96 |
+
# Access article data
|
| 97 |
+
print(f"Total articles: {len(df)}")
|
| 98 |
+
print(df[['id', 'title', 'text']].head())
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### Loading the Tokenizer
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
import sentencepiece as spm
|
| 105 |
+
|
| 106 |
+
# Load the trained tokenizer
|
| 107 |
+
sp = spm.SentencePieceProcessor()
|
| 108 |
+
sp.load('af_tokenizer.model')
|
| 109 |
+
|
| 110 |
+
# Tokenize text
|
| 111 |
+
text = "Your text here"
|
| 112 |
+
tokens = sp.encode_as_pieces(text)
|
| 113 |
+
token_ids = sp.encode_as_ids(text)
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Loading N-gram Models (Parquet Format)
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
import pandas as pd
|
| 120 |
+
import json
|
| 121 |
+
|
| 122 |
+
# Load subword 2-gram model
|
| 123 |
+
subword_df = pd.read_parquet('models/subword_ngram/af_2gram_model.parquet')
|
| 124 |
+
|
| 125 |
+
# Access subword n-gram data
|
| 126 |
+
print("Subword 2-grams:")
|
| 127 |
+
for _, row in subword_df.head().iterrows():
|
| 128 |
+
ngram = json.loads(row['ngram']) # Convert back from JSON
|
| 129 |
+
frequency = row['frequency']
|
| 130 |
+
idf_score = row['idf_score']
|
| 131 |
+
print(f"N-gram: {ngram}, Freq: {frequency}, IDF: {idf_score:.3f}")
|
| 132 |
+
|
| 133 |
+
# Load word 2-gram model
|
| 134 |
+
word_df = pd.read_parquet('models/word_ngram/af_2gram_model.parquet')
|
| 135 |
+
|
| 136 |
+
# Access word n-gram data
|
| 137 |
+
print("\nWord 2-grams:")
|
| 138 |
+
for _, row in word_df.head().iterrows():
|
| 139 |
+
ngram = json.loads(row['ngram']) # Convert back from JSON
|
| 140 |
+
frequency = row['frequency']
|
| 141 |
+
idf_score = row['idf_score']
|
| 142 |
+
print(f"N-gram: {ngram}, Freq: {frequency}, IDF: {idf_score:.3f}")
|
| 143 |
+
|
| 144 |
+
# Load top subword n-grams
|
| 145 |
+
subword_top_df = pd.read_parquet('models/subword_ngram/af_2gram_top1000.parquet')
|
| 146 |
+
print("\nTop 10 subword bigrams:")
|
| 147 |
+
print(subword_top_df.head(10))
|
| 148 |
+
|
| 149 |
+
# Load top word n-grams
|
| 150 |
+
word_top_df = pd.read_parquet('models/word_ngram/af_2gram_top1000.parquet')
|
| 151 |
+
print("\nTop 10 word bigrams:")
|
| 152 |
+
print(word_top_df.head(10))
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
### Loading Markov Chain Models (Parquet Format)
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
import pandas as pd
|
| 159 |
+
import json
|
| 160 |
+
|
| 161 |
+
# Load subword Markov chain (2-gram context)
|
| 162 |
+
subword_markov_df = pd.read_parquet('models/subword_markov/af_markov1_transitions.parquet')
|
| 163 |
+
|
| 164 |
+
# Access subword Markov transitions
|
| 165 |
+
print("Subword Markov transitions:")
|
| 166 |
+
for _, row in subword_markov_df.head().iterrows():
|
| 167 |
+
context = json.loads(row['context']) # Convert back from JSON
|
| 168 |
+
next_token = row['next_token']
|
| 169 |
+
probability = row['probability']
|
| 170 |
+
context_count = row['context_count']
|
| 171 |
+
print(f"Context: {context} -> Next: '{next_token}' (p={probability:.3f}, count={context_count})")
|
| 172 |
+
|
| 173 |
+
# Load word Markov chain (2-gram context)
|
| 174 |
+
word_markov_df = pd.read_parquet('models/word_markov/af_markov1_transitions.parquet')
|
| 175 |
+
|
| 176 |
+
# Access word Markov transitions
|
| 177 |
+
print("\nWord Markov transitions:")
|
| 178 |
+
for _, row in word_markov_df.head().iterrows():
|
| 179 |
+
context = json.loads(row['context']) # Convert back from JSON
|
| 180 |
+
next_token = row['next_token']
|
| 181 |
+
probability = row['probability']
|
| 182 |
+
context_count = row['context_count']
|
| 183 |
+
print(f"Context: {context} -> Next: '{next_token}' (p={probability:.3f}, count={context_count})")
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
### Loading Sample Datasets (Parquet Format)
|
| 187 |
+
|
| 188 |
+
```python
|
| 189 |
+
import pandas as pd
|
| 190 |
+
import json
|
| 191 |
+
|
| 192 |
+
# Load sample dataset
|
| 193 |
+
sample_df = pd.read_parquet('samples/af_sample_1000.parquet')
|
| 194 |
+
|
| 195 |
+
# Access article data
|
| 196 |
+
for _, row in sample_df.head().iterrows():
|
| 197 |
+
tokens = json.loads(row['tokens']) # Convert back from JSON
|
| 198 |
+
scores = json.loads(row['scores']) # Convert back from JSON
|
| 199 |
+
print(f"Title: {row['title']}")
|
| 200 |
+
print(f"Tokens: {len(tokens)}")
|
| 201 |
+
print(f"Scores: {scores}")
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
### Loading Dictionary Models
|
| 205 |
+
|
| 206 |
+
```python
|
| 207 |
+
from vocabulous import Vocabulous
|
| 208 |
+
|
| 209 |
+
# Load language detection model
|
| 210 |
+
model = Vocabulous.load('af_dictionary.json')
|
| 211 |
+
|
| 212 |
+
# Detect language of text
|
| 213 |
+
text = "Your text here"
|
| 214 |
+
detected_lang = model.detect_language(text)
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
## Data Quality
|
| 218 |
+
|
| 219 |
+
- **Source**: Official Wikipedia dumps from Wikimedia Foundation
|
| 220 |
+
- **Processing Date**: 2025-07-31T16:50:25.741062
|
| 221 |
+
- **Pipeline Version**: 1.0.0
|
| 222 |
+
- **Memory Constraints**: Processed within 32GB RAM limits
|
| 223 |
+
- **Quality Assurance**: Multi-stage validation and error handling
|
| 224 |
+
|
| 225 |
+
## Citation
|
| 226 |
+
|
| 227 |
+
If you use this dataset in your research, please cite:
|
| 228 |
+
|
| 229 |
+
```bibtex
|
| 230 |
+
@dataset{wikipedia_af_20250701,
|
| 231 |
+
title={Wikipedia AF Dataset},
|
| 232 |
+
author={Wikipedia Monthly Data Processing Pipeline},
|
| 233 |
+
year={2025},
|
| 234 |
+
url={https://huggingface.co/datasets/omarkamali/wikipedia-monthly-testing},
|
| 235 |
+
note={Processed from Wikipedia dump 20250701}
|
| 236 |
+
}
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
## License
|
| 240 |
+
|
| 241 |
+
This dataset is released under the same license as Wikipedia content:
|
| 242 |
+
- **Text**: [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/)
|
| 243 |
+
- **Code/Models**: [MIT License](https://opensource.org/licenses/MIT)
|
| 244 |
+
|
| 245 |
+
## Contact
|
| 246 |
+
|
| 247 |
+
For questions or issues with this dataset, please open an issue in the repository or contact the maintainers.
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
|
| 251 |
+
*Generated automatically by the Wikipedia Monthly Data Processing Pipeline*
|
| 252 |
+
*Processing completed: 2025-07-31T16:50:25.741062*
|
20250701/af/dataset/10000k.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcef67660aeeeaf2e0d854d9724664658337a0db84912abb57ee3b1a13cd5996
|
| 3 |
+
size 2255984
|
20250701/af/dataset/1000k.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d93cc156cf7b53e0f8b612cc81eb0574e528ad614b6f5541ef8ad6385f129726
|
| 3 |
+
size 447476
|
20250701/af/dataset/5000k.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67a12e7179faa482e2c0d279e2013b3479b8fbd9a447ef2394f3d46e3c295b05
|
| 3 |
+
size 1395097
|
20250701/af/dataset/full/full_000.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf27980260c14b4669d73b6c39d52f5fcc54a4ee353c8049a0268de288a996fe
|
| 3 |
+
size 29493901
|
20250701/af/dataset/full/full_001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ed1501ed4333bc40e16bbb546c84f26b46d234e605161cd9289b3df33518c8f
|
| 3 |
+
size 31171738
|
20250701/af/dataset/full/full_002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bacd92631add76f72b3a96bd2d31aa788080eb6423fd451a2b00e43ea1597cd
|
| 3 |
+
size 22028302
|
20250701/af/dataset/full/full_003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4648d5d1362765bf3e4768a31b19ff3fe7ccddef67b1a7163992ae349cde91b3
|
| 3 |
+
size 16156360
|
20250701/af/dataset/full/full_004.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c57c60ab18eb472387e7f2ce5b245d9cdb214848cff74434e6adad29158baf3
|
| 3 |
+
size 14276973
|
20250701/af/dataset/full/full_005.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6be742a869c219955bdc0424caadd74fc5094e2e1d5e1a3481da95b45c3a47e
|
| 3 |
+
size 14233167
|
20250701/af/dataset/full/full_007.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4713bb6e1f4824d1f5a239cb24384055b1f63d8b792ad9d42a8ced8b10cfcb60
|
| 3 |
+
size 19741456
|
20250701/af/dataset/full/full_008.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a001bbb8ae24de08c7ca252f3cfdea90802edc9d29c4c8b94af4f8a743fa00ce
|
| 3 |
+
size 23841162
|
20250701/af/dataset/full/full_009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37869e7e2c03f59fe42933f79604260b46534b6ad27e1bd4ac564c93ceb8091c
|
| 3 |
+
size 16703061
|
20250701/af/dataset/full/full_010.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5201a5bfad7346b6f75363cadce3bb03e8d8e18ce2bad87f2689c0d701384ed
|
| 3 |
+
size 4909680
|
20250701/af/dataset/full/full_011.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b3b0ca71968164d73ea9f6faac5bef097a114d744d27f04009cd87ae1e07094
|
| 3 |
+
size 3815531
|
20250701/af/dataset/full/full_012.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adc290382d49bb7e09cb1e55ccd7db33625724e88d9a0f520983d28568691ca3
|
| 3 |
+
size 8103349
|
20250701/af/dataset/full/full_013.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cdbe39ba98e070622ea259d58f1519d275c8886960bef4290e2ff1afd3d13f72
|
| 3 |
+
size 8073159
|
20250701/af/dataset/full/full_014.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8fb7c1f929e042575a1f66872286740674b05fd5525b023e007a5dc2284ff50d
|
| 3 |
+
size 7657276
|
20250701/af/dataset/full/full_015.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e312778fb027aa9d5c31940d034da277149c1e41ffda8242727c43ca95c6dcd4
|
| 3 |
+
size 9908320
|
20250701/af/dataset/full/full_016.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:990d58fd7f023ebc263d8eda01965d131df849c95dc66163002ca10f01dd03de
|
| 3 |
+
size 11055131
|
20250701/af/dataset/full/full_017.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae04db9958d75f0772516b73cc22bc30b3b357c4624f8a53bde9fd5acfea0d9c
|
| 3 |
+
size 13054392
|
20250701/af/dataset/full/full_018.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bb48caa6763bc4b5aeda2f33e3b372dac24fb89d7d8613e21ae3a73c56e4ee5
|
| 3 |
+
size 13224173
|
20250701/af/dataset/full/full_019.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:856140c15142aa9a2056c2886ca0cd7ca6c65be8eaa3110fa2d9aaded64c2b17
|
| 3 |
+
size 9828853
|
20250701/af/dataset/full/full_020.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0f8108768a2923e4ea4b169806b7080b003885004d0bbfcee92985d0480cc0c
|
| 3 |
+
size 10830389
|
20250701/af/dataset/full/full_021.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4a79fbad99fd61bbf27654c5dfdd222e76fba87723f2d2d3ce33d5c3bcd831e
|
| 3 |
+
size 9520160
|
20250701/af/dataset/full/full_022.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a114828d963dc6af0ca2547e3c07c8ef87c730dabfa2961c8b430abf1dc3b075
|
| 3 |
+
size 9333909
|
20250701/af/dataset/full/full_024.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0b4212987e0dd18023fd848252a14fd532b26c6ac793e6f0bc01df2a460ccdd
|
| 3 |
+
size 9761710
|
20250701/af/dataset/train/train_010.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8fd555e32a4c7afa127c4df791f5f987dd82142be2d5f8eb615be44ab3c71394
|
| 3 |
+
size 1506782
|
20250701/af/dataset/train/train_011.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75749f9eea7914f3f5e41e26170d1d407d7000e7e8bb6c30f472639ec2ce9629
|
| 3 |
+
size 1018886
|
20250701/af/dataset/train/train_018.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5404f96ab560aed4ba2d9126e2310e448415feac96ee6946f12cbf6a6df0d597
|
| 3 |
+
size 4806670
|
20250701/af/metadata.json
ADDED
|
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_articles": 124877,
|
| 3 |
+
"dump_date": "20250701",
|
| 4 |
+
"processing_completed_at": "2025-07-31T16:50:25.741062",
|
| 5 |
+
"stage_metadata": {
|
| 6 |
+
"1": {
|
| 7 |
+
"dump_path": "temp_20250731_145350/afwiki.xml.bz2",
|
| 8 |
+
"dump_date": "20250701",
|
| 9 |
+
"article_count": 124877,
|
| 10 |
+
"dump_metadata": {
|
| 11 |
+
"schema_version": "0.11",
|
| 12 |
+
"case_sensitive": "first-letter",
|
| 13 |
+
"sitename": "Wikipedia",
|
| 14 |
+
"base_url": "https://af.wikipedia.org/wiki/Tuisblad"
|
| 15 |
+
},
|
| 16 |
+
"temp_dir": "temp_20250731_145350/af",
|
| 17 |
+
"articles_parquet_files": [
|
| 18 |
+
"temp_20250731_145350/af/af_articles_part_000.parquet",
|
| 19 |
+
"temp_20250731_145350/af/af_articles_part_001.parquet",
|
| 20 |
+
"temp_20250731_145350/af/af_articles_part_002.parquet"
|
| 21 |
+
],
|
| 22 |
+
"completed_at": "2025-07-31T14:57:44.819267",
|
| 23 |
+
"duration": 232.6967751979828
|
| 24 |
+
},
|
| 25 |
+
"2": {
|
| 26 |
+
"total_articles": 124877,
|
| 27 |
+
"majority_script": "Latn",
|
| 28 |
+
"script_distribution": {
|
| 29 |
+
"Latn": 124877
|
| 30 |
+
},
|
| 31 |
+
"normalized_articles_files": [
|
| 32 |
+
"normalized_articles/af/af_normalized_articles.parquet"
|
| 33 |
+
],
|
| 34 |
+
"completed_at": "2025-07-31T15:26:41.943544",
|
| 35 |
+
"duration": 1737.2102828025818
|
| 36 |
+
},
|
| 37 |
+
"3": {
|
| 38 |
+
"total_articles": 124877,
|
| 39 |
+
"trained_models": {
|
| 40 |
+
"8k": {
|
| 41 |
+
"vocab_size": 8000,
|
| 42 |
+
"model_path": "models/af/tokenizer/af_tokenizer_8k.model",
|
| 43 |
+
"model_prefix": "models/af/tokenizer/af_tokenizer_8k"
|
| 44 |
+
},
|
| 45 |
+
"16k": {
|
| 46 |
+
"vocab_size": 16000,
|
| 47 |
+
"model_path": "models/af/tokenizer/af_tokenizer_16k.model",
|
| 48 |
+
"model_prefix": "models/af/tokenizer/af_tokenizer_16k"
|
| 49 |
+
},
|
| 50 |
+
"32k": {
|
| 51 |
+
"vocab_size": 32000,
|
| 52 |
+
"model_path": "models/af/tokenizer/af_tokenizer_32k.model",
|
| 53 |
+
"model_prefix": "models/af/tokenizer/af_tokenizer_32k"
|
| 54 |
+
},
|
| 55 |
+
"64k": {
|
| 56 |
+
"vocab_size": 64000,
|
| 57 |
+
"model_path": "models/af/tokenizer/af_tokenizer_64k.model",
|
| 58 |
+
"model_prefix": "models/af/tokenizer/af_tokenizer_64k"
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"primary_model_path": "models/af/tokenizer/af_tokenizer_64k.model",
|
| 62 |
+
"model_path": "models/af/tokenizer/af_tokenizer_64k.model",
|
| 63 |
+
"training_text_size": 204924573,
|
| 64 |
+
"sample_tokens": [
|
| 65 |
+
"▁afrika",
|
| 66 |
+
"▁px",
|
| 67 |
+
"▁ligging",
|
| 68 |
+
"▁van",
|
| 69 |
+
"▁afrika",
|
| 70 |
+
"▁op",
|
| 71 |
+
"▁n",
|
| 72 |
+
"▁we",
|
| 73 |
+
"▁reldkaart",
|
| 74 |
+
"▁oppervlakte",
|
| 75 |
+
"▁km",
|
| 76 |
+
"▁de",
|
| 77 |
+
"▁bevolking",
|
| 78 |
+
"▁miljard",
|
| 79 |
+
"▁de",
|
| 80 |
+
"▁bevolkings",
|
| 81 |
+
"digtheid",
|
| 82 |
+
"▁km",
|
| 83 |
+
"▁lande",
|
| 84 |
+
"▁en"
|
| 85 |
+
],
|
| 86 |
+
"sample_ids": [
|
| 87 |
+
234,
|
| 88 |
+
387,
|
| 89 |
+
3767,
|
| 90 |
+
31,
|
| 91 |
+
234,
|
| 92 |
+
86,
|
| 93 |
+
18,
|
| 94 |
+
221,
|
| 95 |
+
61247,
|
| 96 |
+
1921,
|
| 97 |
+
588,
|
| 98 |
+
75,
|
| 99 |
+
1106,
|
| 100 |
+
4654,
|
| 101 |
+
75,
|
| 102 |
+
2973,
|
| 103 |
+
3542,
|
| 104 |
+
588,
|
| 105 |
+
1784,
|
| 106 |
+
36
|
| 107 |
+
],
|
| 108 |
+
"completed_at": "2025-07-31T15:29:18.234762",
|
| 109 |
+
"duration": 156.2300901412964
|
| 110 |
+
},
|
| 111 |
+
"4": {
|
| 112 |
+
"total_articles": 124877,
|
| 113 |
+
"training_samples": 49935,
|
| 114 |
+
"eval_samples": 999,
|
| 115 |
+
"model_path": "models/af/af_dictionary.json",
|
| 116 |
+
"dictionary_size": 484292,
|
| 117 |
+
"word_freq_size": 15051,
|
| 118 |
+
"final_accuracy": 1.0,
|
| 119 |
+
"final_f1": 1.0,
|
| 120 |
+
"avg_confidence": 0.9844343164510623,
|
| 121 |
+
"high_confidence_articles": 124660,
|
| 122 |
+
"high_confidence_ratio": 0.9982622900934519,
|
| 123 |
+
"training_cycles": 3,
|
| 124 |
+
"completed_at": "2025-07-31T16:02:59.733485",
|
| 125 |
+
"duration": 2022.2301919460297
|
| 126 |
+
},
|
| 127 |
+
"5": {
|
| 128 |
+
"subword_ngram_models": {
|
| 129 |
+
"2": {
|
| 130 |
+
"unique_ngrams": 988607,
|
| 131 |
+
"total_ngrams": 43074327,
|
| 132 |
+
"min_frequency": 5,
|
| 133 |
+
"model_file": "models/af/subword_ngram/af_2gram_model.parquet",
|
| 134 |
+
"metadata_file": "models/af/subword_ngram/af_2gram_metadata.json",
|
| 135 |
+
"top_ngrams_file": "models/af/subword_ngram/af_2gram_top1000.parquet"
|
| 136 |
+
},
|
| 137 |
+
"3": {
|
| 138 |
+
"unique_ngrams": 1933919,
|
| 139 |
+
"total_ngrams": 42949586,
|
| 140 |
+
"min_frequency": 3,
|
| 141 |
+
"model_file": "models/af/subword_ngram/af_3gram_model.parquet",
|
| 142 |
+
"metadata_file": "models/af/subword_ngram/af_3gram_metadata.json",
|
| 143 |
+
"top_ngrams_file": "models/af/subword_ngram/af_3gram_top1000.parquet"
|
| 144 |
+
},
|
| 145 |
+
"4": {
|
| 146 |
+
"unique_ngrams": 3175168,
|
| 147 |
+
"total_ngrams": 42824846,
|
| 148 |
+
"min_frequency": 2,
|
| 149 |
+
"model_file": "models/af/subword_ngram/af_4gram_model.parquet",
|
| 150 |
+
"metadata_file": "models/af/subword_ngram/af_4gram_metadata.json",
|
| 151 |
+
"top_ngrams_file": "models/af/subword_ngram/af_4gram_top1000.parquet"
|
| 152 |
+
}
|
| 153 |
+
},
|
| 154 |
+
"subword_markov_chains": {
|
| 155 |
+
"1": {
|
| 156 |
+
"context_size": 1,
|
| 157 |
+
"unique_contexts": 63465,
|
| 158 |
+
"total_transitions": 43074327,
|
| 159 |
+
"transitions_file": "models/af/subword_markov/af_markov1_transitions.parquet",
|
| 160 |
+
"metadata_file": "models/af/subword_markov/af_markov1_metadata.json"
|
| 161 |
+
},
|
| 162 |
+
"2": {
|
| 163 |
+
"context_size": 2,
|
| 164 |
+
"unique_contexts": 7502582,
|
| 165 |
+
"total_transitions": 42949586,
|
| 166 |
+
"transitions_file": "models/af/subword_markov/af_markov2_transitions.parquet",
|
| 167 |
+
"metadata_file": "models/af/subword_markov/af_markov2_metadata.json"
|
| 168 |
+
},
|
| 169 |
+
"3": {
|
| 170 |
+
"context_size": 3,
|
| 171 |
+
"unique_contexts": 21032987,
|
| 172 |
+
"total_transitions": 42824846,
|
| 173 |
+
"transitions_file": "models/af/subword_markov/af_markov3_transitions.parquet",
|
| 174 |
+
"metadata_file": "models/af/subword_markov/af_markov3_metadata.json"
|
| 175 |
+
}
|
| 176 |
+
},
|
| 177 |
+
"word_ngram_models": {
|
| 178 |
+
"2": {
|
| 179 |
+
"unique_ngrams": 1312897,
|
| 180 |
+
"total_ngrams": 38487033,
|
| 181 |
+
"min_frequency": 3,
|
| 182 |
+
"model_file": "models/af/word_ngram/af_2gram_model.parquet",
|
| 183 |
+
"metadata_file": "models/af/word_ngram/af_2gram_metadata.json",
|
| 184 |
+
"top_ngrams_file": "models/af/word_ngram/af_2gram_top1000.parquet"
|
| 185 |
+
},
|
| 186 |
+
"3": {
|
| 187 |
+
"unique_ngrams": 3125001,
|
| 188 |
+
"total_ngrams": 38362292,
|
| 189 |
+
"min_frequency": 2,
|
| 190 |
+
"model_file": "models/af/word_ngram/af_3gram_model.parquet",
|
| 191 |
+
"metadata_file": "models/af/word_ngram/af_3gram_metadata.json",
|
| 192 |
+
"top_ngrams_file": "models/af/word_ngram/af_3gram_top1000.parquet"
|
| 193 |
+
},
|
| 194 |
+
"4": {
|
| 195 |
+
"unique_ngrams": 2527228,
|
| 196 |
+
"total_ngrams": 38237555,
|
| 197 |
+
"min_frequency": 2,
|
| 198 |
+
"model_file": "models/af/word_ngram/af_4gram_model.parquet",
|
| 199 |
+
"metadata_file": "models/af/word_ngram/af_4gram_metadata.json",
|
| 200 |
+
"top_ngrams_file": "models/af/word_ngram/af_4gram_top1000.parquet"
|
| 201 |
+
}
|
| 202 |
+
},
|
| 203 |
+
"word_markov_chains": {
|
| 204 |
+
"1": {
|
| 205 |
+
"context_size": 1,
|
| 206 |
+
"unique_contexts": 823324,
|
| 207 |
+
"total_transitions": 38487033,
|
| 208 |
+
"transitions_file": "models/af/word_markov/af_markov1_transitions.parquet",
|
| 209 |
+
"metadata_file": "models/af/word_markov/af_markov1_metadata.json"
|
| 210 |
+
},
|
| 211 |
+
"2": {
|
| 212 |
+
"context_size": 2,
|
| 213 |
+
"unique_contexts": 8320124,
|
| 214 |
+
"total_transitions": 38362292,
|
| 215 |
+
"transitions_file": "models/af/word_markov/af_markov2_transitions.parquet",
|
| 216 |
+
"metadata_file": "models/af/word_markov/af_markov2_metadata.json"
|
| 217 |
+
},
|
| 218 |
+
"3": {
|
| 219 |
+
"context_size": 3,
|
| 220 |
+
"unique_contexts": 19534054,
|
| 221 |
+
"total_transitions": 38237555,
|
| 222 |
+
"transitions_file": "models/af/word_markov/af_markov3_transitions.parquet",
|
| 223 |
+
"metadata_file": "models/af/word_markov/af_markov3_metadata.json"
|
| 224 |
+
}
|
| 225 |
+
},
|
| 226 |
+
"subword_totals": {
|
| 227 |
+
"total_unique_ngrams": 6097694,
|
| 228 |
+
"total_ngrams": 128848759,
|
| 229 |
+
"total_markov_contexts": 28599034,
|
| 230 |
+
"total_transitions": 128848759
|
| 231 |
+
},
|
| 232 |
+
"word_totals": {
|
| 233 |
+
"total_unique_ngrams": 6965126,
|
| 234 |
+
"total_ngrams": 115086880,
|
| 235 |
+
"total_markov_contexts": 28677502,
|
| 236 |
+
"total_transitions": 115086880
|
| 237 |
+
},
|
| 238 |
+
"saved_files": {
|
| 239 |
+
"subword_2gram": "models/af/subword_ngram/af_2gram_model.parquet",
|
| 240 |
+
"subword_2gram_metadata": "models/af/subword_ngram/af_2gram_metadata.json",
|
| 241 |
+
"subword_2gram_top": "models/af/subword_ngram/af_2gram_top1000.parquet",
|
| 242 |
+
"subword_3gram": "models/af/subword_ngram/af_3gram_model.parquet",
|
| 243 |
+
"subword_3gram_metadata": "models/af/subword_ngram/af_3gram_metadata.json",
|
| 244 |
+
"subword_3gram_top": "models/af/subword_ngram/af_3gram_top1000.parquet",
|
| 245 |
+
"subword_4gram": "models/af/subword_ngram/af_4gram_model.parquet",
|
| 246 |
+
"subword_4gram_metadata": "models/af/subword_ngram/af_4gram_metadata.json",
|
| 247 |
+
"subword_4gram_top": "models/af/subword_ngram/af_4gram_top1000.parquet",
|
| 248 |
+
"subword_markov1": "models/af/subword_markov/af_markov1_transitions.parquet",
|
| 249 |
+
"subword_markov1_metadata": "models/af/subword_markov/af_markov1_metadata.json",
|
| 250 |
+
"subword_markov2": "models/af/subword_markov/af_markov2_transitions.parquet",
|
| 251 |
+
"subword_markov2_metadata": "models/af/subword_markov/af_markov2_metadata.json",
|
| 252 |
+
"subword_markov3": "models/af/subword_markov/af_markov3_transitions.parquet",
|
| 253 |
+
"subword_markov3_metadata": "models/af/subword_markov/af_markov3_metadata.json",
|
| 254 |
+
"word_2gram": "models/af/word_ngram/af_2gram_model.parquet",
|
| 255 |
+
"word_2gram_metadata": "models/af/word_ngram/af_2gram_metadata.json",
|
| 256 |
+
"word_2gram_top": "models/af/word_ngram/af_2gram_top1000.parquet",
|
| 257 |
+
"word_3gram": "models/af/word_ngram/af_3gram_model.parquet",
|
| 258 |
+
"word_3gram_metadata": "models/af/word_ngram/af_3gram_metadata.json",
|
| 259 |
+
"word_3gram_top": "models/af/word_ngram/af_3gram_top1000.parquet",
|
| 260 |
+
"word_4gram": "models/af/word_ngram/af_4gram_model.parquet",
|
| 261 |
+
"word_4gram_metadata": "models/af/word_ngram/af_4gram_metadata.json",
|
| 262 |
+
"word_4gram_top": "models/af/word_ngram/af_4gram_top1000.parquet",
|
| 263 |
+
"word_markov1": "models/af/word_markov/af_markov1_transitions.parquet",
|
| 264 |
+
"word_markov1_metadata": "models/af/word_markov/af_markov1_metadata.json",
|
| 265 |
+
"word_markov2": "models/af/word_markov/af_markov2_transitions.parquet",
|
| 266 |
+
"word_markov2_metadata": "models/af/word_markov/af_markov2_metadata.json",
|
| 267 |
+
"word_markov3": "models/af/word_markov/af_markov3_transitions.parquet",
|
| 268 |
+
"word_markov3_metadata": "models/af/word_markov/af_markov3_metadata.json"
|
| 269 |
+
},
|
| 270 |
+
"completed_at": "2025-07-31T16:44:59.441004",
|
| 271 |
+
"duration": 2536.534306049347
|
| 272 |
+
},
|
| 273 |
+
"6": {
|
| 274 |
+
"total_articles": 124877,
|
| 275 |
+
"output_files": [
|
| 276 |
+
"scored_articles/af/af_scored_articles_part_000.parquet",
|
| 277 |
+
"scored_articles/af/af_scored_articles_part_001.parquet",
|
| 278 |
+
"scored_articles/af/af_scored_articles_part_002.parquet",
|
| 279 |
+
"scored_articles/af/af_scored_articles_part_003.parquet",
|
| 280 |
+
"scored_articles/af/af_scored_articles_part_004.parquet"
|
| 281 |
+
],
|
| 282 |
+
"score_statistics": {
|
| 283 |
+
"mean_tfidf": {
|
| 284 |
+
"mean": 0.05124321167467498,
|
| 285 |
+
"min": 0.0005799509719341689,
|
| 286 |
+
"max": 6.829809753400186,
|
| 287 |
+
"count": 124877
|
| 288 |
+
},
|
| 289 |
+
"overall_novelty": {
|
| 290 |
+
"mean": 0.0,
|
| 291 |
+
"min": 0.0,
|
| 292 |
+
"max": 0.0,
|
| 293 |
+
"count": 124877
|
| 294 |
+
},
|
| 295 |
+
"hapax_legomena_ratio": {
|
| 296 |
+
"mean": 0.72602454849505,
|
| 297 |
+
"min": 0.0,
|
| 298 |
+
"max": 1.0,
|
| 299 |
+
"count": 124877
|
| 300 |
+
},
|
| 301 |
+
"total_tokens": {
|
| 302 |
+
"mean": 345.9340310865892,
|
| 303 |
+
"min": 1,
|
| 304 |
+
"max": 39463,
|
| 305 |
+
"count": 124877
|
| 306 |
+
},
|
| 307 |
+
"lexical_diversity": {
|
| 308 |
+
"mean": 0.9843732208519338,
|
| 309 |
+
"min": 0.0,
|
| 310 |
+
"max": 1.0,
|
| 311 |
+
"count": 124877
|
| 312 |
+
},
|
| 313 |
+
"unique_tokens": {
|
| 314 |
+
"mean": 156.5526237818013,
|
| 315 |
+
"min": 1,
|
| 316 |
+
"max": 6644,
|
| 317 |
+
"count": 124877
|
| 318 |
+
},
|
| 319 |
+
"moving_average_ttr": {
|
| 320 |
+
"mean": 0.7046797727093798,
|
| 321 |
+
"min": 0.02930232558139535,
|
| 322 |
+
"max": 1.0,
|
| 323 |
+
"count": 124877
|
| 324 |
+
},
|
| 325 |
+
"type_token_ratio": {
|
| 326 |
+
"mean": 0.6290323290908232,
|
| 327 |
+
"min": 0.06140350877192982,
|
| 328 |
+
"max": 1.0,
|
| 329 |
+
"count": 124877
|
| 330 |
+
},
|
| 331 |
+
"max_tfidf": {
|
| 332 |
+
"mean": 0.24166506861657502,
|
| 333 |
+
"min": 0.013544769437258434,
|
| 334 |
+
"max": 6.829809753400186,
|
| 335 |
+
"count": 124877
|
| 336 |
+
},
|
| 337 |
+
"overall_representativeness": {
|
| 338 |
+
"mean": 0.0,
|
| 339 |
+
"min": 0.0,
|
| 340 |
+
"max": 0.0,
|
| 341 |
+
"count": 124877
|
| 342 |
+
}
|
| 343 |
+
},
|
| 344 |
+
"ngram_models_used": [],
|
| 345 |
+
"batch_size": 10000,
|
| 346 |
+
"completed_at": "2025-07-31T16:49:33.700147",
|
| 347 |
+
"duration": 257.318391084671
|
| 348 |
+
},
|
| 349 |
+
"7": {
|
| 350 |
+
"samples": {
|
| 351 |
+
"full": [
|
| 352 |
+
"samples/af/af_sample_fullk_part_000.parquet",
|
| 353 |
+
"samples/af/af_sample_fullk_part_001.parquet",
|
| 354 |
+
"samples/af/af_sample_fullk_part_002.parquet",
|
| 355 |
+
"samples/af/af_sample_fullk_part_003.parquet",
|
| 356 |
+
"samples/af/af_sample_fullk_part_004.parquet",
|
| 357 |
+
"samples/af/af_sample_fullk_part_005.parquet",
|
| 358 |
+
"samples/af/af_sample_fullk_part_006.parquet",
|
| 359 |
+
"samples/af/af_sample_fullk_part_007.parquet",
|
| 360 |
+
"samples/af/af_sample_fullk_part_008.parquet",
|
| 361 |
+
"samples/af/af_sample_fullk_part_009.parquet",
|
| 362 |
+
"samples/af/af_sample_fullk_part_010.parquet",
|
| 363 |
+
"samples/af/af_sample_fullk_part_011.parquet",
|
| 364 |
+
"samples/af/af_sample_fullk_part_012.parquet",
|
| 365 |
+
"samples/af/af_sample_fullk_part_013.parquet",
|
| 366 |
+
"samples/af/af_sample_fullk_part_014.parquet",
|
| 367 |
+
"samples/af/af_sample_fullk_part_015.parquet",
|
| 368 |
+
"samples/af/af_sample_fullk_part_016.parquet",
|
| 369 |
+
"samples/af/af_sample_fullk_part_017.parquet",
|
| 370 |
+
"samples/af/af_sample_fullk_part_018.parquet",
|
| 371 |
+
"samples/af/af_sample_fullk_part_019.parquet",
|
| 372 |
+
"samples/af/af_sample_fullk_part_020.parquet",
|
| 373 |
+
"samples/af/af_sample_fullk_part_021.parquet",
|
| 374 |
+
"samples/af/af_sample_fullk_part_022.parquet",
|
| 375 |
+
"samples/af/af_sample_fullk_part_023.parquet",
|
| 376 |
+
"samples/af/af_sample_fullk_part_024.parquet"
|
| 377 |
+
],
|
| 378 |
+
"train": [
|
| 379 |
+
"samples/af/af_train_part_000.parquet",
|
| 380 |
+
"samples/af/af_train_part_001.parquet",
|
| 381 |
+
"samples/af/af_train_part_002.parquet",
|
| 382 |
+
"samples/af/af_train_part_003.parquet",
|
| 383 |
+
"samples/af/af_train_part_004.parquet",
|
| 384 |
+
"samples/af/af_train_part_005.parquet",
|
| 385 |
+
"samples/af/af_train_part_006.parquet",
|
| 386 |
+
"samples/af/af_train_part_007.parquet",
|
| 387 |
+
"samples/af/af_train_part_008.parquet",
|
| 388 |
+
"samples/af/af_train_part_009.parquet",
|
| 389 |
+
"samples/af/af_train_part_010.parquet",
|
| 390 |
+
"samples/af/af_train_part_011.parquet",
|
| 391 |
+
"samples/af/af_train_part_012.parquet",
|
| 392 |
+
"samples/af/af_train_part_013.parquet",
|
| 393 |
+
"samples/af/af_train_part_014.parquet",
|
| 394 |
+
"samples/af/af_train_part_015.parquet",
|
| 395 |
+
"samples/af/af_train_part_016.parquet",
|
| 396 |
+
"samples/af/af_train_part_017.parquet",
|
| 397 |
+
"samples/af/af_train_part_018.parquet",
|
| 398 |
+
"samples/af/af_train_part_019.parquet",
|
| 399 |
+
"samples/af/af_train_part_020.parquet",
|
| 400 |
+
"samples/af/af_train_part_021.parquet",
|
| 401 |
+
"samples/af/af_train_part_022.parquet",
|
| 402 |
+
"samples/af/af_train_part_023.parquet",
|
| 403 |
+
"samples/af/af_train_part_024.parquet"
|
| 404 |
+
],
|
| 405 |
+
"1000k": [
|
| 406 |
+
"samples/af/af_sample_1000k_part_000.parquet"
|
| 407 |
+
],
|
| 408 |
+
"5000k": [
|
| 409 |
+
"samples/af/af_sample_5000k_part_000.parquet"
|
| 410 |
+
],
|
| 411 |
+
"10000k": [
|
| 412 |
+
"samples/af/af_sample_10000k_part_000.parquet"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
"sample_counts": {
|
| 416 |
+
"1000": 50,
|
| 417 |
+
"5000": 250,
|
| 418 |
+
"10000": 500,
|
| 419 |
+
"full": 124877,
|
| 420 |
+
"train": 124877
|
| 421 |
+
},
|
| 422 |
+
"total_articles_processed": 124877,
|
| 423 |
+
"processing_completed_at": "2025-07-31T16:49:52.374138",
|
| 424 |
+
"duration": 18.365309953689575
|
| 425 |
+
},
|
| 426 |
+
"8": {
|
| 427 |
+
"statistics_report": "statistics/af/af_statistics_report.json",
|
| 428 |
+
"corpus_statistics": {
|
| 429 |
+
"total_articles": 124877,
|
| 430 |
+
"total_tokens": 43199204,
|
| 431 |
+
"vocabulary_size": 63466,
|
| 432 |
+
"zipf_adherence": "excellent"
|
| 433 |
+
},
|
| 434 |
+
"sample_coverage": {
|
| 435 |
+
"full": {
|
| 436 |
+
"overall_coverage": 0.0,
|
| 437 |
+
"vocabulary_coverage": 1.0
|
| 438 |
+
},
|
| 439 |
+
"1000": {
|
| 440 |
+
"overall_coverage": 0.0,
|
| 441 |
+
"vocabulary_coverage": 0.15731257681278166
|
| 442 |
+
},
|
| 443 |
+
"5000": {
|
| 444 |
+
"overall_coverage": 0.0,
|
| 445 |
+
"vocabulary_coverage": 0.31859578356915513
|
| 446 |
+
},
|
| 447 |
+
"10000": {
|
| 448 |
+
"overall_coverage": 0.0,
|
| 449 |
+
"vocabulary_coverage": 0.41441086566035357
|
| 450 |
+
}
|
| 451 |
+
},
|
| 452 |
+
"processing_completed_at": "2025-07-31T16:50:24.744598",
|
| 453 |
+
"duration": 32.78457522392273
|
| 454 |
+
}
|
| 455 |
+
},
|
| 456 |
+
"pipeline_version": "1.0.0"
|
| 457 |
+
}
|
20250701/af/models/subword_markov/af_markov1_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"unique_contexts": 63465,
|
| 4 |
+
"total_transitions": 43074327,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "subword",
|
| 7 |
+
"created_at": "2025-07-31T16:40:37.063668"
|
| 8 |
+
}
|
20250701/af/models/subword_markov/af_markov2_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"unique_contexts": 7502582,
|
| 4 |
+
"total_transitions": 42949586,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "subword",
|
| 7 |
+
"created_at": "2025-07-31T16:41:22.070623"
|
| 8 |
+
}
|
20250701/af/models/subword_markov/af_markov3_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"unique_contexts": 21032987,
|
| 4 |
+
"total_transitions": 42824846,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "subword",
|
| 7 |
+
"created_at": "2025-07-31T16:42:36.692158"
|
| 8 |
+
}
|
20250701/af/models/subword_ngram/af_2gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"total_ngrams": 43074327,
|
| 4 |
+
"unique_ngrams": 988607,
|
| 5 |
+
"min_frequency": 5,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "subword",
|
| 8 |
+
"created_at": "2025-07-31T16:40:08.319325"
|
| 9 |
+
}
|
20250701/af/models/subword_ngram/af_3gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"total_ngrams": 42949586,
|
| 4 |
+
"unique_ngrams": 1933919,
|
| 5 |
+
"min_frequency": 3,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "subword",
|
| 8 |
+
"created_at": "2025-07-31T16:40:13.616357"
|
| 9 |
+
}
|
20250701/af/models/subword_ngram/af_4gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"total_ngrams": 42824846,
|
| 4 |
+
"unique_ngrams": 3175168,
|
| 5 |
+
"min_frequency": 2,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "subword",
|
| 8 |
+
"created_at": "2025-07-31T16:40:22.238911"
|
| 9 |
+
}
|
20250701/af/models/tokenizer/af_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
20250701/af/models/tokenizer/af_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
20250701/af/models/tokenizer/af_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
20250701/af/models/tokenizer/af_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
20250701/af/models/vocabulary/af_dictionary_metadata.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language_code": "af",
|
| 3 |
+
"total_articles": 124877,
|
| 4 |
+
"training_samples": 49935,
|
| 5 |
+
"eval_samples": 999,
|
| 6 |
+
"dictionary_size": 484292,
|
| 7 |
+
"word_freq_size": 15051,
|
| 8 |
+
"training_report": {
|
| 9 |
+
"cycle_reports": [
|
| 10 |
+
{
|
| 11 |
+
"f1": 1.0,
|
| 12 |
+
"accuracy": 1.0,
|
| 13 |
+
"precision": 1.0,
|
| 14 |
+
"recall": 1.0,
|
| 15 |
+
"confusion": 0,
|
| 16 |
+
"confidence_margin": 1.0,
|
| 17 |
+
"confusion_matrix": [],
|
| 18 |
+
"total_samples": 49558,
|
| 19 |
+
"removed_samples": 0
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"f1": 1.0,
|
| 23 |
+
"accuracy": 1.0,
|
| 24 |
+
"precision": 1.0,
|
| 25 |
+
"recall": 1.0,
|
| 26 |
+
"confusion": 0,
|
| 27 |
+
"confidence_margin": 1.0,
|
| 28 |
+
"confusion_matrix": [],
|
| 29 |
+
"total_samples": 49558,
|
| 30 |
+
"removed_samples": 0
|
| 31 |
+
}
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
"final_accuracy": 1.0,
|
| 35 |
+
"final_f1": 1.0,
|
| 36 |
+
"confidence_threshold": 0.5,
|
| 37 |
+
"confidence_margin": 0.3,
|
| 38 |
+
"training_cycles": 3,
|
| 39 |
+
"completed_at": "2025-07-31T16:02:59.004063"
|
| 40 |
+
}
|
20250701/af/models/word_markov/af_markov1_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"unique_contexts": 823324,
|
| 4 |
+
"total_transitions": 38487033,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "word",
|
| 7 |
+
"created_at": "2025-07-31T16:43:12.538748"
|
| 8 |
+
}
|
20250701/af/models/word_markov/af_markov2_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"unique_contexts": 8320124,
|
| 4 |
+
"total_transitions": 38362292,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "word",
|
| 7 |
+
"created_at": "2025-07-31T16:43:52.328902"
|
| 8 |
+
}
|
20250701/af/models/word_markov/af_markov3_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"unique_contexts": 19534054,
|
| 4 |
+
"total_transitions": 38237555,
|
| 5 |
+
"language_code": "af",
|
| 6 |
+
"model_type": "word",
|
| 7 |
+
"created_at": "2025-07-31T16:44:56.903211"
|
| 8 |
+
}
|
20250701/af/models/word_ngram/af_2gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"total_ngrams": 38487033,
|
| 4 |
+
"unique_ngrams": 1312897,
|
| 5 |
+
"min_frequency": 3,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "word",
|
| 8 |
+
"created_at": "2025-07-31T16:42:42.416761"
|
| 9 |
+
}
|
20250701/af/models/word_ngram/af_3gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"total_ngrams": 38362292,
|
| 4 |
+
"unique_ngrams": 3125001,
|
| 5 |
+
"min_frequency": 2,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "word",
|
| 8 |
+
"created_at": "2025-07-31T16:42:49.829509"
|
| 9 |
+
}
|
20250701/af/models/word_ngram/af_3gram_model.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fa503a945674b3707acc6224b165da87aefe600dd2e2f5d54ad8ce57c2b0ce3
|
| 3 |
+
size 54238615
|
20250701/af/models/word_ngram/af_4gram_metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"total_ngrams": 38237555,
|
| 4 |
+
"unique_ngrams": 2527228,
|
| 5 |
+
"min_frequency": 2,
|
| 6 |
+
"language_code": "af",
|
| 7 |
+
"model_type": "word",
|
| 8 |
+
"created_at": "2025-07-31T16:42:57.012278"
|
| 9 |
+
}
|
20250701/af/models/word_ngram/af_4gram_model.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e04ee684ca4c3c2ac49756b1cb67b308fb9a13c457b3af6eef5b13311ce3379
|
| 3 |
+
size 47134196
|