|
|
import pandas as pd |
|
|
from vina_gpu import QuickVina2GPU, VINA |
|
|
|
|
|
df_20k = pd.read_csv('lig_llm_prop.csv') |
|
|
df_drug = pd.read_csv('20_targets/drugs_filtered/PDE4A_HUMAN.csv') |
|
|
combined_df = pd.concat([df_20k, df_drug], ignore_index=True) |
|
|
|
|
|
vina = QuickVina2GPU(vina_path=VINA, target="PDE4A_3tvx") |
|
|
|
|
|
smiles_list = combined_df['SMILES'].tolist() |
|
|
mols, affinities = [],[] |
|
|
batchsize = 1000 |
|
|
for i in range(0, len(smiles_list), batchsize): |
|
|
batch_smiles = smiles_list[i:i + batchsize] |
|
|
batch_mols, batch_affinities = vina.calculate_rewards(batch_smiles) |
|
|
mols.extend(batch_mols) |
|
|
affinities.extend(batch_affinities) |
|
|
|
|
|
|
|
|
with open('20_targets/docked/PDE4A_docked.txt', 'w') as f: |
|
|
for mol, affinity in zip(mols, affinities): |
|
|
f.write(f"{mol}\t{affinity}\n") |
|
|
|
|
|
|
|
|
combined_df['Affinity'] = affinities |
|
|
combined_df.to_csv('20_targets/docked/PDE4A_docked.csv', index=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|