|
|
import os |
|
|
import subprocess |
|
|
import tempfile |
|
|
from typing import List, Tuple |
|
|
|
|
|
import numpy as np |
|
|
import rdkit.Chem as Chem |
|
|
from meeko import MoleculePreparation, PDBQTMolecule, PDBQTWriterLegacy, RDKitMolCreate |
|
|
from rdkit import RDLogger |
|
|
from rdkit.Chem import rdDistGeom |
|
|
|
|
|
from dataclasses import dataclass, field |
|
|
from typing import List, Optional |
|
|
|
|
|
|
|
|
class StrictDataClass: |
|
|
""" |
|
|
A dataclass that raises an error if any field is created outside of the __init__ method. |
|
|
""" |
|
|
|
|
|
def __setattr__(self, name, value): |
|
|
if hasattr(self, name) or name in self.__annotations__: |
|
|
super().__setattr__(name, value) |
|
|
else: |
|
|
raise AttributeError( |
|
|
f"'{type(self).__name__}' object has no attribute '{name}'." |
|
|
f" '{type(self).__name__}' is a StrictDataClass object." |
|
|
f" Attributes can only be defined in the class definition." |
|
|
) |
|
|
|
|
|
@dataclass |
|
|
class VinaConfig(StrictDataClass): |
|
|
opencl_binary_path: str = ( |
|
|
"/lfs/skampere1/0/sttruong/cheapvs_llm/Vina-GPU-2.1/AutoDock-Vina-GPU-2.1" |
|
|
) |
|
|
vina_path: str = ( |
|
|
"/lfs/skampere1/0/sttruong/cheapvs_llm/Vina-GPU-2.1/AutoDock-Vina-GPU-2.1/AutoDock-Vina-GPU-2-1" |
|
|
) |
|
|
target: str = "kras" |
|
|
|
|
|
VINA = '/lfs/skampere1/0/sttruong/cheapvs_llm/Vina-GPU-2.1/AutoDock-Vina-GPU-2.1/AutoDock-Vina-GPU-2-1' |
|
|
|
|
|
logger = RDLogger.logger() |
|
|
RDLogger.DisableLog("rdApp.*") |
|
|
|
|
|
def gpu_vina_installed(vina_path=VINA): |
|
|
if os.path.exists(vina_path): |
|
|
return True |
|
|
return False |
|
|
|
|
|
|
|
|
def read_pdbqt(fn): |
|
|
""" |
|
|
Read a pdbqt file and return the RDKit molecule object. |
|
|
|
|
|
Args: |
|
|
- fn (str): Path to the pdbqt file. |
|
|
|
|
|
Returns: |
|
|
- mol (rdkit.Chem.rdchem.Mol): RDKit molecule object. |
|
|
""" |
|
|
pdbqt_mol = PDBQTMolecule.from_file(fn, is_dlg=False, skip_typing=True) |
|
|
rdkitmol_list = RDKitMolCreate.from_pdbqt_mol(pdbqt_mol) |
|
|
return rdkitmol_list[0] |
|
|
|
|
|
|
|
|
def smile_to_conf(smile: str, n_tries=5) -> Chem.Mol: |
|
|
mol = Chem.MolFromSmiles(smile) |
|
|
if mol is None: |
|
|
return None |
|
|
Chem.SanitizeMol(mol) |
|
|
|
|
|
tries = 0 |
|
|
while tries < n_tries: |
|
|
|
|
|
params = rdDistGeom.ETKDGv3() |
|
|
|
|
|
|
|
|
params.useSmallRingTorsions = True |
|
|
params.randomSeed = 0 |
|
|
params.numThreads = 1 |
|
|
|
|
|
|
|
|
rdDistGeom.EmbedMolecule(mol, params) |
|
|
|
|
|
|
|
|
mol = Chem.AddHs(mol, addCoords=True) |
|
|
|
|
|
if mol.GetNumConformers() > 0: |
|
|
return mol |
|
|
|
|
|
tries += 1 |
|
|
|
|
|
print(f"Failed to generate conformer for {smile}") |
|
|
return mol |
|
|
|
|
|
|
|
|
def mol_to_pdbqt(mol: Chem.Mol, pdbqt_file: str): |
|
|
|
|
|
preparator = MoleculePreparation() |
|
|
mol_setups = preparator.prepare(mol) |
|
|
|
|
|
for setup in mol_setups: |
|
|
pdbqt_string, is_ok, error_msg = PDBQTWriterLegacy.write_string(setup) |
|
|
if is_ok: |
|
|
with open(pdbqt_file, "w") as f: |
|
|
f.write(pdbqt_string) |
|
|
break |
|
|
else: |
|
|
print(f"Failed to write pdbqt file: {error_msg}") |
|
|
|
|
|
|
|
|
def parse_affinty_from_pdbqt(pdbqt_file: str) -> float: |
|
|
with open(pdbqt_file, "r") as f: |
|
|
lines = f.readlines() |
|
|
for line in lines: |
|
|
if "REMARK VINA RESULT" in line: |
|
|
return float(line.split()[3]) |
|
|
return None |
|
|
|
|
|
|
|
|
script_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
repo_root = os.path.dirname(script_dir) |
|
|
DATA_DIR = os.path.join(repo_root, "data/docking/") |
|
|
|
|
|
TARGETS = { |
|
|
"2bm2": { |
|
|
"receptor": os.path.join(DATA_DIR, "2bm2/2bm2_protein.pdbqt"), |
|
|
"center_x": 40.415, |
|
|
"center_y": 110.986, |
|
|
"center_z": 82.673, |
|
|
"size_x": 30, |
|
|
"size_y": 30, |
|
|
"size_z": 30, |
|
|
"num_atoms": 30, |
|
|
}, |
|
|
"kras": { |
|
|
"receptor": os.path.join(DATA_DIR, "kras/8azr.pdbqt"), |
|
|
"ref_ligand": os.path.join(DATA_DIR, "kras/8azr_ref_ligand.sdf"), |
|
|
"center_x": 21.466, |
|
|
"center_y": -0.650, |
|
|
"center_z": 5.028, |
|
|
"size_x": 18, |
|
|
"size_y": 18, |
|
|
"size_z": 18, |
|
|
"num_atoms": 32, |
|
|
}, |
|
|
"trmd": { |
|
|
"receptor": os.path.join(DATA_DIR, "trmd/6qrd.pdbqt"), |
|
|
"center_x": 16.957, |
|
|
"center_y": 21.772, |
|
|
"center_z": 33.296, |
|
|
"size_x": 30, |
|
|
"size_y": 30, |
|
|
"size_z": 30, |
|
|
"num_atoms": 34, |
|
|
}, |
|
|
'ACES_8dt5': { |
|
|
'center_x': 64.615, |
|
|
'center_y': 147.253, |
|
|
'center_z': 6.996, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/ACES_8dt5.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/ACES_8dt5.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'ACE_1uze': { |
|
|
'center_x': 40.638, |
|
|
'center_y': 35.471, |
|
|
'center_z': 46.563, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/ACE_1uze.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/ACE_1uze.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'ADRB2_4ldo': { |
|
|
'center_x': -1.346, |
|
|
'center_y': -12.351, |
|
|
'center_z': -48.586, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/ADRB2_4ldo.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/ADRB2_4ldo.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'AOFB_2c66': { |
|
|
'center_x': 52.765, |
|
|
'center_y': 154.112, |
|
|
'center_z': 26.269, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/AOFB_2c66.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/AOFB_2c66.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'BCL2_6o0k': { |
|
|
'center_x': -15.357, |
|
|
'center_y': 2.24, |
|
|
'center_z': -9.562, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/BCL2_6o0k.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/BCL2_6o0k.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'CAH2_5gmm': { |
|
|
'center_x': -0.223, |
|
|
'center_y': 6.554, |
|
|
'center_z': -47.066, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/CAH2_5gmm.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/CAH2_5gmm.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'CLTR1_6rz5': { |
|
|
'center_x': 12.835, |
|
|
'center_y': 8.127, |
|
|
'center_z': -13.658, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/CLTR1_6rz5.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/CLTR1_6rz5.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'DHPS_5u14': { |
|
|
'center_x': 70.928, |
|
|
'center_y': -0.17, |
|
|
'center_z': 101.575, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/DHPS_5u14.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/DHPS_5u14.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'DPP4_5y7k': { |
|
|
'center_x': 95.486, |
|
|
'center_y': -16.719, |
|
|
'center_z': 60.594, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/DPP4_5y7k.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/DPP4_5y7k.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'DYR_2w3a': { |
|
|
'center_x': 1.914, |
|
|
'center_y': 30.495, |
|
|
'center_z': -2.884, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/DYR_2w3a.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/DYR_2w3a.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'HDAC1_8voj': { |
|
|
'center_x': 171.994, |
|
|
'center_y': 205.147, |
|
|
'center_z': 153.834, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/HDAC1_8voj.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/HDAC1_8voj.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'HMDH_1hwk': { |
|
|
'center_x': 18.313, |
|
|
'center_y': 8.38, |
|
|
'center_z': 15.174, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/HMDH_1hwk.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/HMDH_1hwk.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'PARP1_8hlr': { |
|
|
'center_x': 11.147, |
|
|
'center_y': 4.004, |
|
|
'center_z': -9.104, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/PARP1_8hlr.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/PARP1_8hlr.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'PBPA_3udi': { |
|
|
'center_x': 34.097, |
|
|
'center_y': -0.694, |
|
|
'center_z': 12.515, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/PBPA_3udi.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/PBPA_3udi.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'PDE4A_3tvx': { |
|
|
'center_x': 43.495, |
|
|
'center_y': 16.644, |
|
|
'center_z': -24.574, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/PDE4A_3tvx.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/PDE4A_3tvx.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'PPARA_7bpz': { |
|
|
'center_x': 22.031, |
|
|
'center_y': 0.986, |
|
|
'center_z': 62.494, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/PPARA_7bpz.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/PPARA_7bpz.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'PPARG_5ugm': { |
|
|
'center_x': 25.979, |
|
|
'center_y': 64.86, |
|
|
'center_z': -29.332, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/PPARG_5ugm.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/PPARG_5ugm.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'SC6A4_6awp': { |
|
|
'center_x': 33.292, |
|
|
'center_y': 185.551, |
|
|
'center_z': 143.179, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/SC6A4_6awp.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/SC6A4_6awp.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
'SRC_4mxo': { |
|
|
'center_x': 12.089, |
|
|
'center_y': -37.176, |
|
|
'center_z': -6.818, |
|
|
'receptor': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/proteins_pdbqt/SRC_4mxo.pdbqt', |
|
|
'ref_ligand': '/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/crystal_ligand/SRC_4mxo.pdb', |
|
|
'size_x': 25.0, |
|
|
'size_y': 25.0, |
|
|
'size_z': 25.0, |
|
|
"num_atoms": 34}, |
|
|
} |
|
|
|
|
|
|
|
|
class QuickVina2GPU(object): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vina_path: str = VINA, |
|
|
target: str = None, |
|
|
target_pdbqt: str = None, |
|
|
reference_ligand: str = None, |
|
|
input_dir: str = None, |
|
|
out_dir: str = None, |
|
|
save_confs: bool = False, |
|
|
reward_scale_max: float = -1.0, |
|
|
reward_scale_min: float = -10.0, |
|
|
thread: int = 8000, |
|
|
print_time: bool = False, |
|
|
print_logs: bool = False, |
|
|
): |
|
|
""" |
|
|
Initializes the QuickVina2GPU class with configuration for running QuickVina 2 on GPU. |
|
|
|
|
|
Give either a code for a target or a PDBQT file. |
|
|
|
|
|
Args: |
|
|
- vina_path (str): Path to the Vina executable. |
|
|
- target (str, optional): Target identifier. Defaults to None. |
|
|
- target_pdbqt (str, optional): Path to the target PDBQT file. Defaults to None. |
|
|
- reference_ligand (str, optional): Path to the reference ligand file. Defaults to None. |
|
|
- input_dir (str, optional): Directory for input files. Defaults to a temporary directory. |
|
|
- out_dir (str, optional): Directory for output files. Defaults to None, will use input_dir + '_out'. |
|
|
- save_confs (bool, optional): Whether to save conformations. Defaults to False. |
|
|
- reward_scale_max (float, optional): Maximum reward scale. Defaults to -1.0. |
|
|
- reward_scale_min (float, optional): Minimum reward scale. Defaults to -10.0. |
|
|
- thread (int, optional): Number of threads to use. Defaults to 8000. |
|
|
- print_time (bool, optional): Whether to print execution time. Defaults to True. |
|
|
|
|
|
Raises: |
|
|
- ValueError: If the target is unknown. |
|
|
|
|
|
""" |
|
|
self.vina_path = vina_path |
|
|
self.save_confs = save_confs |
|
|
self.thread = thread |
|
|
self.print_time = print_time |
|
|
self.print_logs = print_logs |
|
|
self.reward_scale_max = reward_scale_max |
|
|
self.reward_scale_min = reward_scale_min |
|
|
|
|
|
if target is None and target_pdbqt is None: |
|
|
raise ValueError("Either target or target_pdbqt must be provided") |
|
|
|
|
|
if input_dir is None: |
|
|
input_dir = '/lfs/skampere1/0/sttruong/cheapvs_llm/vina_dir' |
|
|
os.makedirs(input_dir, exist_ok=True) |
|
|
self.input_dir = input_dir |
|
|
self.out_dir = input_dir + "_out" |
|
|
|
|
|
if target in TARGETS: |
|
|
self.target_info = TARGETS[target] |
|
|
else: |
|
|
raise ValueError(f"Unknown target: {target}") |
|
|
|
|
|
for key, value in self.target_info.items(): |
|
|
setattr(self, key, value) |
|
|
|
|
|
def _write_config_file(self): |
|
|
|
|
|
config = [] |
|
|
config.append(f"receptor = {self.receptor}") |
|
|
config.append(f"ligand_directory = {self.input_dir}") |
|
|
config.append(f"opencl_binary_path = {VinaConfig.opencl_binary_path}") |
|
|
config.append(f"center_x = {self.center_x}") |
|
|
config.append(f"center_y = {self.center_y}") |
|
|
config.append(f"center_z = {self.center_z}") |
|
|
config.append(f"size_x = {self.size_x}") |
|
|
config.append(f"size_y = {self.size_y}") |
|
|
config.append(f"size_z = {self.size_z}") |
|
|
config.append(f"thread = {self.thread}") |
|
|
|
|
|
with open(os.path.join(self.input_dir, "config.txt"), "w") as f: |
|
|
f.write("\n".join(config)) |
|
|
|
|
|
def _write_pdbqt_files(self, smiles: List[str]): |
|
|
|
|
|
|
|
|
mols = [smile_to_conf(smile) for smile in smiles] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, mol in enumerate(mols): |
|
|
pdbqt_file = os.path.join(self.input_dir, f"input_{i}.pdbqt") |
|
|
try: |
|
|
mol_to_pdbqt(mol, pdbqt_file) |
|
|
except Exception as e: |
|
|
print(f"Failed to write pdbqt file: {e}") |
|
|
|
|
|
def _teardown(self): |
|
|
|
|
|
|
|
|
for file in os.listdir(self.input_dir): |
|
|
os.remove(os.path.join(self.input_dir, file)) |
|
|
os.rmdir(self.input_dir) |
|
|
|
|
|
|
|
|
if os.path.exists(self.out_dir): |
|
|
for file in os.listdir(self.out_dir): |
|
|
os.remove(os.path.join(self.out_dir, file)) |
|
|
os.rmdir(self.out_dir) |
|
|
|
|
|
def _run_vina(self): |
|
|
|
|
|
result = subprocess.run( |
|
|
[self.vina_path, "--config", os.path.join(self.input_dir, "config.txt")], capture_output=True, text=True, cwd=VinaConfig.opencl_binary_path |
|
|
) |
|
|
if self.print_time: |
|
|
print(result.stdout.split("\n")[-2]) |
|
|
if self.print_logs: |
|
|
print(result.stdout.split("\n")) |
|
|
|
|
|
if result.returncode != 0: |
|
|
print(f"Vina failed with return code {result.returncode}") |
|
|
print(result.stderr) |
|
|
return False |
|
|
|
|
|
def _parse_results(self): |
|
|
|
|
|
results = [] |
|
|
failed = 0 |
|
|
|
|
|
for i in range(self.batch_size): |
|
|
pdbqt_file = os.path.join(self.out_dir, f"input_{i}_out.pdbqt") |
|
|
if os.path.exists(pdbqt_file): |
|
|
affinity = parse_affinty_from_pdbqt(pdbqt_file) |
|
|
else: |
|
|
affinity = 0.0 |
|
|
failed += 1 |
|
|
results.append((affinity)) |
|
|
|
|
|
if failed > 0: |
|
|
print(f"WARNING: Failed to calculate affinity for {failed}/{self.batch_size} molecules") |
|
|
|
|
|
return results |
|
|
|
|
|
def _parse_docked_poses(self): |
|
|
poses = [] |
|
|
failed = 0 |
|
|
|
|
|
for i in range(self.batch_size): |
|
|
pdbqt_file = os.path.join(self.out_dir, f"input_{i}_out.pdbqt") |
|
|
if os.path.exists(pdbqt_file): |
|
|
mol = read_pdbqt(pdbqt_file) |
|
|
poses.append(mol) |
|
|
else: |
|
|
poses.append(None) |
|
|
failed += 1 |
|
|
|
|
|
if failed > 0: |
|
|
print(f"WARNING: Failed to read docked pdbqt files for {failed}/{self.batch_size} molecules") |
|
|
|
|
|
return poses |
|
|
|
|
|
def _check_outputs(self): |
|
|
if not os.path.exists(self.out_dir): |
|
|
return False |
|
|
return True |
|
|
|
|
|
def calculate_rewards(self, smiles: List[str]) -> List[Tuple[str, float]]: |
|
|
|
|
|
self.batch_size = len(smiles) |
|
|
|
|
|
|
|
|
|
|
|
self._write_pdbqt_files(smiles) |
|
|
self._write_config_file() |
|
|
self._run_vina() |
|
|
|
|
|
|
|
|
if self._check_outputs(): |
|
|
affinties = self._parse_results() |
|
|
else: |
|
|
affinties = [0.0] * self.batch_size |
|
|
|
|
|
|
|
|
affinties = np.array(affinties) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._teardown() |
|
|
|
|
|
|
|
|
return smiles, list(affinties) |
|
|
|
|
|
def dock_mols(self, smiles: List[str]) -> List[Tuple[str, float]]: |
|
|
self.batch_size = len(smiles) |
|
|
|
|
|
|
|
|
self._write_pdbqt_files(smiles) |
|
|
self._write_config_file() |
|
|
self._run_vina() |
|
|
|
|
|
|
|
|
affinties = self._parse_results() |
|
|
|
|
|
|
|
|
affinties = np.array(affinties) |
|
|
mols = self._parse_docked_poses() |
|
|
|
|
|
print( |
|
|
f"AFFINITIES: mean={round(np.mean(affinties), 3 )}, std={round(np.std(affinties), 3)}, min={round(np.min(affinties), 3)}, max={round(np.max(affinties), 3)}" |
|
|
) |
|
|
|
|
|
|
|
|
self._teardown() |
|
|
|
|
|
return mols, affinties |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
smile = "Fc1cc2ccncc2cc1Br" |
|
|
mol = smile_to_conf(smile) |
|
|
|
|
|
pdbqt_file = "test.pdbqt" |
|
|
mol_to_pdbqt(mol, pdbqt_file) |
|
|
os.remove |
|
|
|
|
|
parse_affinty_from_pdbqt(pdbqt_file) |
|
|
|
|
|
|
|
|
vina = QuickVina2GPU(vina_path=VINA, target="DPP4_5y7k") |
|
|
|
|
|
import pandas as pd |
|
|
df = pd.read_csv('/lfs/skampere1/0/sttruong/cheapvs_llm/20_targets/drugs_filtered/DPP4_HUMAN.csv') |
|
|
smiles_list = df['SMILES'].tolist() |
|
|
|
|
|
outs = vina.calculate_rewards(smiles_list) |
|
|
print(outs) |
|
|
|
|
|
|
|
|
|
|
|
|