File size: 1,534 Bytes
d6f85ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from typing import List

import torch
from diffusers import ModularPipelineBlocks
from diffusers.modular_pipelines import PipelineState
from diffusers.modular_pipelines.modular_pipeline_utils import (
    ComponentSpec,
    InputParam,
    OutputParam,
)
from image_gen_aux import DepthPreprocessor


class DepthProcessorBlock(ModularPipelineBlocks):
    @property
    def expected_components(self):
        return [
            ComponentSpec(
                name="depth_processor",
                type_hint=DepthPreprocessor,
                repo="depth-anything/Depth-Anything-V2-Large-hf",
            )
        ]

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "image",
                required=True,
                description="Image(s) to use to extract depth maps",
            )
        ]

    @property
    def intermediates_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "condition_image",
                type_hint=torch.Tensor,
                description="Depth Map(s) of input Image(s)",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        image = block_state.image
        depth_map = components.depth_processor(image)
        block_state.condition_image = depth_map.to(block_state.device)

        self.set_block_state(state, block_state)

        return components, state