# Depth Processor Block This is a custom block designed to extract depth maps from input images using the [Depth Anything Model]("https://huggingface.co/depth-anything/Depth-Anything-V2-Large") model. The model can be used as a processor to generate conditioning images for ControlNets. # How to use ```python import torch from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS, CONTROLNET_BLOCKS from diffusers.utils import load_image # fetch the depth processor block that will create our depth map depth_processor_block = ModularPipelineBlocks.from_pretrained("diffusers/depth-processor-custom-block", trust_remote_code=true) my_blocks = TEXT2IMAGE_BLOCKS.copy() my_blocks.insert("depth_processor", depth_processor_block, 1) # replace text to image denoise block with controlnet denoise block my_blocks.sub_blocks["denoise"] = CONTROLNET_BLOCKS["denoise"] # create our initial set of controlnet blocks blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks) repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0" # Initialize the pipeline object we can use to run our blocks pipe = blocks.init_pipeline(repo_id) # Load model component weights pipe.load_components(torch_dtype=torch.float16, device_map="cuda") image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true") image = image.resize((1024, 1024)) prompt = ["A red car"] output = pipe( prompt=prompt, image=image, num_inference_steps=35, guidance_scale=7.5, output_type="pil", ) ```