File size: 19,434 Bytes
2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 9ba3f6f 2881cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
"""
Maya-1-Voice VLLM Streaming Inference - Standalone Reference Implementation
This is a complete, self-contained example for using Maya-1-Voice TTS model with VLLM and SNAC.
Demonstrates streaming audio generation with sliding window approach for smooth playback.
Requirements:
pip install vllm transformers torch snac numpy
Usage:
python vllm_streaming_inference.py
Author: Maya-1-Voice Team
License: MIT
"""
import torch
import numpy as np
import asyncio
from typing import List, Optional, AsyncGenerator
from transformers import AutoTokenizer
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
from snac import SNAC
# ============================================================================
# CONSTANTS
# ============================================================================
# Special control tokens
CODE_START_TOKEN_ID = 128257 # Start of Speech (SOS)
CODE_END_TOKEN_ID = 128258 # End of Speech (EOS) - stop token for audio
CODE_TOKEN_OFFSET = 128266 # Start of SNAC codes
# SNAC token range (7 tokens per frame, 4096 codes per level)
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937 # 128266 + (7 * 4096) - 1
# SNAC configuration
SNAC_MODEL_NAME = "hubertsiuzdak/snac_24khz"
SNAC_SAMPLE_RATE = 24000
SNAC_TOKENS_PER_FRAME = 7
# Generation parameters
DEFAULT_TEMPERATURE = 0.4
DEFAULT_TOP_P = 0.9
DEFAULT_MAX_TOKENS = 2000
DEFAULT_MIN_TOKENS = 28 # At least 4 SNAC frames
DEFAULT_REPETITION_PENALTY = 1.1
# ============================================================================
# SNAC DECODER
# ============================================================================
class SNACDecoder:
"""
Decodes SNAC tokens (7-token frames) to audio waveforms.
The unpacking logic converts flat 7-token frames back to hierarchical
3-level SNAC codes (matching the training preprocessing exactly).
"""
def __init__(self, device: str = "cuda"):
"""Initialize SNAC decoder with 24kHz model."""
self.device = device
print(f"π΅ Loading SNAC 24kHz model to {device}...")
self.snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME).eval().to(device)
print(f"β
SNAC decoder initialized")
def unpack_snac_from_7(self, vocab_ids: List[int]) -> List[List[int]]:
"""
Unpack 7-token SNAC frames to 3 hierarchical levels.
This is the EXACT INVERSE of training preprocessing.
Frame structure (7 tokens per frame):
[slot0, slot1, slot2, slot3, slot4, slot5, slot6]
Unpacking to [L1, L2, L3]:
- slot0 β L1[i] (coarse: 1x rate)
- slot1 β L2[2*i] (medium: 2x rate, even)
- slot2 β L3[4*i+0] (fine: 4x rate)
- slot3 β L3[4*i+1]
- slot4 β L2[2*i+1] (medium: odd)
- slot5 β L3[4*i+2]
- slot6 β L3[4*i+3]
Args:
vocab_ids: List of SNAC token IDs (128266-156937), length divisible by 7
Returns:
[L1, L2, L3] where L1=n, L2=2n, L3=4n elements
"""
# Remove EOS token if present
if vocab_ids and vocab_ids[-1] == CODE_END_TOKEN_ID:
vocab_ids = vocab_ids[:-1]
# Ensure complete frames
frames = len(vocab_ids) // SNAC_TOKENS_PER_FRAME
vocab_ids = vocab_ids[:frames * SNAC_TOKENS_PER_FRAME]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = vocab_ids[i*7:(i+1)*7]
# Subtract offset and mod 4096 to get original SNAC codes
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096, # Even
(slots[4] - CODE_TOKEN_OFFSET) % 4096, # Odd
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
@torch.inference_mode()
def decode(
self,
snac_tokens: List[int],
use_sliding_window: bool = False
) -> Optional[np.ndarray]:
"""
Decode SNAC tokens to audio waveform.
Args:
snac_tokens: List of SNAC token IDs (7*n tokens)
use_sliding_window: If True, return only middle 2048 samples
(for smooth streaming without pops/clicks)
Returns:
Audio waveform as float32 numpy array, 24kHz mono
"""
if len(snac_tokens) < SNAC_TOKENS_PER_FRAME:
return None
# Unpack to 3 hierarchical levels
levels = self.unpack_snac_from_7(snac_tokens)
if not levels[0]:
return None
# Convert to tensors
codes = [
torch.tensor(level, dtype=torch.long, device=self.device).unsqueeze(0)
for level in levels
]
# Decode through SNAC quantizer + decoder
z_q = self.snac_model.quantizer.from_codes(codes)
audio = self.snac_model.decoder(z_q)
# Extract audio: [batch, 1, samples] β [samples]
audio = audio[0, 0].cpu().numpy()
# Sliding window mode: keep middle 2048 samples only
# This eliminates popping/cracking in streaming by overlapping windows
if use_sliding_window and len(audio) >= 4096:
audio = audio[2048:4096]
return audio
def decode_to_bytes(
self,
snac_tokens: List[int],
use_sliding_window: bool = False
) -> Optional[bytes]:
"""
Decode SNAC tokens to audio bytes (int16 PCM).
Args:
snac_tokens: List of SNAC token IDs
use_sliding_window: Use sliding window for smooth streaming
Returns:
Audio as bytes (int16 PCM, 24kHz mono)
"""
audio = self.decode(snac_tokens, use_sliding_window=use_sliding_window)
if audio is None:
return None
# Convert float32 to int16 PCM
audio_int16 = (audio * 32767).astype(np.int16)
return audio_int16.tobytes()
# ============================================================================
# CUSTOM LOGITS PROCESSOR
# ============================================================================
class OnlyAudioAfterSOS:
"""
Restricts vocabulary to SNAC codes + EOS after SOS token.
This prevents the model from generating text tokens during audio phase,
which would cause "hallucination" where the model repeats description text
instead of generating proper audio codes.
"""
def __init__(self):
self._seen_sos = False
def __call__(
self,
prompt_token_ids: List[int],
generated_token_ids: List[int],
logits: torch.Tensor,
) -> torch.Tensor:
"""
Apply constraint: after SOS, only allow SNAC codes + EOS.
Args:
prompt_token_ids: Original prompt token IDs
generated_token_ids: Tokens generated so far
logits: Logits for next token [vocab_size]
Returns:
Modified logits with masked tokens
"""
# Check if SOS has been generated
if not self._seen_sos:
all_token_ids = prompt_token_ids + generated_token_ids
if CODE_START_TOKEN_ID in all_token_ids:
self._seen_sos = True
else:
return logits # No constraint yet
# Apply constraint: mask all tokens except SNAC codes + EOS
mask = torch.full_like(logits, float('-inf'))
mask[SNAC_MIN_ID:SNAC_MAX_ID + 1] = 0 # Allow SNAC codes
mask[CODE_END_TOKEN_ID] = 0 # Allow EOS
return logits + mask
def reset(self):
"""Reset state for reuse across generations."""
self._seen_sos = False
# ============================================================================
# MAYA-1-VOICE MODEL
# ============================================================================
class Maya1VoiceModel:
"""
Maya-1-Voice TTS Model with VLLM inference engine.
Handles model loading, tokenizer initialization, and VLLM engine setup.
"""
def __init__(
self,
model_path: str,
dtype: str = "bfloat16",
max_model_len: int = 8192,
gpu_memory_utilization: float = 0.85,
):
"""
Initialize Maya-1-Voice model with VLLM.
Args:
model_path: Path to model checkpoint (local or HuggingFace)
dtype: Model precision (bfloat16 recommended)
max_model_len: Maximum sequence length
gpu_memory_utilization: GPU memory fraction to use (0.0-1.0)
"""
self.model_path = model_path
print(f"π Initializing Maya-1-Voice Model")
print(f"π Model: {model_path}")
print(f"π’ Dtype: {dtype}")
# Load tokenizer (must be from checkpoint with emotion tags)
print(f"π Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
)
print(f"β
Tokenizer loaded: {len(self.tokenizer)} tokens")
# Initialize VLLM async engine
print(f"π§ Initializing VLLM engine...")
engine_args = AsyncEngineArgs(
model=model_path,
tokenizer=model_path,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
trust_remote_code=True,
)
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
print(f"β
VLLM engine ready")
def build_prompt(self, description: str, text: str) -> str:
"""
Build prompt in Maya-1-Voice format using chat template.
Format: Chat template with <description="..."> text as content
The model expects:
1. Description of voice/character
2. Text to synthesize (optionally with <emotion> tags)
Args:
description: Voice description
Example: "Realistic male voice in the 30s age with american accent.
Normal pitch, warm timbre, conversational pacing."
text: Text to synthesize
Example: "Hello world! <excited> This is amazing!"
Returns:
Formatted prompt string using chat template
"""
content = f'<description="{description}"> {text}'
messages = [{"role": "user", "content": content}]
return self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# ============================================================================
# STREAMING PIPELINE
# ============================================================================
class Maya1VoiceStreamingPipeline:
"""
Streaming TTS pipeline using sliding window approach.
This generates smooth audio by:
1. Streaming tokens from VLLM as they're generated
2. Every 7 tokens, decoding the last 28 tokens (4 frames) - sliding window
3. Keeping only middle 2048 samples from each decode
4. Creating natural overlap between chunks for artifact-free playback
"""
def __init__(self, model: Maya1VoiceModel, snac_decoder: SNACDecoder):
"""Initialize streaming pipeline."""
self.model = model
self.snac_decoder = snac_decoder
print(f"π Maya-1-Voice Streaming Pipeline initialized")
async def generate_speech_stream(
self,
description: str,
text: str,
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
max_tokens: int = DEFAULT_MAX_TOKENS,
repetition_penalty: float = DEFAULT_REPETITION_PENALTY,
) -> AsyncGenerator[bytes, None]:
"""
Generate speech audio with streaming.
Args:
description: Voice/character description
text: Text to synthesize (with optional <emotion> tags)
temperature: Sampling temperature (lower = more stable)
top_p: Nucleus sampling
max_tokens: Max SNAC tokens to generate
repetition_penalty: Prevent repetition loops
Yields:
Audio chunks as bytes (int16 PCM, 24kHz mono)
"""
print(f"\nπ Starting streaming generation")
print(f"π Description: {description[:80]}...")
print(f"π¬ Text: {text}")
# Build prompt
prompt = self.model.build_prompt(description, text)
# Configure sampling (removed custom logits processor for V1 compatibility)
sampling_params = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
min_tokens=DEFAULT_MIN_TOKENS,
repetition_penalty=repetition_penalty,
stop_token_ids=[CODE_END_TOKEN_ID], # Stop on audio EOS
)
print(f"π² Sampling: temp={temperature}, top_p={top_p}, max_tokens={max_tokens}")
# Token buffer for sliding window
token_buffer = []
total_tokens = 0
total_chunks = 0
# Generate with VLLM
import uuid
import time
request_id = f"maya1voice-{uuid.uuid4().hex[:8]}-{int(time.time() * 1000000)}"
results_generator = self.model.engine.generate(
prompt=prompt,
sampling_params=sampling_params,
request_id=request_id,
)
# Stream tokens with sliding window decoding
async for request_output in results_generator:
generated_ids = request_output.outputs[0].token_ids
# Process only new tokens
new_tokens = generated_ids[total_tokens:]
total_tokens = len(generated_ids)
# Filter and buffer SNAC tokens only
for token_id in new_tokens:
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID:
token_buffer.append(token_id)
# Sliding window: process every 7 tokens when buffer > 27
# Take last 28 tokens (4 frames) for smooth overlap
if len(token_buffer) % 7 == 0 and len(token_buffer) > 27:
window_tokens = token_buffer[-28:]
# Decode with sliding window (returns middle 2048 samples)
audio_bytes = self.snac_decoder.decode_to_bytes(
window_tokens,
use_sliding_window=True
)
if audio_bytes:
total_chunks += 1
if total_chunks == 1:
print(f"π΅ First chunk decoded ({len(audio_bytes)} bytes)")
yield audio_bytes
print(f"β
Streaming complete: {total_tokens} tokens β {total_chunks} chunks")
# ============================================================================
# MAIN EXAMPLE
# ============================================================================
async def main():
"""
Example usage of Maya-1-Voice streaming inference.
This demonstrates:
1. Model initialization
2. SNAC decoder setup
3. Streaming generation
4. Audio chunk handling
"""
# Configuration
MODEL_PATH = "/home/ubuntu/veena_temp/maya-1-voice" # Local model path
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("=" * 80)
print("Maya-1-Voice VLLM Streaming Inference Example")
print("=" * 80)
# Initialize model
model = Maya1VoiceModel(
model_path=MODEL_PATH,
dtype="bfloat16",
max_model_len=8192,
gpu_memory_utilization=0.8, # Reduced for available GPU memory (12GB free)
)
# Initialize SNAC decoder
snac_decoder = SNACDecoder(device=DEVICE)
# Create pipeline
pipeline = Maya1VoiceStreamingPipeline(model, snac_decoder)
# Example 1: Professional voice
description = (
"Realistic male voice in the 30s age with american accent. "
"Normal pitch, warm timbre, conversational pacing, neutral tone delivery at med intensity."
)
text = "Hello! This is a test of the Maya-1-Voice text-to-speech system."
print(f"\n{'='*80}")
print("Example 1: Professional Voice")
print(f"{'='*80}")
audio_chunks = []
async for chunk in pipeline.generate_speech_stream(
description=description,
text=text,
temperature=0.4,
max_tokens=500,
):
audio_chunks.append(chunk)
print(f"π¦ Received chunk {len(audio_chunks)}: {len(chunk)} bytes")
# Combine chunks
full_audio = b''.join(audio_chunks)
print(f"\nβ
Total audio: {len(full_audio)} bytes ({len(full_audio)//2} samples, {len(full_audio)/2/24000:.2f}s)")
# Save audio (optional)
try:
import wave
output_file = "output_example1.wav"
with wave.open(output_file, 'wb') as wav:
wav.setnchannels(1) # Mono
wav.setsampwidth(2) # 16-bit
wav.setframerate(24000) # 24kHz
wav.writeframes(full_audio)
print(f"πΎ Saved to {output_file}")
except ImportError:
print(f"β οΈ Install 'wave' module to save audio files")
# Example 2: Character voice with emotions
print(f"\n{'='*80}")
print("Example 2: Character Voice with Emotions")
print(f"{'='*80}")
description = (
"Creative, dark_villain character. Male voice in their 40s with british accent. "
"Low pitch, gravelly timbre, slow pacing, angry tone at high intensity."
)
text = "The darkness isn't coming... <angry> it's already here!"
audio_chunks = []
async for chunk in pipeline.generate_speech_stream(
description=description,
text=text,
temperature=0.5,
max_tokens=800,
):
audio_chunks.append(chunk)
print(f"π¦ Received chunk {len(audio_chunks)}: {len(chunk)} bytes")
full_audio = b''.join(audio_chunks)
print(f"\nβ
Total audio: {len(full_audio)} bytes ({len(full_audio)//2} samples, {len(full_audio)/2/24000:.2f}s)")
# Save audio
try:
import wave
output_file = "output_example2.wav"
with wave.open(output_file, 'wb') as wav:
wav.setnchannels(1)
wav.setsampwidth(2)
wav.setframerate(24000)
wav.writeframes(full_audio)
print(f"πΎ Saved to {output_file}")
except ImportError:
pass
print(f"\n{'='*80}")
print("π Examples complete!")
print(f"{'='*80}")
if __name__ == "__main__":
# Run async main
asyncio.run(main()) |