Upload folder using huggingface_hub
Browse files- chat_template.jinja +7 -25
- config.json +1 -1
- configuration_midashenglm.py +2 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_midashenglm.py +88 -37
- processing.py +0 -277
- processing_midashenglm.py +0 -3
chat_template.jinja
CHANGED
|
@@ -1,25 +1,7 @@
|
|
| 1 |
-
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
{%- if message["content"] is string -%}
|
| 9 |
-
{{- message["content"] -}}
|
| 10 |
-
{%- else -%}
|
| 11 |
-
{%- for content in message["content"] -%}
|
| 12 |
-
{%- if content["type"] == "text" -%}
|
| 13 |
-
{{- content["text"] -}}
|
| 14 |
-
{%- elif content["type"] == "audio" -%}
|
| 15 |
-
{{- "<|audio_bos|><|AUDIO|><|audio_eos|>" -}}
|
| 16 |
-
{%- endif -%}
|
| 17 |
-
{%- endfor -%}
|
| 18 |
-
{%- endif -%}
|
| 19 |
-
{%- if not loop.last or loop.last and not continue_final_message -%}
|
| 20 |
-
{{- "<|im_end|>\n" -}}
|
| 21 |
-
{%- endif -%}
|
| 22 |
-
{%- endfor -%}
|
| 23 |
-
{%- if add_generation_prompt -%}
|
| 24 |
-
{{- "<|im_start|>assistant\n" -}}
|
| 25 |
-
{%- endif -%}
|
|
|
|
| 1 |
+
{% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
|
| 2 |
+
You are a helpful assistant.<|im_end|>
|
| 3 |
+
{% endif %}<|im_start|>{{ message['role'] }}
|
| 4 |
+
{% if message['content'] is string %}{{ message['content'] }}<|im_end|>
|
| 5 |
+
{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
|
| 6 |
+
{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
|
| 7 |
+
{% endif %}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
|
@@ -32,6 +32,7 @@
|
|
| 32 |
"target_length": 1008,
|
| 33 |
"win_length": 512
|
| 34 |
},
|
|
|
|
| 35 |
"auto_map": {
|
| 36 |
"AutoConfig": "configuration_midashenglm.MiDashengLMConfig",
|
| 37 |
"AutoModelForCausalLM": "modeling_midashenglm.MiDashengLMModel"
|
|
@@ -63,7 +64,6 @@
|
|
| 63 |
},
|
| 64 |
"rope_theta": 1000000.0,
|
| 65 |
"sliding_window": 32768,
|
| 66 |
-
"torch_dtype": "bfloat16",
|
| 67 |
"use_cache": true,
|
| 68 |
"use_sliding_window": false,
|
| 69 |
"vocab_size": 151936
|
|
|
|
| 32 |
"target_length": 1008,
|
| 33 |
"win_length": 512
|
| 34 |
},
|
| 35 |
+
"audio_token_id": 151646,
|
| 36 |
"auto_map": {
|
| 37 |
"AutoConfig": "configuration_midashenglm.MiDashengLMConfig",
|
| 38 |
"AutoModelForCausalLM": "modeling_midashenglm.MiDashengLMModel"
|
|
|
|
| 64 |
},
|
| 65 |
"rope_theta": 1000000.0,
|
| 66 |
"sliding_window": 32768,
|
|
|
|
| 67 |
"use_cache": true,
|
| 68 |
"use_sliding_window": false,
|
| 69 |
"vocab_size": 151936
|
configuration_midashenglm.py
CHANGED
|
@@ -66,6 +66,7 @@ class MiDashengLMConfig(PretrainedConfig):
|
|
| 66 |
audio_encoder_config: Dict = {},
|
| 67 |
subsample_factor: int = 5,
|
| 68 |
text_config: Dict = {},
|
|
|
|
| 69 |
**kwargs,
|
| 70 |
):
|
| 71 |
self.audio_encoder_config = DashengConfig(**audio_encoder_config)
|
|
@@ -75,4 +76,5 @@ class MiDashengLMConfig(PretrainedConfig):
|
|
| 75 |
if text_config
|
| 76 |
else Qwen2_5OmniTextConfig()
|
| 77 |
)
|
|
|
|
| 78 |
super().__init__(**kwargs)
|
|
|
|
| 66 |
audio_encoder_config: Dict = {},
|
| 67 |
subsample_factor: int = 5,
|
| 68 |
text_config: Dict = {},
|
| 69 |
+
audio_token_id: Optional[int] = None,
|
| 70 |
**kwargs,
|
| 71 |
):
|
| 72 |
self.audio_encoder_config = DashengConfig(**audio_encoder_config)
|
|
|
|
| 76 |
if text_config
|
| 77 |
else Qwen2_5OmniTextConfig()
|
| 78 |
)
|
| 79 |
+
self.audio_token_id = audio_token_id
|
| 80 |
super().__init__(**kwargs)
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ac83714f7a786cfe80cd40b86b64dc63063f8dbebc34c80298be63218c455ee
|
| 3 |
+
size 4978372408
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:084430974214152e9658155dd21babb35413468bc9025a30820a723c0824ad28
|
| 3 |
+
size 4932950784
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a9c20b898e857e682e490a80a602e4b61e79ec2db35ad19ba4cf5720c43301c
|
| 3 |
+
size 4932950856
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e44f1858a81ee7a8dd96cfad57cb0567ed2a5513f0a7d6344b0975579e62b17
|
| 3 |
+
size 1334862432
|
model.safetensors.index.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_midashenglm.py
CHANGED
|
@@ -1,7 +1,18 @@
|
|
| 1 |
import collections
|
| 2 |
import collections.abc
|
| 3 |
from dataclasses import dataclass
|
| 4 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
|
@@ -16,6 +27,7 @@ from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
|
| 16 |
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
|
| 17 |
Qwen2_5OmniThinkerTextModel,
|
| 18 |
)
|
|
|
|
| 19 |
|
| 20 |
from .configuration_midashenglm import DashengConfig, MiDashengLMConfig
|
| 21 |
|
|
@@ -61,7 +73,7 @@ class AudioPatchEmbed(nn.Module):
|
|
| 61 |
)
|
| 62 |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 63 |
|
| 64 |
-
def forward(self, x):
|
| 65 |
x = self.proj(x)
|
| 66 |
if self.flatten:
|
| 67 |
x = torch.permute(
|
|
@@ -77,7 +89,7 @@ class LayerScale(nn.Module):
|
|
| 77 |
self.inplace = inplace
|
| 78 |
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 79 |
|
| 80 |
-
def forward(self, x):
|
| 81 |
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
| 82 |
|
| 83 |
|
|
@@ -97,7 +109,7 @@ class DashengMlp(nn.Module):
|
|
| 97 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 98 |
self.drop = nn.Dropout(drop)
|
| 99 |
|
| 100 |
-
def forward(self, x):
|
| 101 |
x = self.fc1(x)
|
| 102 |
x = self.act(x)
|
| 103 |
x = self.drop(x)
|
|
@@ -128,7 +140,7 @@ class DashengAttention(nn.Module):
|
|
| 128 |
self.proj_drop = nn.Dropout(proj_drop)
|
| 129 |
self.causal = causal
|
| 130 |
|
| 131 |
-
def forward(self, x, mask: Optional[torch.Tensor] = None):
|
| 132 |
B, N, C = x.shape
|
| 133 |
qkv = (
|
| 134 |
self.qkv(x)
|
|
@@ -206,14 +218,19 @@ class DashengBlock(nn.Module):
|
|
| 206 |
)
|
| 207 |
|
| 208 |
# Kwargs usually has a mask parameter that is passed to Attention
|
| 209 |
-
def forward(
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
x = x + self.ls2(self.mlp(self.norm2(x)))
|
| 212 |
return x
|
| 213 |
|
| 214 |
|
| 215 |
class DashengAudioTransformer(PreTrainedModel):
|
| 216 |
config_class = DashengConfig
|
|
|
|
| 217 |
|
| 218 |
def __init__(self, config: DashengConfig):
|
| 219 |
super().__init__(config)
|
|
@@ -221,6 +238,7 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
| 221 |
self.target_length = config.target_length
|
| 222 |
self.embed_dim = config.embed_dim
|
| 223 |
self.hop_length = config.hop_length
|
|
|
|
| 224 |
|
| 225 |
self.front_end = nn.Sequential(
|
| 226 |
audio_transforms.MelSpectrogram(
|
|
@@ -271,7 +289,11 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
| 271 |
|
| 272 |
self.post_init()
|
| 273 |
|
| 274 |
-
def forward_features(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
t = x.shape[-1]
|
| 276 |
x = x + self.time_pos_embed[:, :, :, :t]
|
| 277 |
x = (
|
|
@@ -282,7 +304,10 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
| 282 |
) # rearrange(x, "b c f t -> b (f t) c")
|
| 283 |
x = self.pos_drop(x)
|
| 284 |
for block in self.blocks:
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
| 286 |
x = self.norm(x)
|
| 287 |
return x
|
| 288 |
|
|
@@ -334,13 +359,19 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
| 334 |
|
| 335 |
|
| 336 |
class AudioProjectorSubsample(nn.Module):
|
| 337 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
super().__init__()
|
| 339 |
self.k = downsample_rate
|
| 340 |
self.net = nn.Sequential(
|
| 341 |
-
nn.Linear(in_dim * self.k, out_dim),
|
| 342 |
nn.GELU(),
|
| 343 |
-
nn.Linear(out_dim, out_dim),
|
| 344 |
)
|
| 345 |
|
| 346 |
def forward(self, x, mask=None):
|
|
@@ -365,6 +396,7 @@ class AudioProjectorSubsample(nn.Module):
|
|
| 365 |
|
| 366 |
@dataclass
|
| 367 |
class Qwen25OmniTextModelOutput(ModelOutput):
|
|
|
|
| 368 |
logits: Optional[torch.FloatTensor] = None
|
| 369 |
past_key_values: Optional[Cache] = None
|
| 370 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
@@ -390,12 +422,20 @@ class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
|
|
| 390 |
)
|
| 391 |
self.post_init()
|
| 392 |
|
|
|
|
| 393 |
def forward(
|
| 394 |
self,
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
) -> Union[Tuple, Qwen25OmniTextModelOutput]:
|
| 400 |
if attention_mask is not None and position_ids is None:
|
| 401 |
position_ids = (
|
|
@@ -406,28 +446,33 @@ class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
|
|
| 406 |
)
|
| 407 |
|
| 408 |
outputs: BaseModelOutputWithPast = self.model(
|
|
|
|
| 409 |
attention_mask=attention_mask,
|
| 410 |
position_ids=position_ids,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
return_dict=True,
|
| 412 |
-
**kwargs,
|
| 413 |
)
|
| 414 |
hidden_states = outputs.last_hidden_state
|
| 415 |
logits = self.lm_head(hidden_states)
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
outputs.past_key_values,
|
| 424 |
-
outputs.hidden_states,
|
| 425 |
-
outputs.attentions,
|
| 426 |
-
]
|
| 427 |
-
if v is not None
|
| 428 |
)
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
return Qwen25OmniTextModelOutput(
|
|
|
|
| 431 |
logits=logits,
|
| 432 |
past_key_values=outputs.past_key_values,
|
| 433 |
hidden_states=outputs.hidden_states,
|
|
@@ -443,12 +488,17 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 443 |
_supports_cache_class = Qwen2_5OmniThinkerTextModel._supports_cache_class
|
| 444 |
_supports_static_cache = Qwen2_5OmniThinkerTextModel._supports_static_cache
|
| 445 |
_supports_quantized_cache = Qwen2_5OmniThinkerTextModel._supports_quantized_cache
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
def __init__(self, config: MiDashengLMConfig):
|
| 448 |
super().__init__(config)
|
| 449 |
|
|
|
|
|
|
|
| 450 |
self.audio_encoder = DashengAudioTransformer._from_config(
|
| 451 |
-
config.audio_encoder_config
|
| 452 |
)
|
| 453 |
self.audio_projector = AudioProjectorSubsample(
|
| 454 |
self.audio_encoder.embed_dim,
|
|
@@ -480,7 +530,6 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 480 |
input_values: Optional[torch.Tensor],
|
| 481 |
inputs_embeds: Optional[torch.Tensor],
|
| 482 |
audio_length: Optional[Iterable[int]] = None,
|
| 483 |
-
audio_token_id: Optional[int] = None,
|
| 484 |
) -> torch.Tensor:
|
| 485 |
if input_ids is not None:
|
| 486 |
if inputs_embeds is not None:
|
|
@@ -492,9 +541,9 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 492 |
)
|
| 493 |
|
| 494 |
if input_values is not None:
|
| 495 |
-
if audio_token_id is None:
|
| 496 |
raise ValueError(
|
| 497 |
-
"
|
| 498 |
)
|
| 499 |
|
| 500 |
audio_embeddings = self._forward_audio_encoder(
|
|
@@ -502,7 +551,7 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 502 |
audio_length=audio_length,
|
| 503 |
).to(inputs_embeds.dtype)
|
| 504 |
|
| 505 |
-
audio_mask = (input_ids == audio_token_id).flatten()
|
| 506 |
diff = torch.diff(
|
| 507 |
audio_mask.long(),
|
| 508 |
prepend=torch.zeros(
|
|
@@ -540,7 +589,9 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 540 |
input_values: Optional[Tensor] = None,
|
| 541 |
inputs_embeds: Optional[Tensor] = None,
|
| 542 |
audio_length: Optional[Iterable[int]] = None,
|
| 543 |
-
|
|
|
|
|
|
|
| 544 |
**kwargs: Any,
|
| 545 |
):
|
| 546 |
inputs_embeds = self._prepare_inputs_embeds(
|
|
@@ -548,11 +599,13 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 548 |
input_values=input_values,
|
| 549 |
inputs_embeds=inputs_embeds,
|
| 550 |
audio_length=audio_length,
|
| 551 |
-
audio_token_id=audio_token_id,
|
| 552 |
)
|
| 553 |
return self.decoder(
|
| 554 |
input_ids=None,
|
| 555 |
inputs_embeds=inputs_embeds,
|
|
|
|
|
|
|
|
|
|
| 556 |
**kwargs,
|
| 557 |
)
|
| 558 |
|
|
@@ -562,7 +615,6 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 562 |
input_values: Optional[Tensor] = None,
|
| 563 |
inputs_embeds: Optional[Tensor] = None,
|
| 564 |
audio_length: Optional[Iterable[int]] = None,
|
| 565 |
-
audio_token_id: Optional[int] = None,
|
| 566 |
**kwargs,
|
| 567 |
):
|
| 568 |
inputs_embeds = self._prepare_inputs_embeds(
|
|
@@ -570,7 +622,6 @@ class MiDashengLMModel(PreTrainedModel):
|
|
| 570 |
input_values=input_values,
|
| 571 |
inputs_embeds=inputs_embeds,
|
| 572 |
audio_length=audio_length,
|
| 573 |
-
audio_token_id=audio_token_id,
|
| 574 |
)
|
| 575 |
return self.decoder.generate(
|
| 576 |
inputs_embeds=inputs_embeds,
|
|
|
|
| 1 |
import collections
|
| 2 |
import collections.abc
|
| 3 |
from dataclasses import dataclass
|
| 4 |
+
from typing import (
|
| 5 |
+
Any,
|
| 6 |
+
Callable,
|
| 7 |
+
Iterable,
|
| 8 |
+
List,
|
| 9 |
+
Optional,
|
| 10 |
+
Sequence,
|
| 11 |
+
Tuple,
|
| 12 |
+
Union,
|
| 13 |
+
Unpack,
|
| 14 |
+
cast,
|
| 15 |
+
)
|
| 16 |
|
| 17 |
import torch
|
| 18 |
import torch.nn as nn
|
|
|
|
| 27 |
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
|
| 28 |
Qwen2_5OmniThinkerTextModel,
|
| 29 |
)
|
| 30 |
+
from transformers.utils import LossKwargs, can_return_tuple
|
| 31 |
|
| 32 |
from .configuration_midashenglm import DashengConfig, MiDashengLMConfig
|
| 33 |
|
|
|
|
| 73 |
)
|
| 74 |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 75 |
|
| 76 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 77 |
x = self.proj(x)
|
| 78 |
if self.flatten:
|
| 79 |
x = torch.permute(
|
|
|
|
| 89 |
self.inplace = inplace
|
| 90 |
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 91 |
|
| 92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 93 |
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
| 94 |
|
| 95 |
|
|
|
|
| 109 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 110 |
self.drop = nn.Dropout(drop)
|
| 111 |
|
| 112 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 113 |
x = self.fc1(x)
|
| 114 |
x = self.act(x)
|
| 115 |
x = self.drop(x)
|
|
|
|
| 140 |
self.proj_drop = nn.Dropout(proj_drop)
|
| 141 |
self.causal = causal
|
| 142 |
|
| 143 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
|
| 144 |
B, N, C = x.shape
|
| 145 |
qkv = (
|
| 146 |
self.qkv(x)
|
|
|
|
| 218 |
)
|
| 219 |
|
| 220 |
# Kwargs usually has a mask parameter that is passed to Attention
|
| 221 |
+
def forward(
|
| 222 |
+
self,
|
| 223 |
+
x: torch.Tensor,
|
| 224 |
+
mask: Optional[torch.Tensor] = None,
|
| 225 |
+
) -> torch.Tensor:
|
| 226 |
+
x = x + self.ls1(self.attn(self.norm1(x), mask))
|
| 227 |
x = x + self.ls2(self.mlp(self.norm2(x)))
|
| 228 |
return x
|
| 229 |
|
| 230 |
|
| 231 |
class DashengAudioTransformer(PreTrainedModel):
|
| 232 |
config_class = DashengConfig
|
| 233 |
+
supports_gradient_checkpointing = True
|
| 234 |
|
| 235 |
def __init__(self, config: DashengConfig):
|
| 236 |
super().__init__(config)
|
|
|
|
| 238 |
self.target_length = config.target_length
|
| 239 |
self.embed_dim = config.embed_dim
|
| 240 |
self.hop_length = config.hop_length
|
| 241 |
+
self.gradient_checkpointing = False
|
| 242 |
|
| 243 |
self.front_end = nn.Sequential(
|
| 244 |
audio_transforms.MelSpectrogram(
|
|
|
|
| 289 |
|
| 290 |
self.post_init()
|
| 291 |
|
| 292 |
+
def forward_features(
|
| 293 |
+
self,
|
| 294 |
+
x: torch.Tensor,
|
| 295 |
+
mask: Optional[torch.Tensor] = None,
|
| 296 |
+
) -> torch.Tensor:
|
| 297 |
t = x.shape[-1]
|
| 298 |
x = x + self.time_pos_embed[:, :, :, :t]
|
| 299 |
x = (
|
|
|
|
| 304 |
) # rearrange(x, "b c f t -> b (f t) c")
|
| 305 |
x = self.pos_drop(x)
|
| 306 |
for block in self.blocks:
|
| 307 |
+
if self.gradient_checkpointing and self.training:
|
| 308 |
+
x = self._gradient_checkpointing_func(block, x, mask)
|
| 309 |
+
else:
|
| 310 |
+
x = block(x, mask)
|
| 311 |
x = self.norm(x)
|
| 312 |
return x
|
| 313 |
|
|
|
|
| 359 |
|
| 360 |
|
| 361 |
class AudioProjectorSubsample(nn.Module):
|
| 362 |
+
def __init__(
|
| 363 |
+
self,
|
| 364 |
+
in_dim: int,
|
| 365 |
+
out_dim: int,
|
| 366 |
+
downsample_rate=5,
|
| 367 |
+
dtype: Optional[torch.dtype] = None,
|
| 368 |
+
):
|
| 369 |
super().__init__()
|
| 370 |
self.k = downsample_rate
|
| 371 |
self.net = nn.Sequential(
|
| 372 |
+
nn.Linear(in_dim * self.k, out_dim, dtype=dtype),
|
| 373 |
nn.GELU(),
|
| 374 |
+
nn.Linear(out_dim, out_dim, dtype=dtype),
|
| 375 |
)
|
| 376 |
|
| 377 |
def forward(self, x, mask=None):
|
|
|
|
| 396 |
|
| 397 |
@dataclass
|
| 398 |
class Qwen25OmniTextModelOutput(ModelOutput):
|
| 399 |
+
loss: Optional[torch.FloatTensor] = None
|
| 400 |
logits: Optional[torch.FloatTensor] = None
|
| 401 |
past_key_values: Optional[Cache] = None
|
| 402 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
| 422 |
)
|
| 423 |
self.post_init()
|
| 424 |
|
| 425 |
+
@can_return_tuple
|
| 426 |
def forward(
|
| 427 |
self,
|
| 428 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 429 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 430 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 431 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 432 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 433 |
+
use_cache: Optional[bool] = None,
|
| 434 |
+
output_attentions: Optional[bool] = None,
|
| 435 |
+
output_hidden_states: Optional[bool] = None,
|
| 436 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 437 |
+
labels: Optional[torch.Tensor] = None,
|
| 438 |
+
**kwargs: Unpack[LossKwargs],
|
| 439 |
) -> Union[Tuple, Qwen25OmniTextModelOutput]:
|
| 440 |
if attention_mask is not None and position_ids is None:
|
| 441 |
position_ids = (
|
|
|
|
| 446 |
)
|
| 447 |
|
| 448 |
outputs: BaseModelOutputWithPast = self.model(
|
| 449 |
+
input_ids=input_ids,
|
| 450 |
attention_mask=attention_mask,
|
| 451 |
position_ids=position_ids,
|
| 452 |
+
past_key_values=past_key_values,
|
| 453 |
+
inputs_embeds=inputs_embeds,
|
| 454 |
+
use_cache=use_cache,
|
| 455 |
+
output_attentions=output_attentions,
|
| 456 |
+
output_hidden_states=output_hidden_states,
|
| 457 |
+
cache_position=cache_position,
|
| 458 |
return_dict=True,
|
|
|
|
| 459 |
)
|
| 460 |
hidden_states = outputs.last_hidden_state
|
| 461 |
logits = self.lm_head(hidden_states)
|
| 462 |
|
| 463 |
+
loss = (
|
| 464 |
+
self.loss_function(
|
| 465 |
+
logits=logits,
|
| 466 |
+
labels=labels,
|
| 467 |
+
vocab_size=self.config.vocab_size,
|
| 468 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
)
|
| 470 |
+
if labels is not None
|
| 471 |
+
else None
|
| 472 |
+
)
|
| 473 |
|
| 474 |
return Qwen25OmniTextModelOutput(
|
| 475 |
+
loss=loss,
|
| 476 |
logits=logits,
|
| 477 |
past_key_values=outputs.past_key_values,
|
| 478 |
hidden_states=outputs.hidden_states,
|
|
|
|
| 488 |
_supports_cache_class = Qwen2_5OmniThinkerTextModel._supports_cache_class
|
| 489 |
_supports_static_cache = Qwen2_5OmniThinkerTextModel._supports_static_cache
|
| 490 |
_supports_quantized_cache = Qwen2_5OmniThinkerTextModel._supports_quantized_cache
|
| 491 |
+
supports_gradient_checkpointing = (
|
| 492 |
+
Qwen2_5OmniThinkerTextModel.supports_gradient_checkpointing
|
| 493 |
+
)
|
| 494 |
|
| 495 |
def __init__(self, config: MiDashengLMConfig):
|
| 496 |
super().__init__(config)
|
| 497 |
|
| 498 |
+
self.audio_token_id = config.audio_token_id
|
| 499 |
+
|
| 500 |
self.audio_encoder = DashengAudioTransformer._from_config(
|
| 501 |
+
config.audio_encoder_config,
|
| 502 |
)
|
| 503 |
self.audio_projector = AudioProjectorSubsample(
|
| 504 |
self.audio_encoder.embed_dim,
|
|
|
|
| 530 |
input_values: Optional[torch.Tensor],
|
| 531 |
inputs_embeds: Optional[torch.Tensor],
|
| 532 |
audio_length: Optional[Iterable[int]] = None,
|
|
|
|
| 533 |
) -> torch.Tensor:
|
| 534 |
if input_ids is not None:
|
| 535 |
if inputs_embeds is not None:
|
|
|
|
| 541 |
)
|
| 542 |
|
| 543 |
if input_values is not None:
|
| 544 |
+
if self.audio_token_id is None:
|
| 545 |
raise ValueError(
|
| 546 |
+
"Audio input is provided, but `audio_token_id` is not configured."
|
| 547 |
)
|
| 548 |
|
| 549 |
audio_embeddings = self._forward_audio_encoder(
|
|
|
|
| 551 |
audio_length=audio_length,
|
| 552 |
).to(inputs_embeds.dtype)
|
| 553 |
|
| 554 |
+
audio_mask = (input_ids == self.audio_token_id).flatten()
|
| 555 |
diff = torch.diff(
|
| 556 |
audio_mask.long(),
|
| 557 |
prepend=torch.zeros(
|
|
|
|
| 589 |
input_values: Optional[Tensor] = None,
|
| 590 |
inputs_embeds: Optional[Tensor] = None,
|
| 591 |
audio_length: Optional[Iterable[int]] = None,
|
| 592 |
+
attention_mask: Optional[Tensor] = None,
|
| 593 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 594 |
+
labels: Optional[torch.Tensor] = None,
|
| 595 |
**kwargs: Any,
|
| 596 |
):
|
| 597 |
inputs_embeds = self._prepare_inputs_embeds(
|
|
|
|
| 599 |
input_values=input_values,
|
| 600 |
inputs_embeds=inputs_embeds,
|
| 601 |
audio_length=audio_length,
|
|
|
|
| 602 |
)
|
| 603 |
return self.decoder(
|
| 604 |
input_ids=None,
|
| 605 |
inputs_embeds=inputs_embeds,
|
| 606 |
+
attention_mask=attention_mask,
|
| 607 |
+
position_ids=position_ids,
|
| 608 |
+
labels=labels,
|
| 609 |
**kwargs,
|
| 610 |
)
|
| 611 |
|
|
|
|
| 615 |
input_values: Optional[Tensor] = None,
|
| 616 |
inputs_embeds: Optional[Tensor] = None,
|
| 617 |
audio_length: Optional[Iterable[int]] = None,
|
|
|
|
| 618 |
**kwargs,
|
| 619 |
):
|
| 620 |
inputs_embeds = self._prepare_inputs_embeds(
|
|
|
|
| 622 |
input_values=input_values,
|
| 623 |
inputs_embeds=inputs_embeds,
|
| 624 |
audio_length=audio_length,
|
|
|
|
| 625 |
)
|
| 626 |
return self.decoder.generate(
|
| 627 |
inputs_embeds=inputs_embeds,
|
processing.py
DELETED
|
@@ -1,277 +0,0 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
|
| 8 |
-
from transformers.feature_extraction_utils import BatchFeature
|
| 9 |
-
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class MiAudioLLMProcessorKwargs(ProcessingKwargs):
|
| 13 |
-
_defaults = {
|
| 14 |
-
"text_kwargs": {
|
| 15 |
-
"padding": True,
|
| 16 |
-
"padding_side": "left",
|
| 17 |
-
},
|
| 18 |
-
"audio_kwargs": {},
|
| 19 |
-
}
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def calculate_mel_frames_dasheng(
|
| 23 |
-
audio_length_samples: int,
|
| 24 |
-
n_fft: int = 512,
|
| 25 |
-
hop_size: int = 160,
|
| 26 |
-
dasheng_subsampling: int = 4,
|
| 27 |
-
center=True,
|
| 28 |
-
model_subsampling: int = 5,
|
| 29 |
-
) -> int:
|
| 30 |
-
"""Calculate the number of Mel-spectrogram frames."""
|
| 31 |
-
if center:
|
| 32 |
-
audio_length_samples = audio_length_samples + n_fft
|
| 33 |
-
|
| 34 |
-
return (
|
| 35 |
-
int(1 + ((audio_length_samples - n_fft) / hop_size))
|
| 36 |
-
// dasheng_subsampling
|
| 37 |
-
// model_subsampling
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
class MiAudioLLMProcessor(ProcessorMixin):
|
| 42 |
-
attributes = ["feature_extractor", "tokenizer"]
|
| 43 |
-
valid_kwargs = [
|
| 44 |
-
"chat_template",
|
| 45 |
-
"audio_token",
|
| 46 |
-
"audio_bos_token",
|
| 47 |
-
"audio_eos_token",
|
| 48 |
-
]
|
| 49 |
-
feature_extractor_class = "Wav2Vec2FeatureExtractor"
|
| 50 |
-
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 51 |
-
|
| 52 |
-
def __init__(
|
| 53 |
-
self,
|
| 54 |
-
feature_extractor: Wav2Vec2FeatureExtractor | None = None,
|
| 55 |
-
tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast | None = None,
|
| 56 |
-
model_subsampling: int = 5,
|
| 57 |
-
chat_template: str | None = None,
|
| 58 |
-
# TODO 是否可以移除?
|
| 59 |
-
audio_token: str = "<|AUDIO|>",
|
| 60 |
-
audio_bos_token: str = "<|audio_bos|>",
|
| 61 |
-
audio_eos_token: str = "<|audio_eos|>",
|
| 62 |
-
):
|
| 63 |
-
if chat_template is None:
|
| 64 |
-
chat_template = self.default_chat_template
|
| 65 |
-
assert tokenizer is not None, "Tokenizer Needs to be passed"
|
| 66 |
-
self.audio_token = (
|
| 67 |
-
tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
|
| 68 |
-
)
|
| 69 |
-
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
| 70 |
-
self.audio_bos_token = (
|
| 71 |
-
tokenizer.audio_bos_token
|
| 72 |
-
if hasattr(tokenizer, "audio_bos_token")
|
| 73 |
-
else audio_bos_token
|
| 74 |
-
)
|
| 75 |
-
self.audio_eos_token = (
|
| 76 |
-
tokenizer.audio_eos_token
|
| 77 |
-
if hasattr(tokenizer, "audio_eos_token")
|
| 78 |
-
else audio_eos_token
|
| 79 |
-
)
|
| 80 |
-
self.model_subsampling = model_subsampling
|
| 81 |
-
# Fix Normalization
|
| 82 |
-
if feature_extractor is not None and feature_extractor.do_normalize is True:
|
| 83 |
-
feature_extractor.do_normalize = False
|
| 84 |
-
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
|
| 85 |
-
|
| 86 |
-
def __call__(
|
| 87 |
-
self,
|
| 88 |
-
text: List[str] | None = None,
|
| 89 |
-
audio: List[np.ndarray] | List[torch.Tensor] | None = None,
|
| 90 |
-
**kwargs: Unpack[MiAudioLLMProcessorKwargs],
|
| 91 |
-
) -> BatchFeature:
|
| 92 |
-
if text is None:
|
| 93 |
-
raise ValueError("You need to specify `text` input to process.")
|
| 94 |
-
elif isinstance(text, str):
|
| 95 |
-
text = [text]
|
| 96 |
-
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 97 |
-
raise ValueError(
|
| 98 |
-
"Invalid input text. Please provide a string, or a list of strings"
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
output_kwargs = self._merge_kwargs(
|
| 102 |
-
MiAudioLLMProcessorKwargs,
|
| 103 |
-
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 104 |
-
**kwargs,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
if audio is not None:
|
| 108 |
-
if isinstance(audio[0], torch.Tensor):
|
| 109 |
-
audio = [sample_.numpy() for sample_ in audio]
|
| 110 |
-
|
| 111 |
-
if isinstance(audio[0], torch.Tensor):
|
| 112 |
-
audio = [sample_.squeeze(0) for sample_ in audio]
|
| 113 |
-
if not all(x_.ndim == 1 for x_ in audio):
|
| 114 |
-
raise ValueError("All samples in a list must be 1D.")
|
| 115 |
-
if isinstance(audio[0], np.ndarray):
|
| 116 |
-
if not all(x_.ndim == 1 for x_ in audio):
|
| 117 |
-
raise ValueError("All samples in a list must be 1D.")
|
| 118 |
-
# ensure we have as much audios as audio tokens
|
| 119 |
-
num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
|
| 120 |
-
num_audios = 1 if type(audio) is np.ndarray else len(audio)
|
| 121 |
-
if num_audio_tokens != num_audios:
|
| 122 |
-
raise ValueError(
|
| 123 |
-
f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
# Some kwargs should not be changed so we can expand text with audio tokens below
|
| 127 |
-
output_kwargs["audio_kwargs"]["return_attention_mask"] = True
|
| 128 |
-
output_kwargs["audio_kwargs"]["padding"] = True
|
| 129 |
-
output_kwargs["audio_kwargs"]["return_tensors"] = "pt"
|
| 130 |
-
|
| 131 |
-
# + Padding
|
| 132 |
-
audio_inputs = self.feature_extractor(
|
| 133 |
-
audio, **output_kwargs["audio_kwargs"]
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
# remove attention mask, dasheng uses lengths
|
| 137 |
-
audio_feature_mask = audio_inputs.pop("attention_mask")
|
| 138 |
-
|
| 139 |
-
expanded_text = []
|
| 140 |
-
audio_lengths = audio_feature_mask.sum(-1).tolist()
|
| 141 |
-
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
|
| 142 |
-
audio_inputs["audio_token_id"] = (
|
| 143 |
-
self.audio_token_id
|
| 144 |
-
) # Pass to the model such that i knows what is the placeholder id
|
| 145 |
-
|
| 146 |
-
for sample in text:
|
| 147 |
-
replace_str = []
|
| 148 |
-
while self.audio_token in sample:
|
| 149 |
-
audio_length = audio_lengths.pop(0)
|
| 150 |
-
num_audio_tokens = calculate_mel_frames_dasheng(
|
| 151 |
-
audio_length, model_subsampling=self.model_subsampling
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
expanded_audio_token = self.audio_token * num_audio_tokens
|
| 155 |
-
|
| 156 |
-
audio_token_start_idx = sample.find(self.audio_token)
|
| 157 |
-
audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
|
| 158 |
-
|
| 159 |
-
has_bos = (
|
| 160 |
-
sample[
|
| 161 |
-
audio_token_start_idx
|
| 162 |
-
- len(self.audio_bos_token) : audio_token_start_idx
|
| 163 |
-
]
|
| 164 |
-
== self.audio_bos_token
|
| 165 |
-
)
|
| 166 |
-
has_eos = (
|
| 167 |
-
sample[
|
| 168 |
-
audio_token_end_idx : audio_token_end_idx
|
| 169 |
-
+ len(self.audio_eos_token)
|
| 170 |
-
]
|
| 171 |
-
== self.audio_eos_token
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
# Check if this audio token is surrounded by bos/eos tokens
|
| 175 |
-
if not has_bos and not has_eos:
|
| 176 |
-
expanded_audio_token = (
|
| 177 |
-
self.audio_bos_token
|
| 178 |
-
+ expanded_audio_token
|
| 179 |
-
+ self.audio_eos_token
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
replace_str.append(expanded_audio_token)
|
| 183 |
-
sample = sample.replace(self.audio_token, "<placeholder>", 1)
|
| 184 |
-
|
| 185 |
-
while "<placeholder>" in sample:
|
| 186 |
-
sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
|
| 187 |
-
expanded_text.append(sample)
|
| 188 |
-
text = expanded_text
|
| 189 |
-
|
| 190 |
-
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
|
| 191 |
-
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 192 |
-
if hasattr(self, "_check_special_mm_tokens"):
|
| 193 |
-
self._check_special_mm_tokens(text, inputs, modalities=["audio"])
|
| 194 |
-
|
| 195 |
-
if audio is not None:
|
| 196 |
-
inputs.update(audio_inputs)
|
| 197 |
-
|
| 198 |
-
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
|
| 199 |
-
|
| 200 |
-
def batch_decode(self, *args, **kwargs):
|
| 201 |
-
"""
|
| 202 |
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 203 |
-
refer to the docstring of this method for more information.
|
| 204 |
-
"""
|
| 205 |
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 206 |
-
|
| 207 |
-
def decode(self, *args, **kwargs):
|
| 208 |
-
"""
|
| 209 |
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 210 |
-
the docstring of this method for more information.
|
| 211 |
-
"""
|
| 212 |
-
return self.tokenizer.decode(*args, **kwargs)
|
| 213 |
-
|
| 214 |
-
@property
|
| 215 |
-
def model_input_names(self):
|
| 216 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
| 217 |
-
feature_extractor_input_names = self.feature_extractor.model_input_names
|
| 218 |
-
return list(
|
| 219 |
-
dict.fromkeys(
|
| 220 |
-
tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
|
| 221 |
-
)
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
@property
|
| 225 |
-
# NOTE: we don't have default templates anymore, and the below is kept only because the hub config is not yet updated!
|
| 226 |
-
def default_chat_template(self):
|
| 227 |
-
"""
|
| 228 |
-
This default vicuna template formats inputs in the form of a chat history. For each message in the chat history:
|
| 229 |
-
* the template will output the role of the speaker followed by the content of the message.
|
| 230 |
-
* content is a list of strings and audios.
|
| 231 |
-
* If the content element is an audio, the template will output a sequence of <|AUDIO|> tokens
|
| 232 |
-
|
| 233 |
-
Example:
|
| 234 |
-
|
| 235 |
-
```python
|
| 236 |
-
messages = [
|
| 237 |
-
{'role': 'system', 'content': 'You are a helpful assistant.'},
|
| 238 |
-
{"role": "user", "content": [
|
| 239 |
-
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
|
| 240 |
-
{"type": "text", "text": "What's that sound?"},
|
| 241 |
-
]},
|
| 242 |
-
{"role": "assistant", "content": "It is the sound of glass shattering."},
|
| 243 |
-
{"role": "user", "content": [
|
| 244 |
-
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
|
| 245 |
-
{"type": "text", "text": "How about this one?"},
|
| 246 |
-
]},
|
| 247 |
-
]
|
| 248 |
-
|
| 249 |
-
result = template.render(messages=messages, add_generation_prompt=True)
|
| 250 |
-
```
|
| 251 |
-
"""
|
| 252 |
-
# fmt: off
|
| 253 |
-
return (
|
| 254 |
-
"{% set audio_count = namespace(value=0) %}"
|
| 255 |
-
"{% for message in messages %}"
|
| 256 |
-
"{% if loop.first and message['role'] != 'system' %}"
|
| 257 |
-
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
| 258 |
-
"{% endif %}"
|
| 259 |
-
"<|im_start|>{{ message['role'] }}\n"
|
| 260 |
-
"{% if message['content'] is string %}"
|
| 261 |
-
"{{ message['content'] }}<|im_end|>\n"
|
| 262 |
-
"{% else %}"
|
| 263 |
-
"{% for content in message['content'] %}"
|
| 264 |
-
"{% if 'audio' in content or 'audio_url' in content or message['type'] == 'audio' %}"
|
| 265 |
-
"{% set audio_count.value = audio_count.value + 1 %}"
|
| 266 |
-
"Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n"
|
| 267 |
-
"{% elif 'text' in content %}"
|
| 268 |
-
"{{ content['text'] }}"
|
| 269 |
-
"{% endif %}"
|
| 270 |
-
"{% endfor %}"
|
| 271 |
-
"<|im_end|>\n"
|
| 272 |
-
"{% endif %}"
|
| 273 |
-
"{% endfor %}"
|
| 274 |
-
"{% if add_generation_prompt %}"
|
| 275 |
-
"<|im_start|>assistant\n"
|
| 276 |
-
"{% endif %}"
|
| 277 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processing_midashenglm.py
CHANGED
|
@@ -207,9 +207,6 @@ class MiDashengLMProcessor(ProcessorMixin):
|
|
| 207 |
expanded_text = []
|
| 208 |
audio_lengths = audio_feature_mask.sum(-1).tolist()
|
| 209 |
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
|
| 210 |
-
audio_inputs["audio_token_id"] = (
|
| 211 |
-
self.audio_token_id
|
| 212 |
-
) # Pass to the model such that i knows what is the placeholder id
|
| 213 |
|
| 214 |
for sample in text:
|
| 215 |
replace_str = []
|
|
|
|
| 207 |
expanded_text = []
|
| 208 |
audio_lengths = audio_feature_mask.sum(-1).tolist()
|
| 209 |
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
for sample in text:
|
| 212 |
replace_str = []
|