File size: 15,799 Bytes
61caea1
266c1c8
 
 
6a0c0ba
266c1c8
 
 
 
 
 
 
93fb383
61caea1
266c1c8
61caea1
266c1c8
 
 
 
 
 
 
 
 
 
61caea1
266c1c8
82fe4cc
266c1c8
 
 
 
61caea1
266c1c8
 
 
 
 
 
 
 
61caea1
266c1c8
 
 
61caea1
8dca892
e943a1e
266c1c8
 
61caea1
266c1c8
 
 
 
61caea1
266c1c8
61caea1
266c1c8
61caea1
 
 
266c1c8
61caea1
27d1014
 
 
 
 
 
f91b34e
27d1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b34e
 
27d1014
 
 
 
 
 
 
 
 
 
 
f91b34e
27d1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b34e
 
 
27d1014
 
f91b34e
27d1014
 
 
 
 
 
 
 
 
 
f91b34e
 
 
 
 
27d1014
 
 
 
 
 
 
 
 
 
 
 
 
f91b34e
27d1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b34e
 
27d1014
 
 
 
f91b34e
27d1014
 
 
 
 
 
 
 
f91b34e
27d1014
f91b34e
27d1014
 
 
 
f91b34e
27d1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61caea1
266c1c8
174e10a
61caea1
266c1c8
 
61caea1
266c1c8
 
 
 
 
61caea1
266c1c8
 
 
 
 
61caea1
266c1c8
 
 
 
61caea1
266c1c8
 
 
 
61caea1
f91b34e
61caea1
 
266c1c8
 
 
 
 
 
 
61caea1
 
266c1c8
 
 
 
 
 
61caea1
 
266c1c8
61caea1
266c1c8
 
61caea1
266c1c8
 
 
61caea1
266c1c8
 
61caea1
266c1c8
61caea1
266c1c8
 
61caea1
266c1c8
61caea1
266c1c8
61caea1
266c1c8
 
61caea1
266c1c8
 
61caea1
266c1c8
 
 
61caea1
266c1c8
 
 
 
 
 
 
 
 
 
 
 
61caea1
266c1c8
61caea1
266c1c8
 
61caea1
266c1c8
 
61caea1
266c1c8
 
 
 
 
 
 
 
 
 
61caea1
266c1c8
61caea1
266c1c8
61caea1
266c1c8
 
61caea1
266c1c8
61caea1
266c1c8
 
 
61caea1
266c1c8
61caea1
266c1c8
93fb383
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
---
license: other
language:
- en
arxiv: 2511.10289
tags:
- music/songs
- music understanding
- music reasoning
datasets:
- nvidia/MF-Skills
pipeline_tag: audio-text-to-text
library_name: transformers
---
# Model Overview

<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="static/mf_logo.png" alt="Music Flamingo 🔥🚀🔥" width="120">
  </a>
</div>
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <h2>
    Music Flamingo: Scaling Music Understaning in Audio Language Models
    </h2>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
  <a href="https://arxiv.org/abs/2511.10289"><img src="https://img.shields.io/badge/arXiv-2511.10289-AD1C18" style="margin-right: 5px;"></a>
  <a href="https://research.nvidia.com/labs/adlr/MF/"><img src="https://img.shields.io/badge/Demo page-228B22" style="margin-right: 5px;"></a>
  <a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-Audio Flamingo 3-9C276A' style="margin-right: 5px;"></a>
  <a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
  <a href="https://huggingface.co/nvidia/music-flamingo">
    <img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/datasets/nvidia/MF-Skills">
    <img src="https://img.shields.io/badge/🤗-Dataset: MF--Skills-ED5A22.svg">
  </a>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://huggingface.co/spaces/nvidia/music-flamingo"><img src="https://img.shields.io/badge/🤗-Gradio Demo (7B)-5F9EA0.svg" style="margin-right: 5px;"></a>
</div>

🚨 **Note:** This is a *preview* model. We will release a better base and a thinking version of the model in the next few weeks. 

## Description:
Music Flamingo (MF) is a fully open, state-of-the-art Large Audio-Language Model (LALM) designed to advance music (including song) understanding in foundational audio models. MF brings together innovations in:

- Deep music understanding across songs and instrumentals.
- Rich, theory-aware captions and question answering (harmony, structure, timbre, lyrics, cultural context).
- Reasoning-centric training using chain-of-thought + reinforcement learning with custom rewards for step-by-step reasoning.
- Long-form song reasoning over full-length, multicultural audio (extended context).

Extensive evaluations confirm Music Flamingo's effectiveness, setting new benchmarks on over 10+ public music understanding and reasoning tasks.

**This model is for non-commercial research purposes only.**



<center><img src="static/mf_main.png" width="800"></center>

## Usage

Music Flamingo (MF) is supported in 🤗 Transformers. To run the model, first install Transformers:

```bash
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers accelerate
```

> **Note:** MF processes audio in 30-second windows with a **10-minute** total cap per sample. Longer inputs are truncated.

### Single-turn: audio + text instruction

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/music-flamingo-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Describe this track in full detail - tell me the genre, tempo, and key, then dive into the instruments, production style, and overall mood it creates."},
            {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/MF-Skills/resolve/main/assets/song_1.mp3"},
        ],
    }
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=1024)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```

### Batch multiple conversations

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/music-flamingo-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

conversations = [
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Describe this track in full detail - tell me the genre, tempo, and key, then dive into the instruments, production style, and overall mood it creates."},
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/nvidia/MF-Skills/resolve/main/assets/song_1.mp3",
                },
            ],
        }
    ],
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Write a rich caption that blends the technical details (genre, BPM, key, chords, mix) with how the song feels emotionally and dynamically as it unfolds.",
                },
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/nvidia/MF-Skills/resolve/main/assets/song_2.mp3"
                },
            ],
        }
    ],
]

inputs = processor.apply_chat_template(
    conversations,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=1024)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```

### Text-only and audio-only prompts

```python
# text-only
conv = [{"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])

# audio-only
conv = [{"role": "user", "content": [{"type": "audio", "path": "https://.../sample.wav"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])
```

### Training / Fine-tuning

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/music-flamingo-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
model.train()

conversation = [
    [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's the key of this song?"},
                {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/MF-Skills/resolve/main/assets/song_1.mp3"},
            ],
        },
        {
            "role": "assistant",
            "content": [{"type": "text", "text": "D major"}],
        }
    ],
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What's the bpm of this song?",
                },
                {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/MF-Skills/resolve/main/assets/song_2.mp3"},
            ],
        },
        {
            "role": "assistant",
            "content": [{"type": "text", "text": "87"}],
        }

    ]
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    output_labels=True,
).to(model.device)

loss = model(**inputs).loss
loss.backward()
```

### Generation options

You can tune decoding similar to other text-generation models:

```python
generate_kwargs = {
    "max_new_tokens": 256,
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.9,
}
out = model.generate(**batch, **generate_kwargs)
```

## Additional Speed & Memory Improvements

### Flash Attention 2

If your GPU supports it and you are **not** using `torch.compile`, install Flash-Attention and enable it at load time:

```bash
pip install flash-attn --no-build-isolation
```

```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2"
).to(device)
```

### Torch compile

MF’s forward pass is compatible with `torch.compile` for significant speed-ups:

```python
import torch
torch.set_float32_matmul_precision("high")

model.generation_config.cache_implementation = "static"
model.generation_config.max_new_tokens = 256
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
```

> `torch.compile` is not compatible with Flash Attention 2 at the same time.

### PyTorch SDPA

If Flash-Attention isn’t available, MF will use PyTorch scaled-dot product attention (SDPA) by default on supported PyTorch versions. You can set it explicitly:

```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa"
).to(device)
```

## License / Terms of Use
The model is released under the [NVIDIA OneWay Noncommercial License](static/NVIDIA_OneWay_Noncommercial_License.docx). Portions of the dataset generation are also subject to the [Qwen Research License](https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE) and OpenAI’s [Terms of Use](https://openai.com/policies/terms-of-use).

## Deployment Geography
Global.

## Use Case
Intended for researchers and developers to explore:
- Music question answering and reasoning  
- Long-context music comprehension  
- Interactive music design assistants  

## References:
* [Music Flamingo: Scaling Music
Understanding in Audio Language Models](https://research.nvidia.com/labs/adlr/MF/)  
* [Project Page](https://github.com/NVIDIA/audio-flamingo)  
* [Demo Website](https://musicflamingo-nv-umd.github.io/)

## Model Architecture:
**Architecture Type:** Transformer   
**Network Architecture:** [Audio Flamingo 3](https://github.com/NVIDIA/audio-flamingo/tree/audio_flamingo_3)
**Number of model parameters:** 8B

MF uses:
- AF-Whisper unified audio encoder from Audio Flamingo 3
- MLP-based audio adaptor  
- Decoder-only LLM backbone (Qwen2.5-7B)  

**This model was developed based on [Audio Flamingo 3](https://github.com/NVIDIA/audio-flamingo/tree/audio_flamingo_3)**


## Input: 
Input Type: Music (song or instrumental), Text <br>
Input Format: WAV/MP3/FLAC, UTF-8 text <br>
Input Parameters: Audio is Two-Dimensional (2D) and Text is One-Dimensional (1D)<br>
Other Properties Related to Input: <br>
-Max Audio Length: 20 Minutes <br>
-Max Text Length: 24000 tokens<br>


## Output: 
Output Type: Text (and optional speech) <br>
Text Format: UTF-8 string  <br>
Output Parameters: One-Dimensional (1D)<br>
Other Properties Related to Output: <br>
-Max Text Length: 2048 tokens <br>


Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems (A100/H100). By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br> 

## Software Integration:
**Runtime Engine:** PyTorch / HuggingFace Transformers  

**Supported Hardware:**  
* NVIDIA Ampere (A100)  
* NVIDIA Hopper (H100)  

**Supported OS:**  
* Linux  

The integration of foundation and fine-tuned models into AI systems requires additional testing using use-case-specific data to ensure safe and effective deployment. Following the V-model methodology, iterative testing and validation at both unit and system levels are essential to mitigate risks, meet technical and functional requirements, and ensure compliance with safety and ethical standards before deployment.

## Model Version:
* v1.0  

---

## Training and Testing Datasets:

### Training Dataset:
MF is trained entirely on music data collected from various sources. For each dataset, we mention whether the dataset annotations are collected by Human or they are Automated i.e. generated using AI models.

**Data Modality:** Audio
**Audio Training Data Size:** 10,000 to 1 Million Hours

The data collection method noted below applies for all datasets used for training and testing:<br>
Data Collection Method: Human <br>
Labeling Collection Method: Please see below.

* [LP-MusicCaps](https://github.com/seungheondoh/lp-music-caps)  (Automated)
* [MusicQA](https://github.com/shansongliu/MU-LLaMA?tab=readme-ov-file)  (Automated)
* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/)  (Human)
* [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench)  (Automated)
* [Mu-LLAMA](https://github.com/shansongliu/MU-LLaMA)  (Automated)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth)  (Human)
* [FMA](https://github.com/mdeff/fma)  (Human)
* [MusDB-HQ](https://zenodo.org/records/3338373)  (Human)
* [Music4All](https://sites.google.com/view/contact4music4all)  (Human)
* [Million Song Dataset](http://millionsongdataset.com/)  (Human)
* [MF-Skills (ours)](https://huggingface.co/nvidia/music-flamingo) (Automated)
* [MF-Think (ours)](https://huggingface.co/nvidia/music-flamingo) (Automated)

---

### Testing Dataset:
Music Flamingo is evaluated on the test split of the following datasets.

Data Collection Method: Human (for all datasets noted below) <br>
Labeling Method: Please see below.

* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/)  (Human)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth)  (Human)
* [GTZAN](https://www.tensorflow.org/datasets/catalog/gtzan)  (Human)
* [MMAU-pro](https://sonalkum.github.io/mmau-pro/)  (Human)
* [MMAU](https://github.com/Sakshi113/mmau/tree/main)  (Human)
* [MMAR](https://arxiv.org/abs/2505.13032)  (Human)
* [MuchoMusic](https://huggingface.co/datasets/yongyizang/RUListening)  (Automated)
* [MusicInstruct](https://huggingface.co/datasets/m-a-p/Music-Instruct)  (Automated)
* [MusicQA](https://huggingface.co/datasets/mu-llama/MusicQA)  (Automated)
* [SongCaps (ours)](https://huggingface.co/nvidia/music-flamingo)  (Automated) 

---

## Inference:

**Engine:** HuggingFace Transformers  
**Test Hardware:** NVIDIA A100 80 GB  

---

## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report model quality, risk, security vulnerabilities or NVIDIA AI Concerns [here](https://app.intigriti.com/programs/nvidia/nvidiavdp/detail).

---

## Acknowledgements
Built with Audio Flamingo 3, Qwen, NVILA and the open audio-ML community.