Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Abstract
Avenir-Web is a web agent that improves long-horizon task execution on complex web interfaces through specialized grounding techniques, procedural knowledge integration, and adaptive memory management.
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper