SWE-MiniSandbox: Container-Free Reinforcement Learning for Building Software Engineering Agents
Abstract
SWE-MiniSandbox presents a container-free reinforcement learning approach for software engineering agents that uses kernel-level isolation and lightweight caching to reduce resource overhead while maintaining performance.
Reinforcement learning (RL) has become a key paradigm for training software engineering (SWE) agents, but existing pipelines typically rely on per-task containers for isolation. At scale, pre-built container images incur substantial storage overhead, slow environment setup, and require container-management privileges. We propose SWE-MiniSandbox, a lightweight, container-free method that enables scalable RL training of SWE agents without sacrificing isolation. Instead of relying on per-instance containers, SWE-MiniSandbox executes each task in an isolated workspace backed by kernel-level mechanisms, substantially reducing system overhead. It leverages lightweight environment pre-caching techniques to eliminate the need for bulky container images. As a result, our approach lowers disk usage to approximately 5\% of that required by container-based pipelines and reduces environment preparation time to about 25\% of the container baseline. Empirical results demonstrate that SWE-MiniSandbox achieves evaluation performance comparable to standard container-based pipelines. By removing the dependency on heavy container infrastructure, SWE-MiniSandbox offers a practical and accessible foundation for scaling RL-based SWE agents, particularly in resource-constrained research environments.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper