Learning on the Fly: Replay-Based Continual Object Perception for Indoor Drones
Abstract
A new indoor UAV video dataset with temporal coherence is introduced alongside evaluation of replay-based continual learning methods for real-time object recognition under memory constraints.
Autonomous agents such as indoor drones must learn new object classes in real-time while limiting catastrophic forgetting, motivating Class-Incremental Learning (CIL). However, most unmanned aerial vehicle (UAV) datasets focus on outdoor scenes and offer limited temporally coherent indoor videos. We introduce an indoor dataset of 14,400 frames capturing inter-drone and ground vehicle footage, annotated via a semi-automatic workflow with a 98.6% first-pass labeling agreement before final manual verification. Using this dataset, we benchmark 3 replay-based CIL strategies: Experience Replay (ER), Maximally Interfered Retrieval (MIR), and Forgetting-Aware Replay (FAR), using YOLOv11-nano as a resource-efficient detector for deployment-constrained UAV platforms. Under tight memory budgets (5-10% replay), FAR performs better than the rest, achieving an average accuracy (ACC, mAP_{50-95} across increments) of 82.96% with 5% replay. Gradient-weighted class activation mapping (Grad-CAM) analysis shows attention shifts across classes in mixed scenes, which is associated with reduced localization quality for drones. The experiments further demonstrate that replay-based continual learning can be effectively applied to edge aerial systems. Overall, this work contributes an indoor UAV video dataset with preserved temporal coherence and an evaluation of replay-based CIL under limited replay budgets. Project page: https://spacetime-vision-robotics-laboratory.github.io/learning-on-the-fly-cl
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper