LM-Lexicon: Improving Definition Modeling via Harmonizing Semantic Experts
Abstract
LM-Lexicon improves definition modeling through data clustering, semantic expert learning, and sparse mixture-of-experts architecture, achieving higher BLEU scores and better expert specialization.
We introduce LM-Lexicon, an innovative definition modeling approach that incorporates data clustering, semantic expert learning, and model merging using a sparse mixture-of-experts architecture. By decomposing the definition modeling task into specialized semantic domains, where small language models are trained as domain experts, LM-Lexicon achieves substantial improvements (+7% BLEU score compared with the prior state-of-the-art model) over existing methods on five widely used benchmarks. Empirically, we demonstrate that 1) the clustering strategy enables fine-grained expert specialization with nearly 10% improvement in definition quality; 2) the semantic-aware domain-level routing mechanism achieves higher expert efficacy (+1%) than conventional token-level routing; and 3) further performance gains can be obtained through test-time compute and semantic expert scaling. Our work advances definition modeling while providing insights into the development of efficient language models for semantic-intensive applications.
Community
We introduce LM-Lexicon, an innovative definition modeling approach that incorporates data clustering, semantic expert learning, and model merging using a sparse mixture-of-experts architecture. By decomposing the definition modeling task into specialized semantic domains, where small language models are trained as domain experts, LM-Lexicon achieves substantial improvements (+7% BLEU score compared with the prior state-of-the-art model) over existing methods on five widely used benchmarks. Empirically, we demonstrate that 1) the clustering strategy enables fine-grained expert specialization with nearly 10% improvement in definition quality; 2) the semantic-aware domain-level routing mechanism achieves higher expert efficacy (+1%) than conventional token-level routing; and 3) further performance gains can be obtained through test-time compute and semantic expert scaling. Our work advances definition modeling while providing insights into the development of efficient language models for semantic-intensive applications.
Accepted by EACL 2026 (Oral)
Models citing this paper 10
Browse 10 models citing this paperDatasets citing this paper 5
Browse 5 datasets citing this paperSpaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper