Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribemmBERT: A Modern Multilingual Encoder with Annealed Language Learning
Encoder-only languages models are frequently used for a variety of standard machine learning tasks, including classification and retrieval. However, there has been a lack of recent research for encoder models, especially with respect to multilingual models. We introduce mmBERT, an encoder-only language model pretrained on 3T tokens of multilingual text in over 1800 languages. To build mmBERT we introduce several novel elements, including an inverse mask ratio schedule and an inverse temperature sampling ratio. We add over 1700 low-resource languages to the data mix only during the decay phase, showing that it boosts performance dramatically and maximizes the gains from the relatively small amount of training data. Despite only including these low-resource languages in the short decay phase we achieve similar classification performance to models like OpenAI's o3 and Google's Gemini 2.5 Pro. Overall, we show that mmBERT significantly outperforms the previous generation of models on classification and retrieval tasks -- on both high and low-resource languages.
Overtrained Language Models Are Harder to Fine-Tune
Large language models are pre-trained on ever-growing token budgets under the assumption that better pre-training performance translates to improved downstream models. In this work, we challenge this assumption and show that extended pre-training can make models harder to fine-tune, leading to degraded final performance. We term this phenomenon catastrophic overtraining. For example, the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2% worse performance on multiple standard LLM benchmarks than its 2.3T token counterpart. Through controlled experiments and theoretical analysis, we show that catastrophic overtraining arises from a systematic increase in the broad sensitivity of pre-trained parameters to modifications, including but not limited to fine-tuning. Our findings call for a critical reassessment of pre-training design that considers the downstream adaptability of the model.
Are BabyLMs Deaf to Gricean Maxims? A Pragmatic Evaluation of Sample-efficient Language Models
Implicit meanings are integral to human communication, making it essential for language models to be capable of identifying and interpreting them. Grice (1975) proposed a set of conversational maxims that guide cooperative dialogue, noting that speakers may deliberately violate these principles to express meanings beyond literal words, and that listeners, in turn, recognize such violations to draw pragmatic inferences. Building on Surian et al. (1996)'s study of children's sensitivity to violations of Gricean maxims, we introduce a novel benchmark to test whether language models pretrained on less than 10M and less than 100M tokens can distinguish maxim-adhering from maxim-violating utterances. We compare these BabyLMs across five maxims and situate their performance relative to children and a Large Language Model (LLM) pretrained on 3T tokens. We find that overall, models trained on less than 100M tokens outperform those trained on less than 10M, yet fall short of child-level and LLM competence. Our results suggest that modest data increases improve some aspects of pragmatic behavior, leading to finer-grained differentiation between pragmatic dimensions.
Frac-Connections: Fractional Extension of Hyper-Connections
Residual connections are central to modern deep learning architectures, enabling the training of very deep networks by mitigating gradient vanishing. Hyper-Connections recently generalized residual connections by introducing multiple connection strengths at different depths, thereby addressing the seesaw effect between gradient vanishing and representation collapse. However, Hyper-Connections increase memory access costs by expanding the width of hidden states. In this paper, we propose Frac-Connections, a novel approach that divides hidden states into multiple parts rather than expanding their width. Frac-Connections retain partial benefits of Hyper-Connections while reducing memory consumption. To validate their effectiveness, we conduct large-scale experiments on language tasks, with the largest being a 7B MoE model trained on up to 3T tokens, demonstrating that Frac-Connections significantly outperform residual connections.
CroissantLLM: A Truly Bilingual French-English Language Model
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
Predicting the Order of Upcoming Tokens Improves Language Modeling
Multi-Token Prediction (MTP) has been proposed as an auxiliary objective to improve next-token prediction (NTP) in language model training but shows inconsistent improvements, underperforming in standard NLP benchmarks. We argue that MTP's exact future token prediction is too difficult as an auxiliary loss. Instead, we propose Token Order Prediction (TOP), which trains models to order upcoming tokens by their proximity using a learning-to-rank loss. TOP requires only a single additional unembedding layer compared to MTP's multiple transformer layers. We pretrain models of 340M, 1.8B, and 7B parameters using NTP, MTP, and TOP objectives. Results on eight standard NLP benchmarks show that TOP overall outperforms both NTP and MTP even at scale. Our code is available at https://github.com/zaydzuhri/token-order-prediction
Efficient Sequence Transduction by Jointly Predicting Tokens and Durations
This paper introduces a novel Token-and-Duration Transducer (TDT) architecture for sequence-to-sequence tasks. TDT extends conventional RNN-Transducer architectures by jointly predicting both a token and its duration, i.e. the number of input frames covered by the emitted token. This is achieved by using a joint network with two outputs which are independently normalized to generate distributions over tokens and durations. During inference, TDT models can skip input frames guided by the predicted duration output, which makes them significantly faster than conventional Transducers which process the encoder output frame by frame. TDT models achieve both better accuracy and significantly faster inference than conventional Transducers on different sequence transduction tasks. TDT models for Speech Recognition achieve better accuracy and up to 2.82X faster inference than conventional Transducers. TDT models for Speech Translation achieve an absolute gain of over 1 BLEU on the MUST-C test compared with conventional Transducers, and its inference is 2.27X faster. In Speech Intent Classification and Slot Filling tasks, TDT models improve the intent accuracy by up to over 1% (absolute) over conventional Transducers, while running up to 1.28X faster. Our implementation of the TDT model will be open-sourced with the NeMo (https://github.com/NVIDIA/NeMo) toolkit.
Democratizing Text-to-Image Masked Generative Models with Compact Text-Aware One-Dimensional Tokens
Image tokenizers form the foundation of modern text-to-image generative models but are notoriously difficult to train. Furthermore, most existing text-to-image models rely on large-scale, high-quality private datasets, making them challenging to replicate. In this work, we introduce Text-Aware Transformer-based 1-Dimensional Tokenizer (TA-TiTok), an efficient and powerful image tokenizer that can utilize either discrete or continuous 1-dimensional tokens. TA-TiTok uniquely integrates textual information during the tokenizer decoding stage (i.e., de-tokenization), accelerating convergence and enhancing performance. TA-TiTok also benefits from a simplified, yet effective, one-stage training process, eliminating the need for the complex two-stage distillation used in previous 1-dimensional tokenizers. This design allows for seamless scalability to large datasets. Building on this, we introduce a family of text-to-image Masked Generative Models (MaskGen), trained exclusively on open data while achieving comparable performance to models trained on private data. We aim to release both the efficient, strong TA-TiTok tokenizers and the open-data, open-weight MaskGen models to promote broader access and democratize the field of text-to-image masked generative models.
Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0\% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3\% top1 accuracy in image resolution 384times384 on ImageNet. (Code: https://github.com/yitu-opensource/T2T-ViT)
Tokenization Standards for Linguistic Integrity: Turkish as a Benchmark
Tokenization is a fundamental preprocessing step in NLP, directly impacting large language models' (LLMs) ability to capture syntactic, morphosyntactic, and semantic structures. This paper introduces a novel framework for systematically evaluating tokenization strategies, addressing challenges in morphologically rich and low-resource languages. Using a Turkish dataset of 6,200 multiple-choice questions from the Massive Multitask Language Understanding (MMLU) benchmark, the framework assesses tokenizers across five key metrics: vocabulary size, token count, processing time, language-specific token percentages (\%TR), and token purity. These metrics provide a structured approach to evaluating how well tokenizers preserve linguistic structures. While \%TR measures the proportion of valid words in the target language, \%Pure assesses the alignment of tokens with meaningful linguistic units, such as roots and valid morphemes, minimizing semantic fragmentation. The findings reveal that \%TR, introduced as a critical metric, exhibits a stronger correlation with downstream performance (e.g., MMLU scores) than token purity, emphasizing its role in improving model accuracy. Additionally, larger model parameters do not necessarily yield better tokenization quality or enhanced results, highlighting the importance of tailored tokenization strategies that prioritize linguistic alignment. This framework sets a new standard for developing robust tokenization methods optimized for morphologically complex and low-resource languages. Future work will refine morphological analysis, explore domain-specific customizations, and conduct cross-linguistic evaluations to further enhance tokenization practices.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
G3PT: Unleash the power of Autoregressive Modeling in 3D Generation via Cross-scale Querying Transformer
Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Speculative Prefill: Turbocharging TTFT with Lightweight and Training-Free Token Importance Estimation
Improving time-to-first-token (TTFT) is an essentially important objective in modern large language model (LLM) inference engines. Optimizing TTFT directly results in higher maximal QPS and meets the requirements of many critical applications. However, boosting TTFT is notoriously challenging since it is compute-bounded and the performance bottleneck shifts from the self-attention that many prior works focus on to the MLP part. In this work, we present SpecPrefill, a training free framework that accelerates the inference TTFT for both long and medium context queries based on the following insight: LLMs are generalized enough to preserve the quality given only a carefully chosen subset of prompt tokens. At its core, SpecPrefill leverages a lightweight model to speculate locally important tokens based on the context. These tokens, along with the necessary positional information, are then sent to the main model for processing. We evaluate SpecPrefill with a diverse set of tasks, followed by a comprehensive benchmarking of performance improvement both in a real end-to-end setting and ablation studies. SpecPrefill manages to serve Llama-3.1-405B-Instruct-FP8 with up to 7times maximal end-to-end QPS on real downstream tasks and 7.66times TTFT improvement.
TransMatting: Tri-token Equipped Transformer Model for Image Matting
Image matting aims to predict alpha values of elaborate uncertainty areas of natural images, like hairs, smoke, and spider web. However, existing methods perform poorly when faced with highly transparent foreground objects due to the large area of uncertainty to predict and the small receptive field of convolutional networks. To address this issue, we propose a Transformer-based network (TransMatting) to model transparent objects with long-range features and collect a high-resolution matting dataset of transparent objects (Transparent-460) for performance evaluation. Specifically, to utilize semantic information in the trimap flexibly and effectively, we also redesign the trimap as three learnable tokens, named tri-token. Both Transformer and convolution matting models could benefit from our proposed tri-token design. By replacing the traditional trimap concatenation strategy with our tri-token, existing matting methods could achieve about 10% improvement in SAD and 20% in MSE. Equipped with the new tri-token design, our proposed TransMatting outperforms current state-of-the-art methods on several popular matting benchmarks and our newly collected Transparent-460.
M^{3}: A Modular World Model over Streams of Tokens
Token-based world models emerged as a promising modular framework, modeling dynamics over token streams while optimizing tokenization separately. While successful in visual environments with discrete actions (e.g., Atari games), their broader applicability remains uncertain. In this paper, we introduce M^{3}, a modular world model that extends this framework, enabling flexible combinations of observation and action modalities through independent modality-specific components. M^{3} integrates several improvements from existing literature to enhance agent performance. Through extensive empirical evaluation across diverse benchmarks, M^{3} achieves state-of-the-art sample efficiency for planning-free world models. Notably, among these methods, it is the first to reach a human-level median score on Atari 100K, with superhuman performance on 13 games. We https://github.com/leor-c/M3{open-source our code and weights}.
xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs
We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for videos, particularly designed to efficiently capture temporal information over multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in addition to the conventional visual tokenizer, which maps a sequence of tokens over multiple frames into a compact set of visual tokens. This enables BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32 vs. 4608 tokens). We explore different types of temporal encoders, including learnable spatio-temporal pooling as well as sequential models like Token Turing Machines. We experimentally confirm that BLIP-3-Video obtains video question-answering accuracies comparable to much larger state-of-the-art models (e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using fewer visual tokens. The project website is at https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html
L-MTP: Leap Multi-Token Prediction Beyond Adjacent Context for Large Language Models
Large language models (LLMs) have achieved notable progress. Despite their success, next-token prediction (NTP), the dominant method for LLM training and inference, is constrained in both contextual coverage and inference efficiency due to its inherently sequential process. To overcome these challenges, we propose leap multi-token prediction~(L-MTP), an innovative token prediction method that extends the capabilities of multi-token prediction (MTP) by introducing a leap-based mechanism. Unlike conventional MTP, which generates multiple tokens at adjacent positions, L-MTP strategically skips over intermediate tokens, predicting non-sequential ones in a single forward pass. This structured leap not only enhances the model's ability to capture long-range dependencies but also enables a decoding strategy specially optimized for non-sequential leap token generation, effectively accelerating inference. We theoretically demonstrate the benefit of L-MTP in improving inference efficiency. Experiments across diverse benchmarks validate its merit in boosting both LLM performance and inference speed. The source code is available at https://github.com/Xiaohao-Liu/L-MTP.
Position-Aware Tagging for Aspect Sentiment Triplet Extraction
Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.
t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams
A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.
Cabrita: closing the gap for foreign languages
The strategy of training the model from scratch in a specific language or domain serves two essential purposes: i) enhancing performance in the particular linguistic or domain context, and ii) ensuring effective tokenization. The main limitation inherent to this approach lies in the associated cost, which can reach six to seven-digit dollar values, depending on the model size and the number of parameters involved. The main solution to overcome the cost challenge is to rely on available pre-trained models, which, despite recent advancements such as the LLaMA and LLaMA-2 models, still demonstrate inefficiency for certain specific domain problems or prove ineffective in scenarios involving conversational memory resources, given the large number of tokens required to represent text. To overcome this issue, we present a methodology named Cabrita, which, as our research demonstrates, successfully addresses the performance and efficient tokenization problem, all at an affordable cost. We believe that this methodology can be applied to any transformer-like architecture model. To validate the study, we conducted continuous pre-training exclusively using Portuguese text on a 3-billion-parameter model known as OpenLLaMA, resulting in a model named openCabrita 3B. The openCabrita 3B also features a new tokenizer that results in a significant reduction in the number of tokens required to represent the text. In our assessment, for few-shot learning tasks, we achieved similar results with this 3B model compared to a traditional continuous pre-training approach as well as to 7B models English pre-trained models.
An Image is Worth 32 Tokens for Reconstruction and Generation
Recent advancements in generative models have highlighted the crucial role of image tokenization in the efficient synthesis of high-resolution images. Tokenization, which transforms images into latent representations, reduces computational demands compared to directly processing pixels and enhances the effectiveness and efficiency of the generation process. Prior methods, such as VQGAN, typically utilize 2D latent grids with fixed downsampling factors. However, these 2D tokenizations face challenges in managing the inherent redundancies present in images, where adjacent regions frequently display similarities. To overcome this issue, we introduce Transformer-based 1-Dimensional Tokenizer (TiTok), an innovative approach that tokenizes images into 1D latent sequences. TiTok provides a more compact latent representation, yielding substantially more efficient and effective representations than conventional techniques. For example, a 256 x 256 x 3 image can be reduced to just 32 discrete tokens, a significant reduction from the 256 or 1024 tokens obtained by prior methods. Despite its compact nature, TiTok achieves competitive performance to state-of-the-art approaches. Specifically, using the same generator framework, TiTok attains 1.97 gFID, outperforming MaskGIT baseline significantly by 4.21 at ImageNet 256 x 256 benchmark. The advantages of TiTok become even more significant when it comes to higher resolution. At ImageNet 512 x 512 benchmark, TiTok not only outperforms state-of-the-art diffusion model DiT-XL/2 (gFID 2.74 vs. 3.04), but also reduces the image tokens by 64x, leading to 410x faster generation process. Our best-performing variant can significantly surpasses DiT-XL/2 (gFID 2.13 vs. 3.04) while still generating high-quality samples 74x faster.
E3 TTS: Easy End-to-End Diffusion-based Text to Speech
We propose Easy End-to-End Diffusion-based Text to Speech, a simple and efficient end-to-end text-to-speech model based on diffusion. E3 TTS directly takes plain text as input and generates an audio waveform through an iterative refinement process. Unlike many prior work, E3 TTS does not rely on any intermediate representations like spectrogram features or alignment information. Instead, E3 TTS models the temporal structure of the waveform through the diffusion process. Without relying on additional conditioning information, E3 TTS could support flexible latent structure within the given audio. This enables E3 TTS to be easily adapted for zero-shot tasks such as editing without any additional training. Experiments show that E3 TTS can generate high-fidelity audio, approaching the performance of a state-of-the-art neural TTS system. Audio samples are available at https://e3tts.github.io.
TokensGen: Harnessing Condensed Tokens for Long Video Generation
Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .
Large Content And Behavior Models To Understand, Simulate, And Optimize Content And Behavior
Shannon, in his seminal paper introducing information theory, divided the communication into three levels: technical, semantic, and effectivenss. While the technical level is concerned with accurate reconstruction of transmitted symbols, the semantic and effectiveness levels deal with the inferred meaning and its effect on the receiver. Thanks to telecommunications, the first level problem has produced great advances like the internet. Large Language Models (LLMs) make some progress towards the second goal, but the third level still remains largely untouched. The third problem deals with predicting and optimizing communication for desired receiver behavior. LLMs, while showing wide generalization capabilities across a wide range of tasks, are unable to solve for this. One reason for the underperformance could be a lack of "behavior tokens" in LLMs' training corpora. Behavior tokens define receiver behavior over a communication, such as shares, likes, clicks, purchases, retweets, etc. While preprocessing data for LLM training, behavior tokens are often removed from the corpora as noise. Therefore, in this paper, we make some initial progress towards reintroducing behavior tokens in LLM training. The trained models, other than showing similar performance to LLMs on content understanding tasks, show generalization capabilities on behavior simulation, content simulation, behavior understanding, and behavior domain adaptation. Using a wide range of tasks on two corpora, we show results on all these capabilities. We call these models Large Content and Behavior Models (LCBMs). Further, to spur more research on LCBMs, we release our new Content Behavior Corpus (CBC), a repository containing communicator, message, and corresponding receiver behavior.
Inference without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads
Transformer-based large language model (LLM) inference serving is now the backbone of many cloud services. LLM inference consists of a prefill phase and a decode phase. However, existing LLM deployment practices often overlook the distinct characteristics of these phases, leading to significant interference. To mitigate interference, our insight is to carefully schedule and group inference requests based on their characteristics. We realize this idea in TetriInfer through three pillars. First, it partitions prompts into fixed-size chunks so that the accelerator always runs close to its computationsaturated limit. Second, it disaggregates prefill and decode instances so each can run independently. Finally, it uses a smart two-level scheduling algorithm augmented with predicted resource usage to avoid decode scheduling hotspots. Results show that TetriInfer improves time-to-first-token (TTFT), job completion time (JCT), and inference efficiency in turns of performance per dollar by a large margin, e.g., it uses 38% less resources all the while lowering average TTFT and average JCT by 97% and 47%, respectively.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Tokens with Meaning: A Hybrid Tokenization Approach for NLP
Tokenization plays a pivotal role in natural language processing (NLP), shaping how text is segmented and interpreted by language models. While subword methods such as Byte Pair Encoding (BPE) and WordPiece have been effective, they often struggle with morphologically rich and agglutinative languages because they rely on frequency rather than linguistic structure. We introduce a hybrid tokenization framework that combines rule-based morphological analysis with statistical subword segmentation. The method uses phonological normalization, root-affix dictionaries, and a novel algorithm that balances morpheme preservation with vocabulary efficiency. It assigns shared identifiers to phonologically variant affixes (e.g., -ler and -lar) and altered root forms (e.g., kitap vs. kitab{\i}), reducing redundancy while maintaining semantic integrity. Special tokens are added for whitespace and case, including an UPPERCASE marker to avoid vocabulary inflation from capitalization. BPE is integrated for out-of-vocabulary coverage without harming morphological coherence. On the TR-MMLU benchmark, the tokenizer achieves the highest Turkish Token Percentage (90.29\%) and Pure Token Percentage (85.8\%). Comparisons with tokenizers from LLaMA, Gemma, and GPT show more linguistically meaningful and coherent tokens. Although demonstrated on Turkish, the approach is language-independent and adaptable to other languages, offering a practical path toward more interpretable and effective multilingual NLP systems.
Pre-Training Curriculum for Multi-Token Prediction in Language Models
Multi-token prediction (MTP) is a recently proposed pre-training objective for language models. Rather than predicting only the next token (NTP), MTP predicts the next k tokens at each prediction step, using multiple prediction heads. MTP has shown promise in improving downstream performance, inference speed, and training efficiency, particularly for large models. However, prior work has shown that smaller language models (SLMs) struggle with the MTP objective. To address this, we propose a curriculum learning strategy for MTP training, exploring two variants: a forward curriculum, which gradually increases the complexity of the pre-training objective from NTP to MTP, and a reverse curriculum, which does the opposite. Our experiments show that the forward curriculum enables SLMs to better leverage the MTP objective during pre-training, improving downstream NTP performance and generative output quality, while retaining the benefits of self-speculative decoding. The reverse curriculum achieves stronger NTP performance and output quality, but fails to provide any self-speculative decoding benefits.
Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding ({3D GU}) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates {3D GU} tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse {3D GU} tasks within a single autoregressive framework. Extensive experiments across multiple microscopic {3D GU} tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.
Self-slimmed Vision Transformer
Vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because of the exhausting token-to-token comparison. The previous works focus on dropping insignificant tokens to reduce the computational cost of ViTs. But when the dropping ratio increases, this hard manner will inevitably discard the vital tokens, which limits its efficiency. To solve the issue, we propose a generic self-slimmed learning approach for vanilla ViTs, namely SiT. Specifically, we first design a novel Token Slimming Module (TSM), which can boost the inference efficiency of ViTs by dynamic token aggregation. As a general method of token hard dropping, our TSM softly integrates redundant tokens into fewer informative ones. It can dynamically zoom visual attention without cutting off discriminative token relations in the images, even with a high slimming ratio. Furthermore, we introduce a concise Feature Recalibration Distillation (FRD) framework, wherein we design a reverse version of TSM (RTSM) to recalibrate the unstructured token in a flexible auto-encoder manner. Due to the similar structure between teacher and student, our FRD can effectively leverage structure knowledge for better convergence. Finally, we conduct extensive experiments to evaluate our SiT. It demonstrates that our method can speed up ViTs by 1.7x with negligible accuracy drop, and even speed up ViTs by 3.6x while maintaining 97% of their performance. Surprisingly, by simply arming LV-ViT with our SiT, we achieve new state-of-the-art performance on ImageNet. Code is available at https://github.com/Sense-X/SiT.
SMOL: Professionally translated parallel data for 115 under-represented languages
We open-source SMOL (Set of Maximal Overall Leverage), a suite of training data to unlock translation for low-resource languages (LRLs). SMOL has been translated into 115 under-resourced languages, including many for which there exist no previous public resources, for a total of 6.1M translated tokens. SMOL comprises two sub-datasets, each carefully chosen for maximum impact given its size: SMOL-Sent, a set of sentences chosen for broad unique token coverage, and SMOL-Doc, a document-level source focusing on a broad topic coverage. They join the already released GATITOS for a trifecta of paragraph, sentence, and token-level content. We demonstrate that using SMOL to prompt or fine-tune Large Language Models yields robust ChrF improvements. In addition to translation, we provide factuality ratings and rationales for all documents in SMOL-Doc, yielding the first factuality datasets for most of these languages.
TSpec-LLM: An Open-source Dataset for LLM Understanding of 3GPP Specifications
Understanding telecom standards involves sorting through numerous technical documents, such as those produced by the 3rd Generation Partnership Project (3GPP), which is time-consuming and labor-intensive. While large language models (LLMs) can assist with the extensive 3GPP knowledge base, an inclusive dataset is crucial for their effective pre-training and fine-tuning. In this paper, we introduce TSpec-LLM, an open-source comprehensive dataset covering all 3GPP documents from Release 8 to Release 19 (1999--2023). To evaluate its efficacy, we first select a representative sample of 3GPP documents, create corresponding technical questions, and assess the baseline performance of various LLMs. We then incorporate a retrieval-augmented generation (RAG) framework to enhance LLM capabilities by retrieving relevant context from the TSpec-LLM dataset. Our evaluation shows that using a naive-RAG framework on TSpec-LLM improves the accuracy of GPT-3.5, Gemini 1.0 Pro, and GPT-4 from 44\%, 46\%, and 51\% to 71\%, 75\%, and 72\%, respectively.
Direct Multi-Token Decoding
Decoder-only transformers have become the standard architecture for large language models (LLMs) due to their strong performance. Recent studies suggest that, in pre-trained LLMs, early, middle, and late layers may serve distinct roles: Early layers focus on understanding the input context, middle layers handle task-specific processing, and late layers convert abstract representations into output tokens. We hypothesize that once representations have been processed by the early and middle layers, the resulting hidden states may encapsulate sufficient information to support the generation of multiple tokens using only the late layers, eliminating the need to repeatedly traverse the early and middle layers. We refer to this inference paradigm as Direct Multi-Token Decoding (DMTD). Unlike speculative decoding, our method introduces no additional parameters, auxiliary routines, or post-generation verification. Despite being trained on a limited dataset, a fine-tuned DMTD Qwen3-4B model has already demonstrated promising results, achieving up to a 2x speedup with only minor performance loss. Moreover, as shown in our scaling analysis, its performance is expected to further improve with larger training datasets.
Make Your ViT-based Multi-view 3D Detectors Faster via Token Compression
Slow inference speed is one of the most crucial concerns for deploying multi-view 3D detectors to tasks with high real-time requirements like autonomous driving. Although many sparse query-based methods have already attempted to improve the efficiency of 3D detectors, they neglect to consider the backbone, especially when using Vision Transformers (ViT) for better performance. To tackle this problem, we explore the efficient ViT backbones for multi-view 3D detection via token compression and propose a simple yet effective method called TokenCompression3D (ToC3D). By leveraging history object queries as foreground priors of high quality, modeling 3D motion information in them, and interacting them with image tokens through the attention mechanism, ToC3D can effectively determine the magnitude of information densities of image tokens and segment the salient foreground tokens. With the introduced dynamic router design, ToC3D can weigh more computing resources to important foreground tokens while compressing the information loss, leading to a more efficient ViT-based multi-view 3D detector. Extensive results on the large-scale nuScenes dataset show that our method can nearly maintain the performance of recent SOTA with up to 30% inference speedup, and the improvements are consistent after scaling up the ViT and input resolution. The code will be made at https://github.com/DYZhang09/ToC3D.
TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding
With large language models (LLMs) widely deployed in long content generation recently, there has emerged an increasing demand for efficient long-sequence inference support. However, key-value (KV) cache, which is stored to avoid re-computation, has emerged as a critical bottleneck by growing linearly in size with the sequence length. Due to the auto-regressive nature of LLMs, the entire KV cache will be loaded for every generated token, resulting in low utilization of computational cores and high latency. While various compression methods for KV cache have been proposed to alleviate this issue, they suffer from degradation in generation quality. We introduce TriForce, a hierarchical speculative decoding system that is scalable to long sequence generation. This approach leverages the original model weights and dynamic sparse KV cache via retrieval as a draft model, which serves as an intermediate layer in the hierarchy and is further speculated by a smaller model to reduce its drafting latency. TriForce not only facilitates impressive speedups for Llama2-7B-128K, achieving up to 2.31times on an A100 GPU but also showcases scalability in handling even longer contexts. For the offloading setting on two RTX 4090 GPUs, TriForce achieves 0.108s/tokenx2014only half as slow as the auto-regressive baseline on an A100, which attains 7.78times on our optimized offloading system. Additionally, TriForce performs 4.86times than DeepSpeed-Zero-Inference on a single RTX 4090 GPU. TriForce's robustness is highlighted by its consistently outstanding performance across various temperatures. The code is available at https://github.com/Infini-AI-Lab/TriForce.
Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
Tokenization Constraints in LLMs: A Study of Symbolic and Arithmetic Reasoning Limits
Tokenization is the first - and often underappreciated - layer of computation in language models. While Chain-of-Thought (CoT) prompting enables transformer models to approximate recurrent computation by externalizing intermediate steps, we show that the success of such reasoning is fundamentally bounded by the structure of tokenized inputs. This work presents a theoretical and empirical investigation into how tokenization schemes, particularly subword-based methods like byte-pair encoding (BPE), impede symbolic computation by merging or obscuring atomic reasoning units. We introduce the notion of Token Awareness to formalize how poor token granularity disrupts logical alignment and prevents models from generalizing symbolic procedures. Through systematic evaluation on arithmetic and symbolic tasks, we demonstrate that token structure dramatically affect reasoning performance, causing failure even with CoT, while atomically-aligned formats unlock strong generalization, allowing small models (e.g., GPT-4o-mini) to outperform larger systems (e.g., o1) in structured reasoning. Our findings reveal that symbolic reasoning ability in LLMs is not purely architectural, but deeply conditioned on token-level representations.
S^3-TTA: Scale-Style Selection for Test-Time Augmentation in Biomedical Image Segmentation
Deep-learning models have been successful in biomedical image segmentation. To generalize for real-world deployment, test-time augmentation (TTA) methods are often used to transform the test image into different versions that are hopefully closer to the training domain. Unfortunately, due to the vast diversity of instance scale and image styles, many augmented test images produce undesirable results, thus lowering the overall performance. This work proposes a new TTA framework, S^3-TTA, which selects the suitable image scale and style for each test image based on a transformation consistency metric. In addition, S^3-TTA constructs an end-to-end augmentation-segmentation joint-training pipeline to ensure a task-oriented augmentation. On public benchmarks for cell and lung segmentation, S^3-TTA demonstrates improvements over the prior art by 3.4% and 1.3%, respectively, by simply augmenting the input data in testing phase.
Test-Time Training Done Right
Test-Time Training (TTT) models context dependencies by adapting part of the model's weights (referred to as fast weights) during inference. This fast weight, akin to recurrent states in RNNs, stores temporary memories of past tokens in the current sequence. Existing TTT methods struggled to show effectiveness in handling long-context data, due to their inefficiency on modern GPUs. The TTT layers in many of these approaches operate with extremely low FLOPs utilization (often <5%) because they deliberately apply small online minibatch sizes (e.g., updating fast weights every 16 or 64 tokens). Moreover, a small minibatch implies fine-grained block-wise causal dependencies in the data, unsuitable for data beyond 1D ordered sequences, like sets or N-dimensional grids such as images or videos. In contrast, we pursue the opposite direction by using an extremely large chunk update, ranging from 2K to 1M tokens across tasks of varying modalities, which we refer to as Large Chunk Test-Time Training (LaCT). It improves hardware utilization by orders of magnitude, and more importantly, facilitates scaling of nonlinear state size (up to 40% of model parameters), hence substantially improving state capacity, all without requiring cumbersome and error-prone kernel implementations. It also allows easy integration of sophisticated optimizers, e.g. Muon for online updates. We validate our approach across diverse modalities and tasks, including novel view synthesis with image set, language models, and auto-regressive video diffusion. Our approach can scale up to 14B-parameter AR video diffusion model on sequences up to 56K tokens. In our longest sequence experiment, we perform novel view synthesis with 1 million context length. We hope this work will inspire and accelerate new research in the field of long-context modeling and test-time training. Website: https://tianyuanzhang.com/projects/ttt-done-right
Boundless Byte Pair Encoding: Breaking the Pre-tokenization Barrier
Pre-tokenization, the initial step in many modern tokenization pipelines, segments text into smaller units called pretokens, typically splitting on whitespace and punctuation. While this process encourages having full, individual words as tokens, it introduces a fundamental limitation in most tokenization algorithms such as Byte Pair Encoding (BPE). Specifically, pre-tokenization causes the distribution of tokens in a corpus to heavily skew towards common, full-length words. This skewed distribution limits the benefits of expanding to larger vocabularies, since the additional tokens appear with progressively lower counts. To overcome this barrier, we propose BoundlessBPE, a modified BPE algorithm that relaxes the pretoken boundary constraint. Our approach selectively merges two complete pretokens into a larger unit we term a superword. Superwords are not necessarily semantically cohesive. For example, the pretokens " of" and " the" might be combined to form the superword " of the". This merging strategy results in a substantially more uniform distribution of tokens across a corpus than standard BPE, and compresses text more effectively, with an approximate 20% increase in bytes per token.
LLM Reasoning for Machine Translation: Synthetic Data Generation over Thinking Tokens
Large reasoning models (LRMs) have led to new possibilities in terms of problem-solving, through the devising of a natural language thought process prior to answering a query. While their capabilities are well known across mathematics and coding tasks, their impact on the task of machine translation (MT) remains underexplored. In this work, we explore the benefits of the generation of intermediate tokens when performing MT across multiple language pairs of different levels of resourcedness and multiple setups. We find that "thinking tokens" do not help LRMs better perform MT. This result generalizes to models fine-tuned to reason before translating using distilled chain of thought (CoT) inspired by human translators' practices. Specifically, fine-tuning a model with synthetic CoT explanations detailing how to translate step-by-step does not outperform standard input-output fine-tuning. However, constructing the intermediate tokens by combining the outputs of modular translation-specific prompting strategies results in improvements. Our findings underscore that the contribution of intermediate tokens during fine-tuning highly depends on the presence of translation attempts within them. More broadly, our results suggest that using a teacher to refine target translations or to expand parallel corpora is more impactful than distilling their CoT explanations into "thinking" MT models.
FlexTok: Resampling Images into 1D Token Sequences of Flexible Length
Image tokenization has enabled major advances in autoregressive image generation by providing compressed, discrete representations that are more efficient to process than raw pixels. While traditional approaches use 2D grid tokenization, recent methods like TiTok have shown that 1D tokenization can achieve high generation quality by eliminating grid redundancies. However, these methods typically use a fixed number of tokens and thus cannot adapt to an image's inherent complexity. We introduce FlexTok, a tokenizer that projects 2D images into variable-length, ordered 1D token sequences. For example, a 256x256 image can be resampled into anywhere from 1 to 256 discrete tokens, hierarchically and semantically compressing its information. By training a rectified flow model as the decoder and using nested dropout, FlexTok produces plausible reconstructions regardless of the chosen token sequence length. We evaluate our approach in an autoregressive generation setting using a simple GPT-style Transformer. On ImageNet, this approach achieves an FID<2 across 8 to 128 tokens, outperforming TiTok and matching state-of-the-art methods with far fewer tokens. We further extend the model to support to text-conditioned image generation and examine how FlexTok relates to traditional 2D tokenization. A key finding is that FlexTok enables next-token prediction to describe images in a coarse-to-fine "visual vocabulary", and that the number of tokens to generate depends on the complexity of the generation task.
From Tokens to Layers: Redefining Stall-Free Scheduling for LLM Serving with Layered Prefill
Large Language Model (LLM) inference in production must meet stringent service-level objectives for both time-to-first-token (TTFT) and time-between-token (TBT) while maximizing throughput under fixed compute, memory, and interconnect budgets. Modern serving systems adopt stall-free scheduling techniques such as chunked prefill, which splits long prompt processing along the token dimension and interleaves prefill with ongoing decode iterations. While effective at stabilizing TBT, chunked prefill incurs substantial overhead in Mixture-of-Experts (MoE) models: redundant expert weight loads increase memory traffic by up to 39% and inflate energy consumption. We propose layered prefill, a new scheduling paradigm that treats transformer layer groups as the primary scheduling unit. By vertically partitioning the model into contiguous layer groups and interleaving prefill and decode across the groups, layered prefill sustains stall-free decoding while eliminating chunk-induced MoE weight reloads. It reduces off-chip bandwidth demand, lowering TTFT by up to 70%, End-to-End latency by 41% and per-token energy by up to 22%. Evaluations show that layered prefill consistently improves the TTFT--TBT Pareto frontier over chunked prefill, reducing expert-load traffic and energy cost while maintaining stall-free decoding. Overall, shifting the scheduling axis from tokens to layers unlocks a new operating regime for high-efficiency, energy-aware LLM serving in co-located environments.
Follow the Flow: On Information Flow Across Textual Tokens in Text-to-Image Models
Text-to-Image (T2I) models often suffer from issues such as semantic leakage, incorrect feature binding, and omissions of key concepts in the generated image. This work studies these phenomena by looking into the role of information flow between textual token representations. To this end, we generate images by applying the diffusion component on a subset of contextual token representations in a given prompt and observe several interesting phenomena. First, in many cases, a word or multiword expression is fully represented by one or two tokens, while other tokens are redundant. For example, in "San Francisco's Golden Gate Bridge", the token "gate" alone captures the full expression. We demonstrate the redundancy of these tokens by removing them after textual encoding and generating an image from the resulting representation. Surprisingly, we find that this process not only maintains image generation performance but also reduces errors by 21\% compared to standard generation. We then show that information can also flow between different expressions in a sentence, which often leads to semantic leakage. Based on this observation, we propose a simple, training-free method to mitigate semantic leakage: replacing the leaked item's representation after the textual encoding with its uncontextualized representation. Remarkably, this simple approach reduces semantic leakage by 85\%. Overall, our work provides a comprehensive analysis of information flow across textual tokens in T2I models, offering both novel insights and practical benefits.
UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph.
Problematic Tokens: Tokenizer Bias in Large Language Models
Recent advancements in large language models(LLMs), such as GPT-4 and GPT-4o, have shown exceptional performance, especially in languages with abundant resources like English, thanks to extensive datasets that ensure robust training. Conversely, these models exhibit limitations when processing under-resourced languages such as Chinese and Korean, where issues including hallucinatory responses remain prevalent. This paper traces the roots of these disparities to the tokenization process inherent to these models. Specifically, it explores how the tokenizers vocabulary, often used to speed up the tokenization process and reduce tokens but constructed independently of the actual model training data, inadequately represents non-English languages. This misrepresentation results in the propagation of under-trained or untrained tokens, which perpetuate biases and pose serious concerns related to data security and ethical standards. We aim to dissect the tokenization mechanics of GPT-4o, illustrating how its simplified token-handling methods amplify these risks and offer strategic solutions to mitigate associated security and ethical issues. Through this study, we emphasize the critical need to rethink tokenization frameworks to foster more equitable and secure AI technologies. The code and data are available at https://github.com/yeyimilk/LLMGPT4o
Pre^3: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre^3 that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre^3 enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre^3 introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre^3 can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
NFT1000: A Visual Text Dataset For Non-Fungible Token Retrieval
With the rise of 'Metaverse' and 'Web3.0', NFT ( Non-Fungible Token ) has emerged as a kind of pivotal digital asset, garnering significant attention. By the end of November 2023, more than 1.4 billion NFT tokens have been minted across various blockchain platforms. To effectively locate a satisfactory NFT token, conducting searches within the extensive array of NFT data is essential. The challenge in NFT retrieval is heightened due to the high degree of similarity among different NFT tokens, in terms of regional and semantic aspects. Achieving accurate and efficient retrieval within the large-scale, highly similar NFT data presents a formidable challenge for both the academic and industrial communities. In this paper, we will introduce a dataset named 'NFT Top1000 Visual Text Dataset'(henceforth, NFT1000), containing 7.56 million image-text pairs, and being collected from 1000 most famous PFP NFT collections by sales volume on the Ethereum blockchain. Based on the dataset, we test the CLIP (Contrastive Language-Image Pretraining) models as a baseline. Additionally, we also propose a concept of Comprehensive Variance Index (CVI in short), which is a robust metric designed to assess the similarity and retrieval difficulty of visual-text pairs data.
T3M: Text Guided 3D Human Motion Synthesis from Speech
Speech-driven 3D motion synthesis seeks to create lifelike animations based on human speech, with potential uses in virtual reality, gaming, and the film production. Existing approaches reply solely on speech audio for motion generation, leading to inaccurate and inflexible synthesis results. To mitigate this problem, we introduce a novel text-guided 3D human motion synthesis method, termed T3M. Unlike traditional approaches, T3M allows precise control over motion synthesis via textual input, enhancing the degree of diversity and user customization. The experiment results demonstrate that T3M can greatly outperform the state-of-the-art methods in both quantitative metrics and qualitative evaluations. We have publicly released our code at https://github.com/Gloria2tt/T3M.git{https://github.com/Gloria2tt/T3M.git}
Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
Token-Budget-Aware LLM Reasoning
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework, which dynamically estimates token budgets for different problems based on reasoning complexity and uses the estimated token budgets to guide the reasoning process. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE.
Tokenization with Factorized Subword Encoding
In recent years, language models have become increasingly larger and more complex. However, the input representations for these models continue to rely on simple and greedy subword tokenization methods. In this paper, we propose a novel tokenization method that factorizes subwords onto discrete triplets using a VQ-VAE model. The effectiveness of the proposed tokenization method, referred to as the Factorizer, is evaluated on language modeling and morpho-syntactic tasks for 7 diverse languages. Results indicate that this method is more appropriate and robust for morphological tasks than the commonly used byte-pair encoding (BPE) tokenization algorithm.
Scaling Behavior for Large Language Models regarding Numeral Systems: An Example using Pythia
Though Large Language Models (LLMs) have shown remarkable abilities in mathematics reasoning, they are still struggling with performing numeric operations accurately, such as addition and multiplication. Numbers can be tokenized into tokens in various ways by different LLMs and affect the numeric operations performance. Currently, there are two representatives: 1) Tokenize into 1-digit, and 2) Tokenize into 1sim 3 digit. The difference is roughly equivalent to using different numeral systems (namely base 10 or base 10^{3}). In light of this, we study the scaling behavior of different numeral systems in the context of transformer-based large language models. We empirically show that a base 10 system is consistently more data-efficient than a base 10^{2} or 10^{3} system across training data scale, model sizes under from-scratch training settings, while different number systems have very similar fine-tuning performances. We attribute this to higher token frequencies of a base 10 system. Additionally, we reveal extrapolation behavior patterns on addition and multiplication. We identify that base 100 and base 1000 systems struggle on token-level discernment and token-level operations. We also sheds light on the mechanism learnt by the models.
Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D
Enhancing Speech-to-Speech Translation with Multiple TTS Targets
It has been known that direct speech-to-speech translation (S2ST) models usually suffer from the data scarcity issue because of the limited existing parallel materials for both source and target speech. Therefore to train a direct S2ST system, previous works usually utilize text-to-speech (TTS) systems to generate samples in the target language by augmenting the data from speech-to-text translation (S2TT). However, there is a limited investigation into how the synthesized target speech would affect the S2ST models. In this work, we analyze the effect of changing synthesized target speech for direct S2ST models. We find that simply combining the target speech from different TTS systems can potentially improve the S2ST performances. Following that, we also propose a multi-task framework that jointly optimizes the S2ST system with multiple targets from different TTS systems. Extensive experiments demonstrate that our proposed framework achieves consistent improvements (2.8 BLEU) over the baselines on the Fisher Spanish-English dataset.
Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs
Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.
Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction
Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.
Technical Report of TeleChat2, TeleChat2.5 and T1
We introduce the latest series of TeleChat models: TeleChat2, TeleChat2.5, and T1, offering a significant upgrade over their predecessor, TeleChat. Despite minimal changes to the model architecture, the new series achieves substantial performance gains through enhanced training strategies in both pre-training and post-training stages. The series begins with TeleChat2, which undergoes pretraining on 10 trillion high-quality and diverse tokens. This is followed by Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) to further enhance its capabilities. TeleChat2.5 and T1 expand the pipeline by incorporating a continual pretraining phase with domain-specific datasets, combined with reinforcement learning (RL) to improve performance in code generation and mathematical reasoning tasks. The T1 variant is designed for complex reasoning, supporting long Chain-of-Thought (CoT) reasoning and demonstrating substantial improvements in mathematics and coding. In contrast, TeleChat2.5 prioritizes speed, delivering rapid inference. Both flagship models of T1 and TeleChat2.5 are dense Transformer-based architectures with 115B parameters, showcasing significant advancements in reasoning and general task performance compared to the original TeleChat. Notably, T1-115B outperform proprietary models such as OpenAI's o1-mini and GPT-4o. We publicly release TeleChat2, TeleChat2.5 and T1, including post-trained versions with 35B and 115B parameters, to empower developers and researchers with state-of-the-art language models tailored for diverse applications.
FastMTP: Accelerating LLM Inference with Enhanced Multi-Token Prediction
As large language models (LLMs) become increasingly powerful, the sequential nature of autoregressive generation creates a fundamental throughput bottleneck that limits the practical deployment. While Multi-Token Prediction (MTP) has demonstrated remarkable benefits for model training efficiency and performance, its inherent potential for inference acceleration remains largely unexplored. This paper introduces FastMTP, a simple yet effective method that improves multi-step draft quality by aligning MTP training with its inference pattern, significantly enhancing speculative decoding performance. Our approach fine-tunes a single MTP head with position-shared weights on self-distilled data, enabling it to capture dependencies among consecutive future tokens and maintain high acceptance rates across multiple recursive draft steps. By integrating language-aware dynamic vocabulary compression into the MTP head, we further reduce computational overhead in the drafting process. Experimental results across seven diverse benchmarks demonstrate that FastMTP achieves an average of 2.03x speedup compared to standard next token prediction with lossless output quality, outperforming vanilla MTP by 82%. FastMTP requires only lightweight training and seamlessly integrates with existing inference frameworks, offering a practical and rapidly deployable solution for accelerating LLM inference.
Zero-shot Triplet Extraction by Template Infilling
The task of triplet extraction aims to extract pairs of entities and their corresponding relations from unstructured text. Most existing methods train an extraction model on training data involving specific target relations, and are incapable of extracting new relations that were not observed at training time. Generalizing the model to unseen relations typically requires fine-tuning on synthetic training data which is often noisy and unreliable. We show that by reducing triplet extraction to a template infilling task over a pre-trained language model (LM), we can equip the extraction model with zero-shot learning capabilities and eliminate the need for additional training data. We propose a novel framework, ZETT (ZEro-shot Triplet extraction by Template infilling), that aligns the task objective to the pre-training objective of generative transformers to generalize to unseen relations. Experiments on FewRel and Wiki-ZSL datasets demonstrate that ZETT shows consistent and stable performance, outperforming previous state-of-the-art methods, even when using automatically generated templates. https://github.com/megagonlabs/zett/
Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that 2-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models
Post-training quantization is the leading method for addressing memory-related bottlenecks in LLM inference, but unfortunately, it suffers from significant performance degradation below 4-bit precision. An alternative approach involves training compressed models directly at a low bitwidth (e.g., binary or ternary models). However, the performance, training dynamics, and scaling trends of such models are not yet well understood. To address this issue, we train and openly release the Spectra LLM suite consisting of 54 language models ranging from 99M to 3.9B parameters, trained on 300B tokens. Spectra includes FloatLMs, post-training quantized QuantLMs (3, 4, 6, and 8 bits), and ternary LLMs (TriLMs) - our improved architecture for ternary language modeling, which significantly outperforms previously proposed ternary models of a given size (in bits), matching half-precision models at scale. For example, TriLM 3.9B is (bit-wise) smaller than the half-precision FloatLM 830M, but matches half-precision FloatLM 3.9B in commonsense reasoning and knowledge benchmarks. However, TriLM 3.9B is also as toxic and stereotyping as FloatLM 3.9B, a model six times larger in size. Additionally, TriLM 3.9B lags behind FloatLM in perplexity on validation splits and web-based corpora but performs better on less noisy datasets like Lambada and PennTreeBank. To enhance understanding of low-bitwidth models, we are releasing 500+ intermediate checkpoints of the Spectra suite at https://github.com/NolanoOrg/SpectraSuite{https://github.com/NolanoOrg/SpectraSuite}.
Exploiting Tree Structure for Credit Assignment in RL Training of LLMs
Reinforcement learning improves LLM reasoning, yet sparse delayed reward over long sequences makes token-level credit assignment the key bottleneck. We study the verifiable-reward setting, where the final answer is checkable and multiple responses can be drawn per prompt. Reasoning tasks in math and medical QA align with this setup, where only a few decision tokens significantly impact the outcome. PPO offers token-level advantages with a learned value model, but it is complex to train both the actor and critic models simultaneously, and it is not easily generalizable, as the token-level values from the critic model can make training prone to overfitting. GRPO is critic-free and supports verifiable rewards, but spreads a single sequence-level return across tokens and ignores branching. We introduce Prefix-to-Tree (P2T), a simple procedure that converts a group of responses into a prefix tree and computes nonparametric prefix values \(V(s)\) by aggregating descendant outcomes. Built on P2T, we propose TEMPO (\textbf{Tree-Estimated Mean Prefix Value for Policy Optimization}), a critic-free algorithm that augments the group-relative outcome signal of GRPO with branch-gated temporal-difference corrections derived from the tree. At non-branch tokens, the temporal-difference (TD) term is zero, so TEMPO reduces to GRPO; at branching tokens, it supplies precise token-level credit without a learned value network or extra judges/teachers. On Qwen3-1.7B/4B, TEMPO outperforms PPO and GRPO on in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA, MMLU-Medical) benchmarks, and reaches higher validation accuracy with roughly the same wall-clock time.
Tree Cross Attention
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of O(N) tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens L < N on which cross attention is then applied, resulting in only O(L) complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) - a module based on Cross Attention that only retrieves information from a logarithmic O(log(N)) number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
RobBERT-2022: Updating a Dutch Language Model to Account for Evolving Language Use
Large transformer-based language models, e.g. BERT and GPT-3, outperform previous architectures on most natural language processing tasks. Such language models are first pre-trained on gigantic corpora of text and later used as base-model for finetuning on a particular task. Since the pre-training step is usually not repeated, base models are not up-to-date with the latest information. In this paper, we update RobBERT, a RoBERTa-based state-of-the-art Dutch language model, which was trained in 2019. First, the tokenizer of RobBERT is updated to include new high-frequent tokens present in the latest Dutch OSCAR corpus, e.g. corona-related words. Then we further pre-train the RobBERT model using this dataset. To evaluate if our new model is a plug-in replacement for RobBERT, we introduce two additional criteria based on concept drift of existing tokens and alignment for novel tokens.We found that for certain language tasks this update results in a significant performance increase. These results highlight the benefit of continually updating a language model to account for evolving language use.
3D-MolT5: Towards Unified 3D Molecule-Text Modeling with 3D Molecular Tokenization
The integration of molecule and language has garnered increasing attention in molecular science. Recent advancements in Language Models (LMs) have demonstrated potential for the comprehensive modeling of molecule and language. However, existing works exhibit notable limitations. Most existing works overlook the modeling of 3D information, which is crucial for understanding molecular structures and also functions. While some attempts have been made to leverage external structure encoding modules to inject the 3D molecular information into LMs, there exist obvious difficulties that hinder the integration of molecular structure and language text, such as modality alignment and separate tuning. To bridge this gap, we propose 3D-MolT5, a unified framework designed to model both 1D molecular sequence and 3D molecular structure. The key innovation lies in our methodology for mapping fine-grained 3D substructure representations (based on 3D molecular fingerprints) to a specialized 3D token vocabulary for 3D-MolT5. This 3D structure token vocabulary enables the seamless combination of 1D sequence and 3D structure representations in a tokenized format, allowing 3D-MolT5 to encode molecular sequence (SELFIES), molecular structure, and text sequences within a unified architecture. Alongside, we further introduce 1D and 3D joint pre-training to enhance the model's comprehension of these diverse modalities in a joint representation space and better generalize to various tasks for our foundation model. Through instruction tuning on multiple downstream datasets, our proposed 3D-MolT5 shows superior performance than existing methods in molecular property prediction, molecule captioning, and text-based molecule generation tasks. Our code will be available on GitHub soon.
XTTS: a Massively Multilingual Zero-Shot Text-to-Speech Model
Most Zero-shot Multi-speaker TTS (ZS-TTS) systems support only a single language. Although models like YourTTS, VALL-E X, Mega-TTS 2, and Voicebox explored Multilingual ZS-TTS they are limited to just a few high/medium resource languages, limiting the applications of these models in most of the low/medium resource languages. In this paper, we aim to alleviate this issue by proposing and making publicly available the XTTS system. Our method builds upon the Tortoise model and adds several novel modifications to enable multilingual training, improve voice cloning, and enable faster training and inference. XTTS was trained in 16 languages and achieved state-of-the-art (SOTA) results in most of them.
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
Bird-Eye Transformers for Text Generation Models
Transformers have become an indispensable module for text generation models since their great success in machine translation. Previous works attribute the~success of transformers to the query-key-value dot-product attention, which provides a robust inductive bias by the fully connected token graphs. However, we found that self-attention has a severe limitation. When predicting the (i+1)-th token, self-attention only takes the i-th token as an information collector, and it tends to give a high attention weight to those tokens similar to itself. Therefore, most of the historical information that occurred before the i-th token is not taken into consideration. Based on this observation, in this paper, we propose a new architecture, called bird-eye transformer(BET), which goes one step further to improve the performance of transformers by reweighting self-attention to encourage it to focus more on important historical information. We have conducted experiments on multiple text generation tasks, including machine translation (2 datasets) and language models (3 datasets). These experimental~results show that our proposed model achieves a better performance than the baseline transformer architectures on~all~datasets. The code is released at: https://sites.google.com/view/bet-transformer/home.
Chain-of-Thought Tokens are Computer Program Variables
Chain-of-thoughts (CoT) requires large language models (LLMs) to generate intermediate steps before reaching the final answer, and has been proven effective to help LLMs solve complex reasoning tasks. However, the inner mechanism of CoT still remains largely unclear. In this paper, we empirically study the role of CoT tokens in LLMs on two compositional tasks: multi-digit multiplication and dynamic programming. While CoT is essential for solving these problems, we find that preserving only tokens that store intermediate results would achieve comparable performance. Furthermore, we observe that storing intermediate results in an alternative latent form will not affect model performance. We also randomly intervene some values in CoT, and notice that subsequent CoT tokens and the final answer would change correspondingly. These findings suggest that CoT tokens may function like variables in computer programs but with potential drawbacks like unintended shortcuts and computational complexity limits between tokens. The code and data are available at https://github.com/solitaryzero/CoTs_are_Variables.
Emu3: Next-Token Prediction is All You Need
While next-token prediction is considered a promising path towards artificial general intelligence, it has struggled to excel in multimodal tasks, which are still dominated by diffusion models (e.g., Stable Diffusion) and compositional approaches (e.g., CLIP combined with LLMs). In this paper, we introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token prediction. By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences. Emu3 outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship models such as SDXL and LLaVA-1.6, while eliminating the need for diffusion or compositional architectures. Emu3 is also capable of generating high-fidelity video via predicting the next token in a video sequence. We simplify complex multimodal model designs by converging on a singular focus: tokens, unlocking great potential for scaling both during training and inference. Our results demonstrate that next-token prediction is a promising path towards building general multimodal intelligence beyond language. We open-source key techniques and models to support further research in this direction.
Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a plug-and-play pruning-and-recovering framework, called Hourglass Tokenizer (HoT), for efficient transformer-based 3D human pose estimation from videos. Our HoT begins with pruning pose tokens of redundant frames and ends with recovering full-length tokens, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. To effectively achieve this, we propose a token pruning cluster (TPC) that dynamically selects a few representative tokens with high semantic diversity while eliminating the redundancy of video frames. In addition, we develop a token recovering attention (TRA) to restore the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Extensive experiments on two benchmark datasets (i.e., Human3.6M and MPI-INF-3DHP) demonstrate that our method can achieve both high efficiency and estimation accuracy compared to the original VPT models. For instance, applying to MotionBERT and MixSTE on Human3.6M, our HoT can save nearly 50% FLOPs without sacrificing accuracy and nearly 40% FLOPs with only 0.2% accuracy drop, respectively. Code and models are available at https://github.com/NationalGAILab/HoT.
Registering Source Tokens to Target Language Spaces in Multilingual Neural Machine Translation
The multilingual neural machine translation (MNMT) enables arbitrary translations across multiple languages by training a model with limited parameters using parallel data only. However, the performance of such MNMT models still lags behind that of large language models (LLMs), limiting their practicality. In this work, we address this limitation by introducing registering to achieve the new state-of-the-art of decoder-only MNMT models. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method outperforms related methods driven by optimizing multilingual representations. We further scale up and collect 9.3 billion sentence pairs across 24 languages from public datasets to pre-train two models, namely MITRE (multilingual translation with registers). One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre.
Context Cascade Compression: Exploring the Upper Limits of Text Compression
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression
Text2Token: Unsupervised Text Representation Learning with Token Target Prediction
Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.
Rethinking Thinking Tokens: Understanding Why They Underperform in Practice
Thinking Tokens (TT) have been proposed as an unsupervised method to facilitate reasoning in language models. However, despite their conceptual appeal, our findings show that TTs marginally improves performance and consistently underperforms compared to Chain-of-Thought (CoT) reasoning across multiple benchmarks. We hypothesize that this underperformance stems from the reliance on a single embedding for TTs, which results in inconsistent learning signals and introduces noisy gradients. This paper provides a comprehensive empirical analysis to validate this hypothesis and discusses the implications for future research on unsupervised reasoning in LLMs.
ENTP: Encoder-only Next Token Prediction
Next-token prediction models have predominantly relied on decoder-only Transformers with causal attention, driven by the common belief that causal attention is essential to prevent "cheating" by masking future tokens. We challenge this widely accepted notion and argue that this design choice is about efficiency rather than necessity. While decoder-only Transformers are still a good choice for practical reasons, they are not the only viable option. In this work, we introduce Encoder-only Next Token Prediction (ENTP). We explore the differences between ENTP and decoder-only Transformers in expressive power and complexity, highlighting potential advantages of ENTP. We introduce the Triplet-Counting task and show, both theoretically and experimentally, that while ENTP can perform this task easily, a decoder-only Transformer cannot. Finally, we empirically demonstrate ENTP's superior performance across various realistic tasks, such as length generalization and in-context learning.
3D representation in 512-Byte:Variational tokenizer is the key for autoregressive 3D generation
Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.
TouchTTS: An Embarrassingly Simple TTS Framework that Everyone Can Touch
It is well known that LLM-based systems are data-hungry. Recent LLM-based TTS works typically employ complex data processing pipelines to obtain high-quality training data. These sophisticated pipelines require excellent models at each stage (e.g., speech denoising, speech enhancement, speaker diarization, and punctuation models), which themselves demand high-quality training data and are rarely open-sourced. Even with state-of-the-art models, issues persist, such as incomplete background noise removal and misalignment between punctuation and actual speech pauses. Moreover, the stringent filtering strategies often retain only 10-30\% of the original data, significantly impeding data scaling efforts. In this work, we leverage a noise-robust audio tokenizer (S3Tokenizer) to design a simplified yet effective TTS data processing pipeline that maintains data quality while substantially reducing data acquisition costs, achieving a data retention rate of over 50\%. Beyond data scaling challenges, LLM-based TTS systems also incur higher deployment costs compared to conventional approaches. Current systems typically use LLMs solely for text-to-token generation, while requiring separate models (e.g., flow matching models) for token-to-waveform generation, which cannot be directly executed by LLM inference engines, further complicating deployment. To address these challenges, we eliminate redundant modules in both LLM and flow components, replacing the flow model backbone with an LLM architecture. Building upon this simplified flow backbone, we propose a unified architecture for both streaming and non-streaming inference, significantly reducing deployment costs. Finally, we explore the feasibility of unifying TTS and ASR tasks using the same data for training, thanks to the simplified pipeline and the S3Tokenizer that reduces the quality requirements for TTS training data.
MADLAD-400: A Multilingual And Document-Level Large Audited Dataset
We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.
Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
H2O-Danube3 Technical Report
We present H2O-Danube3, a series of small language models consisting of H2O-Danube3-4B, trained on 6T tokens and H2O-Danube3-500M, trained on 4T tokens. Our models are pre-trained on high quality Web data consisting of primarily English tokens in three stages with different data mixes before final supervised tuning for chat version. The models exhibit highly competitive metrics across a multitude of academic, chat, and fine-tuning benchmarks. Thanks to its compact architecture, H2O-Danube3 can be efficiently run on a modern smartphone, enabling local inference and rapid processing capabilities even on mobile devices. We make all models openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically.
Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning
Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
The pretraining data of today's strongest language models is opaque. In particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information -- byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first merge is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o's tokenizer is much more multilingual than its predecessors, training on 39% non-English data; Llama3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.
YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We enhance its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts. To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available with demos at https://github.com/mimbres/YourMT3.
Learning Compact Vision Tokens for Efficient Large Multimodal Models
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only 25% vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
Thinking Augmented Pre-training
This paper introduces a simple and scalable approach to improve the data efficiency of large language model (LLM) training by augmenting existing text data with thinking trajectories. The compute for pre-training LLMs has been growing at an unprecedented rate, while the availability of high-quality data remains limited. Consequently, maximizing the utility of available data constitutes a significant research challenge. A primary impediment is that certain high-quality tokens are difficult to learn given a fixed model capacity, as the underlying rationale for a single token can be exceptionally complex and deep. To address this issue, we propose Thinking augmented Pre-Training (TPT), a universal methodology that augments text with automatically generated thinking trajectories. Such augmentation effectively increases the volume of the training data and makes high-quality tokens more learnable through step-by-step reasoning and decomposition. We apply TPT across diverse training configurations up to 100B tokens, encompassing pre-training with both constrained and abundant data, as well as mid-training from strong open-source checkpoints. Experimental results indicate that our method substantially improves the performance of LLMs across various model sizes and families. Notably, TPT enhances the data efficiency of LLM pre-training by a factor of 3. For a 3B parameter model, it improves the post-training performance by over 10% on several challenging reasoning benchmarks.
Exploring speech style spaces with language models: Emotional TTS without emotion labels
Many frameworks for emotional text-to-speech (E-TTS) rely on human-annotated emotion labels that are often inaccurate and difficult to obtain. Learning emotional prosody implicitly presents a tough challenge due to the subjective nature of emotions. In this study, we propose a novel approach that leverages text awareness to acquire emotional styles without the need for explicit emotion labels or text prompts. We present TEMOTTS, a two-stage framework for E-TTS that is trained without emotion labels and is capable of inference without auxiliary inputs. Our proposed method performs knowledge transfer between the linguistic space learned by BERT and the emotional style space constructed by global style tokens. Our experimental results demonstrate the effectiveness of our proposed framework, showcasing improvements in emotional accuracy and naturalness. This is one of the first studies to leverage the emotional correlation between spoken content and expressive delivery for emotional TTS.
BudgetLongformer: Can we Cheaply Pretrain a SotA Legal Language Model From Scratch?
Pretrained transformer models have achieved state-of-the-art results in many tasks and benchmarks recently. Many state-of-the-art Language Models (LMs), however, do not scale well above the threshold of 512 input tokens. In specialized domains though (such as legal, scientific or biomedical), models often need to process very long text (sometimes well above 10000 tokens). Even though many efficient transformers have been proposed (such as Longformer, BigBird or FNet), so far, only very few such efficient models are available for specialized domains. Additionally, since the pretraining process is extremely costly in general - but even more so as the sequence length increases - it is often only in reach of large research labs. One way of making pretraining cheaper is the Replaced Token Detection (RTD) task, by providing more signal during training, since the loss can be computed over all tokens. In this work, we train Longformer models with the efficient RTD task on legal data to showcase that pretraining efficient LMs is possible using much less compute. We evaluate the trained models on challenging summarization tasks requiring the model to summarize long texts to show to what extent the models can achieve good performance on downstream tasks. We find that both the small and base models outperform their baselines on the in-domain BillSum and out-of-domain PubMed tasks in their respective parameter range. We publish our code and models for research purposes.
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
Data-to-text (D2T) generation is a crucial task in many natural language understanding (NLU) applications and forms the foundation of task-oriented dialog systems. In the context of conversational AI solutions that can work directly with local data on the user's device, architectures utilizing large pre-trained language models (PLMs) are impractical for on-device deployment due to a high memory footprint. To this end, we propose TrICy, a novel lightweight framework for an enhanced D2T task that generates text sequences based on the intent in context and may further be guided by user-provided triggers. We leverage an attention-copy mechanism to predict out-of-vocabulary (OOV) words accurately. Performance analyses on E2E NLG dataset (BLEU: 66.43%, ROUGE-L: 70.14%), WebNLG dataset (BLEU: Seen 64.08%, Unseen 52.35%), and our Custom dataset related to text messaging applications, showcase our architecture's effectiveness. Moreover, we show that by leveraging an optional trigger input, data-to-text generation quality increases significantly and achieves the new SOTA score of 69.29% BLEU for E2E NLG. Furthermore, our analyses show that TrICy achieves at least 24% and 3% improvement in BLEU and METEOR respectively over LLMs like GPT-3, ChatGPT, and Llama 2. We also demonstrate that in some scenarios, performance improvement due to triggers is observed even when they are absent in training.
TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR
In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System
Recently, large language model (LLM) based text-to-speech (TTS) systems have gradually become the mainstream in the industry due to their high naturalness and powerful zero-shot voice cloning capabilities.Here, we introduce the IndexTTS system, which is mainly based on the XTTS and Tortoise model. We add some novel improvements. Specifically, in Chinese scenarios, we adopt a hybrid modeling method that combines characters and pinyin, making the pronunciations of polyphonic characters and long-tail characters controllable. We also performed a comparative analysis of the Vector Quantization (VQ) with Finite-Scalar Quantization (FSQ) for codebook utilization of acoustic speech tokens. To further enhance the effect and stability of voice cloning, we introduce a conformer-based speech conditional encoder and replace the speechcode decoder with BigVGAN2. Compared with XTTS, it has achieved significant improvements in naturalness, content consistency, and zero-shot voice cloning. As for the popular TTS systems in the open-source, such as Fish-Speech, CosyVoice2, FireRedTTS and F5-TTS, IndexTTS has a relatively simple training process, more controllable usage, and faster inference speed. Moreover, its performance surpasses that of these systems. Our demos are available at https://index-tts.github.io.
JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose JEPA-T, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git
Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis
In this work, we propose "global style tokens" (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable "labels" they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
Soft Tokens, Hard Truths
The use of continuous instead of discrete tokens during the Chain-of-Thought (CoT) phase of reasoning LLMs has garnered attention recently, based on the intuition that a continuous mixture of discrete tokens could simulate a superposition of several reasoning paths simultaneously. Theoretical results have formally proven that continuous tokens have much greater expressivity and can solve specific problems more efficiently. However, practical use of continuous tokens has been limited by strong training difficulties: previous works either just use continuous tokens at inference time on a pre-trained discrete-token model, or must distill the continuous CoT from ground-truth discrete CoTs and face computational costs that limit the CoT to very few tokens. This is the first work introducing a scalable method to learn continuous CoTs via reinforcement learning (RL), without distilling from reference discrete CoTs. We use "soft" tokens: mixtures of tokens together with noise on the input embedding to provide RL exploration. Computational overhead is minimal, enabling us to learn continuous CoTs with hundreds of tokens. On math reasoning benchmarks with Llama and Qwen models up to 8B, training with continuous CoTs match discrete-token CoTs for pass@1 and surpass them for pass@32, showing greater CoT diversity. In systematic comparisons, the best-performing scenario is to train with continuous CoT tokens then use discrete tokens for inference, meaning the "soft" models can be deployed in a standard way. Finally, we show continuous CoT RL training better preserves the predictions of the base model on out-of-domain tasks, thus providing a softer touch to the base model.
R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction
Non-Fungible Tokens (NFTs) represent deeds of ownership, based on blockchain technologies and smart contracts, of unique crypto assets on digital art forms (e.g., artworks or collectibles). In the spotlight after skyrocketing in 2021, NFTs have attracted the attention of crypto enthusiasts and investors intent on placing promising investments in this profitable market. However, the NFT financial performance prediction has not been widely explored to date. In this work, we address the above problem based on the hypothesis that NFT images and their textual descriptions are essential proxies to predict the NFT selling prices. To this purpose, we propose MERLIN, a novel multimodal deep learning framework designed to train Transformer-based language and visual models, along with graph neural network models, on collections of NFTs' images and texts. A key aspect in MERLIN is its independence on financial features, as it exploits only the primary data a user interested in NFT trading would like to deal with, i.e., NFT images and textual descriptions. By learning dense representations of such data, a price-category classification task is performed by MERLIN models, which can also be tuned according to user preferences in the inference phase to mimic different risk-return investment profiles. Experimental evaluation on a publicly available dataset has shown that MERLIN models achieve significant performances according to several financial assessment criteria, fostering profitable investments, and also beating baseline machine-learning classifiers based on financial features.
MegaTTS 3: Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis
While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces MegaTTS 3, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to MegaTTS 3 to reduce the difficulty of alignment without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that MegaTTS 3 achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
Tutela: An Open-Source Tool for Assessing User-Privacy on Ethereum and Tornado Cash
A common misconception among blockchain users is that pseudonymity guarantees privacy. The reality is almost the opposite. Every transaction one makes is recorded on a public ledger and reveals information about one's identity. Mixers, such as Tornado Cash, were developed to preserve privacy through "mixing" transactions with those of others in an anonymity pool, making it harder to link deposits and withdrawals from the pool. Unfortunately, it is still possible to reveal information about those in the anonymity pool if users are not careful. We introduce Tutela, an application built on expert heuristics to report the true anonymity of an Ethereum address. In particular, Tutela has three functionalities: first, it clusters together Ethereum addresses based on interaction history such that for an Ethereum address, we can identify other addresses likely owned by the same entity; second, it shows Ethereum users their potentially compromised transactions; third, Tutela computes the true size of the anonymity pool of each Tornado Cash mixer by excluding potentially compromised transactions. A public implementation of Tutela can be found at https://github.com/TutelaLabs/tutela-app. To use Tutela, visit https://www.tutela.xyz.
Assessing the Importance of Frequency versus Compositionality for Subword-based Tokenization in NMT
Subword tokenization is the de facto standard for tokenization in neural language models and machine translation systems. Three advantages are frequently cited in favor of subwords: shorter encoding of frequent tokens, compositionality of subwords, and ability to deal with unknown words. As their relative importance is not entirely clear yet, we propose a tokenization approach that enables us to separate frequency (the first advantage) from compositionality. The approach uses Huffman coding to tokenize words, by order of frequency, using a fixed amount of symbols. Experiments with CS-DE, EN-FR and EN-DE NMT show that frequency alone accounts for 90%-95% of the scores reached by BPE, hence compositionality has less importance than previously thought.
Interleaved Speech-Text Language Models are Simple Streaming Text to Speech Synthesizers
This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs.
Explaining and Mitigating Crosslingual Tokenizer Inequities
The number of tokens it takes to encode parallel text in different languages is known to vary. These disparities are called token premiums. Having high token premiums leads to less throughput during training and increases costs at inference. In this paper, we show that even after controlling for dataset size, vocabulary size, and data content, monolingual tokenizers exhibit a wide range of token premiums across languages. To understand the cross-linguistic differences that cause these token premiums, we train a suite of approximately 7,000 comparable monolingual tokenizers for 97 languages, manipulating tokenization algorithm, vocabulary size, and dataset size. We measure token premiums and test for a relationship between factors such as data similarity (between tokenizer training and evaluation), vocabulary size, and pre-tokenization. We also investigate the role of language-specific features such as writing system and word length. We find that similarity between training and test data does not impact token premiums, but vocabulary size and pre-tokenization do. While simply increasing vocabulary size does not lead to reduced token premium effects, we can determine an ``optimal'' vocabulary size for each language to achieve significantly reduced token premium effects. We also train superword tokenizers which allow merges over whitespaces, and we find that they both reduce token premium effects and improve compression overall. Thus, intervening on the vocabulary size or the pre-tokenizer significantly reduces crosslingual token premium effects.
Set Block Decoding is a Language Model Inference Accelerator
Autoregressive next token prediction language models offer powerful capabilities but face significant challenges in practical deployment due to the high computational and memory costs of inference, particularly during the decoding stage. We introduce Set Block Decoding (SBD), a simple and flexible paradigm that accelerates generation by integrating standard next token prediction (NTP) and masked token prediction (MATP) within a single architecture. SBD allows the model to sample multiple, not necessarily consecutive, future tokens in parallel, a key distinction from previous acceleration methods. This flexibility allows the use of advanced solvers from the discrete diffusion literature, offering significant speedups without sacrificing accuracy. SBD requires no architectural changes or extra training hyperparameters, maintains compatibility with exact KV-caching, and can be implemented by fine-tuning existing next token prediction models. By fine-tuning Llama-3.1 8B and Qwen-3 8B, we demonstrate that SBD enables a 3-5x reduction in the number of forward passes required for generation while achieving same performance as equivalent NTP training.
FiNCAT: Financial Numeral Claim Analysis Tool
While making investment decisions by reading financial documents, investors need to differentiate between in-claim and outof-claim numerals. In this paper, we present a tool which does it automatically. It extracts context embeddings of the numerals using one of the transformer based pre-trained language model called BERT. After this, it uses a Logistic Regression based model to detect whether the numerals is in-claim or out-of-claim. We use FinNum-3 (English) dataset to train our model. After conducting rigorous experiments we achieve a Macro F1 score of 0.8223 on the validation set. We have open-sourced this tool and it can be accessed from https://github.com/sohomghosh/FiNCAT_Financial_Numeral_Claim_Analysis_Tool
StoryTTS: A Highly Expressive Text-to-Speech Dataset with Rich Textual Expressiveness Annotations
While acoustic expressiveness has long been studied in expressive text-to-speech (ETTS), the inherent expressiveness in text lacks sufficient attention, especially for ETTS of artistic works. In this paper, we introduce StoryTTS, a highly ETTS dataset that contains rich expressiveness both in acoustic and textual perspective, from the recording of a Mandarin storytelling show. A systematic and comprehensive labeling framework is proposed for textual expressiveness. We analyze and define speech-related textual expressiveness in StoryTTS to include five distinct dimensions through linguistics, rhetoric, etc. Then we employ large language models and prompt them with a few manual annotation examples for batch annotation. The resulting corpus contains 61 hours of consecutive and highly prosodic speech equipped with accurate text transcriptions and rich textual expressiveness annotations. Therefore, StoryTTS can aid future ETTS research to fully mine the abundant intrinsic textual and acoustic features. Experiments are conducted to validate that TTS models can generate speech with improved expressiveness when integrating with the annotated textual labels in StoryTTS.
PairReranker: Pairwise Reranking for Natural Language Generation
Pre-trained language models have been successful in natural language generation (NLG) tasks. While various decoding methods have been employed, they often produce suboptimal results. We first present an empirical analysis of three NLG tasks: summarization, machine translation, and constrained text generation. We found that selecting the best output from the results of multiple decoding methods can significantly improve performance. To further improve reranking for NLG tasks, we proposed a novel method, PairReranker, which uses a single encoder and a pairwise loss function to jointly encode a source input and a pair of candidates and compare them. Experiments on three NLG tasks demonstrated the effectiveness and flexibility of PairReranker, showing strong results, compared with previous baselines. In addition, our PairReranker can generalize to significantly improve GPT-3 (text-davinci-003) results (e.g., 24.55\% on CommonGen and 11.35\% on WMT18 zh-en), even though our rerankers are not trained with any GPT-3 candidates.
TR-PTS: Task-Relevant Parameter and Token Selection for Efficient Tuning
Large pre-trained models achieve remarkable performance in vision tasks but are impractical for fine-tuning due to high computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods mitigate this issue by updating only a subset of parameters; however, most existing approaches are task-agnostic, failing to fully exploit task-specific adaptations, which leads to suboptimal efficiency and performance. To address this limitation, we propose Task-Relevant Parameter and Token Selection (TR-PTS), a task-driven framework that enhances both computational efficiency and accuracy. Specifically, we introduce Task-Relevant Parameter Selection, which utilizes the Fisher Information Matrix (FIM) to identify and fine-tune only the most informative parameters in a layer-wise manner, while keeping the remaining parameters frozen. Simultaneously, Task-Relevant Token Selection dynamically preserves the most informative tokens and merges redundant ones, reducing computational overhead. By jointly optimizing parameters and tokens, TR-PTS enables the model to concentrate on task-discriminative information. We evaluate TR-PTS on benchmark, including FGVC and VTAB-1k, where it achieves state-of-the-art performance, surpassing full fine-tuning by 3.40% and 10.35%, respectively. The code are available at https://github.com/synbol/TR-PTS.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code
Recent works have widely adopted large language model pretraining for source code, suggested source code-specific pretraining objectives and investigated the applicability of various Transformer-based language model architectures for source code. This work investigates another important aspect of such models, namely the effect of different subtokenization options, and aims at identifying most effective and length-efficient subtokenizations, taking into account code specifics. We propose subtokenziation that reduces average length by 17% without downstream performance drop, and show that a carefully chosen subtokenization may improve quality by 0.5-2%, possibly with some length increase.
CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages
In this paper, we present CML-TTS, a recursive acronym for CML-Multi-Lingual-TTS, a new Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is based on Multilingual LibriSpeech (MLS) and adapted for training TTS models, consisting of audiobooks in seven languages: Dutch, French, German, Italian, Portuguese, Polish, and Spanish. Additionally, we provide the YourTTS model, a multi-lingual TTS model, trained using 3,176.13 hours from CML-TTS and also with 245.07 hours from LibriTTS, in English. Our purpose in creating this dataset is to open up new research possibilities in the TTS area for multi-lingual models. The dataset is publicly available under the CC-BY 4.0 license1.
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.
Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration
Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by times1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.
TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
Zero-Shot Tokenizer Transfer
Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.
Is Less More? Exploring Token Condensation as Training-free Test-time Adaptation
Contrastive Language-Image Pretraining (CLIP) excels at learning generalizable image representations but often falls short in zero-shot inference on certain downstream datasets. Test-time adaptation (TTA) mitigates this issue by adjusting components like normalization layers or context prompts, yet it typically requires large batch sizes and extensive augmentations, leading to high computational costs. This raises a key question: Can VLMs' performance drop in specific test cases be mitigated through efficient, training-free approaches? To explore the solution, we investigate token condensation (TC) techniques, originally designed to enhance vision transformer efficiency by refining token usage during inference. We observe that informative tokens improve visual-text alignment in VLMs like CLIP on unseen datasets. However, existing TC methods often fail to maintain in-distribution performance when reducing tokens, prompting us to ask: How can we transform TC into an effective ``free-lunch'' adaptation strategy for VLMs? To address this, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method that takes a step beyond standard TC. Rather than passively discarding tokens, TCA condenses token representation by introducing reservoir-based domain anchor tokens for information-preserving token reduction and logits correction. TCA achieves up to a 21.4% performance improvement over the strongest baseline on cross-dataset benchmark and the CIFAR-100-Corrupted dataset while reducing GFLOPs by 12.2% to 48.9%, with minimal hyperparameter dependency on both CLIP and SigLIP series.
