- Complexity of Block Coordinate Descent with Proximal Regularization and Applications to Wasserstein CP-dictionary Learning We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally. 2 authors · Jun 4, 2023
1 Mamba-FCS: Joint Spatio- Frequency Feature Fusion, Change-Guided Attention, and SeK Loss for Enhanced Semantic Change Detection in Remote Sensing Semantic Change Detection (SCD) from remote sensing imagery requires models balancing extensive spatial context, computational efficiency, and sensitivity to class-imbalanced land-cover transitions. While Convolutional Neural Networks excel at local feature extraction but lack global context, Transformers provide global modeling at high computational costs. Recent Mamba architectures based on state-space models offer compelling solutions through linear complexity and efficient long-range modeling. In this study, we introduce Mamba-FCS, a SCD framework built upon Visual State Space Model backbone incorporating, a Joint Spatio-Frequency Fusion block incorporating log-amplitude frequency domain features to enhance edge clarity and suppress illumination artifacts, a Change-Guided Attention (CGA) module that explicitly links the naturally intertwined BCD and SCD tasks, and a Separated Kappa (SeK) loss tailored for class-imbalanced performance optimization. Extensive evaluation on SECOND and Landsat-SCD datasets shows that Mamba-FCS achieves state-of-the-art metrics, 88.62% Overall Accuracy, 65.78% F_scd, and 25.50% SeK on SECOND, 96.25% Overall Accuracy, 89.27% F_scd, and 60.26% SeK on Landsat-SCD. Ablation analyses confirm distinct contributions of each novel component, with qualitative assessments highlighting significant improvements in SCD. Our results underline the substantial potential of Mamba architectures, enhanced by proposed techniques, setting a new benchmark for effective and scalable semantic change detection in remote sensing applications. The complete source code, configuration files, and pre-trained models will be publicly available upon publication. 7 authors · Aug 11, 2025
- Autonomous and cooperative design of the monitor positions for a team of UAVs to maximize the quantity and quality of detected objects This paper tackles the problem of positioning a swarm of UAVs inside a completely unknown terrain, having as objective to maximize the overall situational awareness. The situational awareness is expressed by the number and quality of unique objects of interest, inside the UAVs' fields of view. YOLOv3 and a system to identify duplicate objects of interest were employed to assign a single score to each UAVs' configuration. Then, a novel navigation algorithm, capable of optimizing the previously defined score, without taking into consideration the dynamics of either UAVs or environment, is proposed. A cornerstone of the proposed approach is that it shares the same convergence characteristics as the block coordinate descent (BCD) family of approaches. The effectiveness and performance of the proposed navigation scheme were evaluated utilizing a series of experiments inside the AirSim simulator. The experimental evaluation indicates that the proposed navigation algorithm was able to consistently navigate the swarm of UAVs to "strategic" monitoring positions and also adapt to the different number of swarm sizes. Source code is available at https://github.com/dimikout3/ConvCAOAirSim. 3 authors · Jul 2, 2020
1 Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization. 3 authors · Dec 23, 2017