1 StreamSpeech: Simultaneous Speech-to-Speech Translation with Multi-task Learning Simultaneous speech-to-speech translation (Simul-S2ST, a.k.a streaming speech translation) outputs target speech while receiving streaming speech inputs, which is critical for real-time communication. Beyond accomplishing translation between speech, Simul-S2ST requires a policy to control the model to generate corresponding target speech at the opportune moment within speech inputs, thereby posing a double challenge of translation and policy. In this paper, we propose StreamSpeech, a direct Simul-S2ST model that jointly learns translation and simultaneous policy in a unified framework of multi-task learning. Adhering to a multi-task learning approach, StreamSpeech can perform offline and simultaneous speech recognition, speech translation and speech synthesis via an "All-in-One" seamless model. Experiments on CVSS benchmark demonstrate that StreamSpeech achieves state-of-the-art performance in both offline S2ST and Simul-S2ST tasks. Besides, StreamSpeech is able to present high-quality intermediate results (i.e., ASR or translation results) during simultaneous translation process, offering a more comprehensive real-time communication experience. 6 authors · Jun 5, 2024
- S2ST-Omni: An Efficient Multilingual Speech-to-Speech Translation Framework via Seamless Speech-Text Alignment and Progressive Fine-tuning Despite recent advances in multilingual speech-to-speech translation (S2ST), several critical challenges persist: 1) achieving high-quality translation remains a major hurdle, and 2) most existing methods heavily rely on large-scale parallel speech corpora, which are costly and difficult to obtain. To address these issues, we propose S2ST-Omni, an efficient and scalable framework for multilingual S2ST. Specifically, we decompose the S2ST task into speech-to-text translation (S2TT) and text-to-speech synthesis (TTS). For S2TT, we propose an effective speech language model that integrates the pretrained Whisper encoder for robust audio understanding and Qwen 3.0 for advanced text comprehension. A lightweight speech adapter is employed to bridge the modality gap between speech and text representations. To further facilitate the multimodal knowledge learning, a two-stage fine-tuning strategy is introduced. In the TTS stage, we adopt a streaming autoregressive generation approach to produce natural and fluent target speech. Experiments on the CVSS benchmark show that S2ST-Omni consistently outperforms existing state-of-the-art S2ST systems in translation quality, highlighting its effectiveness and superiority. 8 authors · Jun 11, 2025
- DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation Direct speech-to-speech translation (S2ST) translates speech from one language into another using a single model. However, due to the presence of linguistic and acoustic diversity, the target speech follows a complex multimodal distribution, posing challenges to achieving both high-quality translations and fast decoding speeds for S2ST models. In this paper, we propose DASpeech, a non-autoregressive direct S2ST model which realizes both fast and high-quality S2ST. To better capture the complex distribution of the target speech, DASpeech adopts the two-pass architecture to decompose the generation process into two steps, where a linguistic decoder first generates the target text, and an acoustic decoder then generates the target speech based on the hidden states of the linguistic decoder. Specifically, we use the decoder of DA-Transformer as the linguistic decoder, and use FastSpeech 2 as the acoustic decoder. DA-Transformer models translations with a directed acyclic graph (DAG). To consider all potential paths in the DAG during training, we calculate the expected hidden states for each target token via dynamic programming, and feed them into the acoustic decoder to predict the target mel-spectrogram. During inference, we select the most probable path and take hidden states on that path as input to the acoustic decoder. Experiments on the CVSS Fr-En benchmark demonstrate that DASpeech can achieve comparable or even better performance than the state-of-the-art S2ST model Translatotron 2, while preserving up to 18.53x speedup compared to the autoregressive baseline. Compared with the previous non-autoregressive S2ST model, DASpeech does not rely on knowledge distillation and iterative decoding, achieving significant improvements in both translation quality and decoding speed. Furthermore, DASpeech shows the ability to preserve the speaker's voice of the source speech during translation. 3 authors · Oct 11, 2023