new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

PSAvatar: A Point-based Morphable Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting

Despite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyles, while neural implicit models suffer from deformation inflexibility and rendering inefficiency. Although 3D Gaussian has been demonstrated to possess promising capability for geometry representation and radiance field reconstruction, applying 3D Gaussian in head avatar creation remains a major challenge since it is difficult for 3D Gaussian to model the head shape variations caused by changing poses and expressions. In this paper, we introduce PSAvatar, a novel framework for animatable head avatar creation that utilizes discrete geometric primitive to create a parametric morphable shape model and employs 3D Gaussian for fine detail representation and high fidelity rendering. The parametric morphable shape model is a Point-based Morphable Shape Model (PMSM) which uses points instead of meshes for 3D representation to achieve enhanced representation flexibility. The PMSM first converts the FLAME mesh to points by sampling on the surfaces as well as off the meshes to enable the reconstruction of not only surface-like structures but also complex geometries such as eyeglasses and hairstyles. By aligning these points with the head shape in an analysis-by-synthesis manner, the PMSM makes it possible to utilize 3D Gaussian for fine detail representation and appearance modeling, thus enabling the creation of high-fidelity avatars. We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time (ge 25 fps at a resolution of 512 times 512 ).

  • 5 authors
·
Jan 23, 2024

Neural Metamorphosis

This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks. Contrary to crafting separate models for different architectures or sizes, NeuMeta directly learns the continuous weight manifold of neural networks. Once trained, we can sample weights for any-sized network directly from the manifold, even for previously unseen configurations, without retraining. To achieve this ambitious goal, NeuMeta trains neural implicit functions as hypernetworks. They accept coordinates within the model space as input, and generate corresponding weight values on the manifold. In other words, the implicit function is learned in a way, that the predicted weights is well-performed across various models sizes. In training those models, we notice that, the final performance closely relates on smoothness of the learned manifold. In pursuit of enhancing this smoothness, we employ two strategies. First, we permute weight matrices to achieve intra-model smoothness, by solving the Shortest Hamiltonian Path problem. Besides, we add a noise on the input coordinates when training the implicit function, ensuring models with various sizes shows consistent outputs. As such, NeuMeta shows promising results in synthesizing parameters for various network configurations. Our extensive tests in image classification, semantic segmentation, and image generation reveal that NeuMeta sustains full-size performance even at a 75% compression rate.

  • 2 authors
·
Oct 10, 2024 3

Metatensor and metatomic: foundational libraries for interoperable atomistic machine learning

Incorporation of machine learning (ML) techniques into atomic-scale modeling has proven to be an extremely effective strategy to improve the accuracy and reduce the computational cost of simulations. It also entails conceptual and practical challenges, as it involves combining very different mathematical foundations, as well as software ecosystems that are very well developed in their own merit, but do not share many commonalities. To address these issues and facilitate the adoption of ML in atomistic simulations, we introduce two dedicated software libraries. The first one, metatensor, provides multi-platform and multi-language storage and manipulation of arrays with many potentially sparse indices, designed from the ground up for atomistic ML applications. By combining the actual values with metadata that describes their nature and that facilitates the handling of geometric information and gradients with respect to the atomic positions, metatensor provides a common framework to enable data sharing between ML software -- typically written in Python -- and established atomistic modeling tools -- typically written in Fortran, C or C++. The second library, metatomic, provides an interface to store an atomistic ML model and metadata about this model in a portable way, facilitating the implementation, training and distribution of models, and their use across different simulation packages. We showcase a growing ecosystem of tools, from low-level libraries, training utilities, to interfaces with existing software packages that demonstrate the effectiveness of metatensor and metatomic in bridging the gap between traditional simulation software and modern ML frameworks.

  • 14 authors
·
Aug 21

Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities

The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.

  • 3 authors
·
Sep 5, 2024

DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance

Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.

  • 10 authors
·
Apr 1, 2023

Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold

Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.

  • 8 authors
·
Aug 26, 2024 2

SCULPTOR: Skeleton-Consistent Face Creation Using a Learned Parametric Generator

Recent years have seen growing interest in 3D human faces modelling due to its wide applications in digital human, character generation and animation. Existing approaches overwhelmingly emphasized on modeling the exterior shapes, textures and skin properties of faces, ignoring the inherent correlation between inner skeletal structures and appearance. In this paper, we present SCULPTOR, 3D face creations with Skeleton Consistency Using a Learned Parametric facial generaTOR, aiming to facilitate easy creation of both anatomically correct and visually convincing face models via a hybrid parametric-physical representation. At the core of SCULPTOR is LUCY, the first large-scale shape-skeleton face dataset in collaboration with plastic surgeons. Named after the fossils of one of the oldest known human ancestors, our LUCY dataset contains high-quality Computed Tomography (CT) scans of the complete human head before and after orthognathic surgeries, critical for evaluating surgery results. LUCY consists of 144 scans of 72 subjects (31 male and 41 female) where each subject has two CT scans taken pre- and post-orthognathic operations. Based on our LUCY dataset, we learn a novel skeleton consistent parametric facial generator, SCULPTOR, which can create the unique and nuanced facial features that help define a character and at the same time maintain physiological soundness. Our SCULPTOR jointly models the skull, face geometry and face appearance under a unified data-driven framework, by separating the depiction of a 3D face into shape blend shape, pose blend shape and facial expression blend shape. SCULPTOR preserves both anatomic correctness and visual realism in facial generation tasks compared with existing methods. Finally, we showcase the robustness and effectiveness of SCULPTOR in various fancy applications unseen before.

  • 11 authors
·
Sep 14, 2022

Anatomy of a Machine Learning Ecosystem: 2 Million Models on Hugging Face

Many have observed that the development and deployment of generative machine learning (ML) and artificial intelligence (AI) models follow a distinctive pattern in which pre-trained models are adapted and fine-tuned for specific downstream tasks. However, there is limited empirical work that examines the structure of these interactions. This paper analyzes 1.86 million models on Hugging Face, a leading peer production platform for model development. Our study of model family trees -- networks that connect fine-tuned models to their base or parent -- reveals sprawling fine-tuning lineages that vary widely in size and structure. Using an evolutionary biology lens to study ML models, we use model metadata and model cards to measure the genetic similarity and mutation of traits over model families. We find that models tend to exhibit a family resemblance, meaning their genetic markers and traits exhibit more overlap when they belong to the same model family. However, these similarities depart in certain ways from standard models of asexual reproduction, because mutations are fast and directed, such that two `sibling' models tend to exhibit more similarity than parent/child pairs. Further analysis of the directional drifts of these mutations reveals qualitative insights about the open machine learning ecosystem: Licenses counter-intuitively drift from restrictive, commercial licenses towards permissive or copyleft licenses, often in violation of upstream license's terms; models evolve from multi-lingual compatibility towards english-only compatibility; and model cards reduce in length and standardize by turning, more often, to templates and automatically generated text. Overall, this work takes a step toward an empirically grounded understanding of model fine-tuning and suggests that ecological models and methods can yield novel scientific insights.

  • 3 authors
·
Aug 9 4

StyleMorpheus: A Style-Based 3D-Aware Morphable Face Model

For 3D face modeling, the recently developed 3D-aware neural rendering methods are able to render photorealistic face images with arbitrary viewing directions. The training of the parametric controllable 3D-aware face models, however, still relies on a large-scale dataset that is lab-collected. To address this issue, this paper introduces "StyleMorpheus", the first style-based neural 3D Morphable Face Model (3DMM) that is trained on in-the-wild images. It inherits 3DMM's disentangled controllability (over face identity, expression, and appearance) but without the need for accurately reconstructed explicit 3D shapes. StyleMorpheus employs an auto-encoder structure. The encoder aims at learning a representative disentangled parametric code space and the decoder improves the disentanglement using shape and appearance-related style codes in the different sub-modules of the network. Furthermore, we fine-tune the decoder through style-based generative adversarial learning to achieve photorealistic 3D rendering quality. The proposed style-based design enables StyleMorpheus to achieve state-of-the-art 3D-aware face reconstruction results, while also allowing disentangled control of the reconstructed face. Our model achieves real-time rendering speed, allowing its use in virtual reality applications. We also demonstrate the capability of the proposed style-based design in face editing applications such as style mixing and color editing. Project homepage: https://github.com/ubc-3d-vision-lab/StyleMorpheus.

  • 5 authors
·
Mar 14

Towards Metamerism via Foveated Style Transfer

The problem of visual metamerism is defined as finding a family of perceptually indistinguishable, yet physically different images. In this paper, we propose our NeuroFovea metamer model, a foveated generative model that is based on a mixture of peripheral representations and style transfer forward-pass algorithms. Our gradient-descent free model is parametrized by a foveated VGG19 encoder-decoder which allows us to encode images in high dimensional space and interpolate between the content and texture information with adaptive instance normalization anywhere in the visual field. Our contributions include: 1) A framework for computing metamers that resembles a noisy communication system via a foveated feed-forward encoder-decoder network -- We observe that metamerism arises as a byproduct of noisy perturbations that partially lie in the perceptual null space; 2) A perceptual optimization scheme as a solution to the hyperparametric nature of our metamer model that requires tuning of the image-texture tradeoff coefficients everywhere in the visual field which are a consequence of internal noise; 3) An ABX psychophysical evaluation of our metamers where we also find that the rate of growth of the receptive fields in our model match V1 for reference metamers and V2 between synthesized samples. Our model also renders metamers at roughly a second, presenting a times1000 speed-up compared to the previous work, which allows for tractable data-driven metamer experiments.

  • 3 authors
·
May 29, 2017

All that structure matches does not glitter

Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction taskx2014generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains approx40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms N, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.

  • 10 authors
·
Sep 15

MagicArticulate: Make Your 3D Models Articulation-Ready

With the explosive growth of 3D content creation, there is an increasing demand for automatically converting static 3D models into articulation-ready versions that support realistic animation. Traditional approaches rely heavily on manual annotation, which is both time-consuming and labor-intensive. Moreover, the lack of large-scale benchmarks has hindered the development of learning-based solutions. In this work, we present MagicArticulate, an effective framework that automatically transforms static 3D models into articulation-ready assets. Our key contributions are threefold. First, we introduce Articulation-XL, a large-scale benchmark containing over 33k 3D models with high-quality articulation annotations, carefully curated from Objaverse-XL. Second, we propose a novel skeleton generation method that formulates the task as a sequence modeling problem, leveraging an auto-regressive transformer to naturally handle varying numbers of bones or joints within skeletons and their inherent dependencies across different 3D models. Third, we predict skinning weights using a functional diffusion process that incorporates volumetric geodesic distance priors between vertices and joints. Extensive experiments demonstrate that MagicArticulate significantly outperforms existing methods across diverse object categories, achieving high-quality articulation that enables realistic animation. Project page: https://chaoyuesong.github.io/MagicArticulate.

  • 11 authors
·
Feb 17 2

Towards Foundation Model for Chemical Reactor Modeling: Meta-Learning with Physics-Informed Adaptation

Developing accurate models for chemical reactors is often challenging due to the complexity of reaction kinetics and process dynamics. Traditional approaches require retraining models for each new system, limiting generalizability and efficiency. In this work, we take a step toward foundation models for chemical reactor modeling by introducing a neural network framework that generalizes across diverse reactor types and rapidly adapts to new chemical processes. Our approach leverages meta-learning to pretrain the model on a broad set of reactor dynamics, enabling efficient adaptation to unseen reactions with minimal data. To further enhance generalizability, we incorporate physics-informed fine-tuning, ensuring physically consistent adaptation to new reactor conditions. Our framework is evaluated across three integer-order fundamental reactor types - continuous stirred tank reactors, batch reactors, and plug flow reactors - demonstrating superior few-shot adaptation compared to conventional data-driven, physics-informed, and transfer learning approaches. By combining meta-learning with physics-informed adaptation, this work lays the foundation for a generalizable modeling framework, advancing the development of foundation models for chemical engineering applications. Source code is available at https://github.com/killingbear999/chemical-reactor-foundation-model.

  • 2 authors
·
May 19, 2024

MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators

Recent advances in Text-to-Video generation (T2V) have achieved remarkable success in synthesizing high-quality general videos from textual descriptions. A largely overlooked problem in T2V is that existing models have not adequately encoded physical knowledge of the real world, thus generated videos tend to have limited motion and poor variations. In this paper, we propose MagicTime, a metamorphic time-lapse video generation model, which learns real-world physics knowledge from time-lapse videos and implements metamorphic generation. First, we design a MagicAdapter scheme to decouple spatial and temporal training, encode more physical knowledge from metamorphic videos, and transform pre-trained T2V models to generate metamorphic videos. Second, we introduce a Dynamic Frames Extraction strategy to adapt to metamorphic time-lapse videos, which have a wider variation range and cover dramatic object metamorphic processes, thus embodying more physical knowledge than general videos. Finally, we introduce a Magic Text-Encoder to improve the understanding of metamorphic video prompts. Furthermore, we create a time-lapse video-text dataset called ChronoMagic, specifically curated to unlock the metamorphic video generation ability. Extensive experiments demonstrate the superiority and effectiveness of MagicTime for generating high-quality and dynamic metamorphic videos, suggesting time-lapse video generation is a promising path toward building metamorphic simulators of the physical world.

  • 9 authors
·
Apr 7, 2024 2

Deep Model Assembling

Large deep learning models have achieved remarkable success in many scenarios. However, training large models is usually challenging, e.g., due to the high computational cost, the unstable and painfully slow optimization procedure, and the vulnerability to overfitting. To alleviate these problems, this work studies a divide-and-conquer strategy, i.e., dividing a large model into smaller modules, training them independently, and reassembling the trained modules to obtain the target model. This approach is promising since it avoids directly training large models from scratch. Nevertheless, implementing this idea is non-trivial, as it is difficult to ensure the compatibility of the independently trained modules. In this paper, we present an elegant solution to address this issue, i.e., we introduce a global, shared meta model to implicitly link all the modules together. This enables us to train highly compatible modules that collaborate effectively when they are assembled together. We further propose a module incubation mechanism that enables the meta model to be designed as an extremely shallow network. As a result, the additional overhead introduced by the meta model is minimalized. Though conceptually simple, our method significantly outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% compared to the E2E baseline on ImageNet-1K, while saving the training cost by 43% in the meantime. Code is available at https://github.com/LeapLabTHU/Model-Assembling.

  • 6 authors
·
Dec 8, 2022

Text-Guided Generation and Editing of Compositional 3D Avatars

Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.

  • 6 authors
·
Sep 13, 2023 1

SketchMetaFace: A Learning-based Sketching Interface for High-fidelity 3D Character Face Modeling

Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at https://zhongjinluo.github.io/SketchMetaFace/.

  • 6 authors
·
Jul 3, 2023 2

MagiCapture: High-Resolution Multi-Concept Portrait Customization

Large-scale text-to-image models including Stable Diffusion are capable of generating high-fidelity photorealistic portrait images. There is an active research area dedicated to personalizing these models, aiming to synthesize specific subjects or styles using provided sets of reference images. However, despite the plausible results from these personalization methods, they tend to produce images that often fall short of realism and are not yet on a commercially viable level. This is particularly noticeable in portrait image generation, where any unnatural artifact in human faces is easily discernible due to our inherent human bias. To address this, we introduce MagiCapture, a personalization method for integrating subject and style concepts to generate high-resolution portrait images using just a few subject and style references. For instance, given a handful of random selfies, our fine-tuned model can generate high-quality portrait images in specific styles, such as passport or profile photos. The main challenge with this task is the absence of ground truth for the composed concepts, leading to a reduction in the quality of the final output and an identity shift of the source subject. To address these issues, we present a novel Attention Refocusing loss coupled with auxiliary priors, both of which facilitate robust learning within this weakly supervised learning setting. Our pipeline also includes additional post-processing steps to ensure the creation of highly realistic outputs. MagiCapture outperforms other baselines in both quantitative and qualitative evaluations and can also be generalized to other non-human objects.

  • 3 authors
·
Sep 13, 2023 3

NestedMorph: Enhancing Deformable Medical Image Registration with Nested Attention Mechanisms

Deformable image registration is crucial for aligning medical images in a non-linear fashion across different modalities, allowing for precise spatial correspondence between varying anatomical structures. This paper presents NestedMorph, a novel network utilizing a Nested Attention Fusion approach to improve intra-subject deformable registration between T1-weighted (T1w) MRI and diffusion MRI (dMRI) data. NestedMorph integrates high-resolution spatial details from an encoder with semantic information from a decoder using a multi-scale framework, enhancing both local and global feature extraction. Our model notably outperforms existing methods, including CNN-based approaches like VoxelMorph, MIDIR, and CycleMorph, as well as Transformer-based models such as TransMorph and ViT-V-Net, and traditional techniques like NiftyReg and SyN. Evaluations on the HCP dataset demonstrate that NestedMorph achieves superior performance across key metrics, including SSIM, HD95, and SDlogJ, with the highest SSIM of 0.89, and the lowest HD95 of 2.5 and SDlogJ of 0.22. These results highlight NestedMorph's ability to capture both local and global image features effectively, leading to superior registration performance. The promising outcomes of this study underscore NestedMorph's potential to significantly advance deformable medical image registration, providing a robust framework for future research and clinical applications. The source code and our implementation are available at: https://bit.ly/3zdVqcg

  • 3 authors
·
Oct 3, 2024

MetaDreamer: Efficient Text-to-3D Creation With Disentangling Geometry and Texture

Generative models for 3D object synthesis have seen significant advancements with the incorporation of prior knowledge distilled from 2D diffusion models. Nevertheless, challenges persist in the form of multi-view geometric inconsistencies and slow generation speeds within the existing 3D synthesis frameworks. This can be attributed to two factors: firstly, the deficiency of abundant geometric a priori knowledge in optimization, and secondly, the entanglement issue between geometry and texture in conventional 3D generation methods.In response, we introduce MetaDreammer, a two-stage optimization approach that leverages rich 2D and 3D prior knowledge. In the first stage, our emphasis is on optimizing the geometric representation to ensure multi-view consistency and accuracy of 3D objects. In the second stage, we concentrate on fine-tuning the geometry and optimizing the texture, thereby achieving a more refined 3D object. Through leveraging 2D and 3D prior knowledge in two stages, respectively, we effectively mitigate the interdependence between geometry and texture. MetaDreamer establishes clear optimization objectives for each stage, resulting in significant time savings in the 3D generation process. Ultimately, MetaDreamer can generate high-quality 3D objects based on textual prompts within 20 minutes, and to the best of our knowledge, it is the most efficient text-to-3D generation method. Furthermore, we introduce image control into the process, enhancing the controllability of 3D generation. Extensive empirical evidence confirms that our method is not only highly efficient but also achieves a quality level that is at the forefront of current state-of-the-art 3D generation techniques.

  • 5 authors
·
Nov 16, 2023 1

MatterGen: a generative model for inorganic materials design

The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.

  • 21 authors
·
Dec 6, 2023

Single-Shot Implicit Morphable Faces with Consistent Texture Parameterization

There is a growing demand for the accessible creation of high-quality 3D avatars that are animatable and customizable. Although 3D morphable models provide intuitive control for editing and animation, and robustness for single-view face reconstruction, they cannot easily capture geometric and appearance details. Methods based on neural implicit representations, such as signed distance functions (SDF) or neural radiance fields, approach photo-realism, but are difficult to animate and do not generalize well to unseen data. To tackle this problem, we propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing. Trained from a collection of high-quality 3D scans, our face model is parameterized by geometry, expression, and texture latent codes with a learned SDF and explicit UV texture parameterization. Once trained, we can reconstruct an avatar from a single in-the-wild image by leveraging the learned prior to project the image into the latent space of our model. Our implicit morphable face models can be used to render an avatar from novel views, animate facial expressions by modifying expression codes, and edit textures by directly painting on the learned UV-texture maps. We demonstrate quantitatively and qualitatively that our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.

  • 8 authors
·
May 4, 2023

SELF: Language-Driven Self-Evolution for Large Language Model

Large Language Models (LLMs) have showcased remarkable versatility across diverse domains. However, the pathway toward autonomous model development, a cornerstone for achieving human-level learning and advancing autonomous AI, remains largely uncharted. We introduce an innovative approach, termed "SELF" (Self-Evolution with Language Feedback). This methodology empowers LLMs to undergo continual self-evolution. Furthermore, SELF employs language-based feedback as a versatile and comprehensive evaluative tool, pinpointing areas for response refinement and bolstering the stability of self-evolutionary training. Initiating with meta-skill learning, SELF acquires foundational meta-skills with a focus on self-feedback and self-refinement. These meta-skills are critical, guiding the model's subsequent self-evolution through a cycle of perpetual training with self-curated data, thereby enhancing its intrinsic abilities. Given unlabeled instructions, SELF equips the model with the capability to autonomously generate and interactively refine responses. This synthesized training data is subsequently filtered and utilized for iterative fine-tuning, enhancing the model's capabilities. Experimental results on representative benchmarks substantiate that SELF can progressively advance its inherent abilities without the requirement of human intervention, thereby indicating a viable pathway for autonomous model evolution. Additionally, SELF can employ online self-refinement strategy to produce responses of superior quality. In essence, the SELF framework signifies a progressive step towards autonomous LLM development, transforming the LLM from a mere passive recipient of information into an active participant in its own evolution.

  • 9 authors
·
Sep 30, 2023

SEEAvatar: Photorealistic Text-to-3D Avatar Generation with Constrained Geometry and Appearance

Powered by large-scale text-to-image generation models, text-to-3D avatar generation has made promising progress. However, most methods fail to produce photorealistic results, limited by imprecise geometry and low-quality appearance. Towards more practical avatar generation, we present SEEAvatar, a method for generating photorealistic 3D avatars from text with SElf-Evolving constraints for decoupled geometry and appearance. For geometry, we propose to constrain the optimized avatar in a decent global shape with a template avatar. The template avatar is initialized with human prior and can be updated by the optimized avatar periodically as an evolving template, which enables more flexible shape generation. Besides, the geometry is also constrained by the static human prior in local parts like face and hands to maintain the delicate structures. For appearance generation, we use diffusion model enhanced by prompt engineering to guide a physically based rendering pipeline to generate realistic textures. The lightness constraint is applied on the albedo texture to suppress incorrect lighting effect. Experiments show that our method outperforms previous methods on both global and local geometry and appearance quality by a large margin. Since our method can produce high-quality meshes and textures, such assets can be directly applied in classic graphics pipeline for realistic rendering under any lighting condition. Project page at: https://seeavatar3d.github.io.

  • 3 authors
·
Dec 13, 2023 1

Consistency-diversity-realism Pareto fronts of conditional image generative models

Building world models that accurately and comprehensively represent the real world is the utmost aspiration for conditional image generative models as it would enable their use as world simulators. For these models to be successful world models, they should not only excel at image quality and prompt-image consistency but also ensure high representation diversity. However, current research in generative models mostly focuses on creative applications that are predominantly concerned with human preferences of image quality and aesthetics. We note that generative models have inference time mechanisms - or knobs - that allow the control of generation consistency, quality, and diversity. In this paper, we use state-of-the-art text-to-image and image-and-text-to-image models and their knobs to draw consistency-diversity-realism Pareto fronts that provide a holistic view on consistency-diversity-realism multi-objective. Our experiments suggest that realism and consistency can both be improved simultaneously; however there exists a clear tradeoff between realism/consistency and diversity. By looking at Pareto optimal points, we note that earlier models are better at representation diversity and worse in consistency/realism, and more recent models excel in consistency/realism while decreasing significantly the representation diversity. By computing Pareto fronts on a geodiverse dataset, we find that the first version of latent diffusion models tends to perform better than more recent models in all axes of evaluation, and there exist pronounced consistency-diversity-realism disparities between geographical regions. Overall, our analysis clearly shows that there is no best model and the choice of model should be determined by the downstream application. With this analysis, we invite the research community to consider Pareto fronts as an analytical tool to measure progress towards world models.

  • 8 authors
·
Jun 14, 2024

BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.

  • 2 authors
·
Sep 15, 2023

MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation

Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.

  • 5 authors
·
Apr 16 2

Attribute-to-Delete: Machine Unlearning via Datamodel Matching

Machine unlearning -- efficiently removing the effect of a small "forget set" of training data on a pre-trained machine learning model -- has recently attracted significant research interest. Despite this interest, however, recent work shows that existing machine unlearning techniques do not hold up to thorough evaluation in non-convex settings. In this work, we introduce a new machine unlearning technique that exhibits strong empirical performance even in such challenging settings. Our starting point is the perspective that the goal of unlearning is to produce a model whose outputs are statistically indistinguishable from those of a model re-trained on all but the forget set. This perspective naturally suggests a reduction from the unlearning problem to that of data attribution, where the goal is to predict the effect of changing the training set on a model's outputs. Thus motivated, we propose the following meta-algorithm, which we call Datamodel Matching (DMM): given a trained model, we (a) use data attribution to predict the output of the model if it were re-trained on all but the forget set points; then (b) fine-tune the pre-trained model to match these predicted outputs. In a simple convex setting, we show how this approach provably outperforms a variety of iterative unlearning algorithms. Empirically, we use a combination of existing evaluations and a new metric based on the KL-divergence to show that even in non-convex settings, DMM achieves strong unlearning performance relative to existing algorithms. An added benefit of DMM is that it is a meta-algorithm, in the sense that future advances in data attribution translate directly into better unlearning algorithms, pointing to a clear direction for future progress in unlearning.

  • 7 authors
·
Oct 30, 2024

Writer adaptation for offline text recognition: An exploration of neural network-based methods

Handwriting recognition has seen significant success with the use of deep learning. However, a persistent shortcoming of neural networks is that they are not well-equipped to deal with shifting data distributions. In the field of handwritten text recognition (HTR), this shows itself in poor recognition accuracy for writers that are not similar to those seen during training. An ideal HTR model should be adaptive to new writing styles in order to handle the vast amount of possible writing styles. In this paper, we explore how HTR models can be made writer adaptive by using only a handful of examples from a new writer (e.g., 16 examples) for adaptation. Two HTR architectures are used as base models, using a ResNet backbone along with either an LSTM or Transformer sequence decoder. Using these base models, two methods are considered to make them writer adaptive: 1) model-agnostic meta-learning (MAML), an algorithm commonly used for tasks such as few-shot classification, and 2) writer codes, an idea originating from automatic speech recognition. Results show that an HTR-specific version of MAML known as MetaHTR improves performance compared to the baseline with a 1.4 to 2.0 improvement in word error rate (WER). The improvement due to writer adaptation is between 0.2 and 0.7 WER, where a deeper model seems to lend itself better to adaptation using MetaHTR than a shallower model. However, applying MetaHTR to larger HTR models or sentence-level HTR may become prohibitive due to its high computational and memory requirements. Lastly, writer codes based on learned features or Hinge statistical features did not lead to improved recognition performance.

  • 3 authors
·
Jul 11, 2023

Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning

Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.

  • 2 authors
·
Dec 2, 2022

A Model Zoo on Phase Transitions in Neural Networks

Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.

  • 6 authors
·
Apr 25 2

MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics

While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/

  • 3 authors
·
Oct 1

Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design

We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.

  • 1 authors
·
May 29, 2024

Competition and Attraction Improve Model Fusion

Model merging is a powerful technique for integrating the specialized knowledge of multiple machine learning models into a single model. However, existing methods require manually partitioning model parameters into fixed groups for merging, which restricts the exploration of potential combinations and limits performance. To overcome these limitations, we propose Model Merging of Natural Niches (M2N2), an evolutionary algorithm with three key features: (1) dynamic adjustment of merging boundaries to progressively explore a broader range of parameter combinations; (2) a diversity preservation mechanism inspired by the competition for resources in nature, to maintain a population of diverse, high-performing models that are particularly well-suited for merging; and (3) a heuristicbased attraction metric to identify the most promising pairs of models for fusion. Our experimental results demonstrate, for the first time, that model merging can be used to evolve models entirely from scratch. Specifically, we apply M2N2 to evolve MNIST classifiers from scratch and achieve performance comparable to CMA-ES, while being computationally more efficient. Furthermore, M2N2 scales to merge specialized language and image generation models, achieving state-of-the-art performance. Notably, it preserves crucial model capabilities beyond those explicitly optimized by the fitness function, highlighting its robustness and versatility. Our code is available at https://github.com/SakanaAI/natural_niches

  • 3 authors
·
Aug 22

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

  • 7 authors
·
Oct 18, 2023

Embodied Hands: Modeling and Capturing Hands and Bodies Together

Humans move their hands and bodies together to communicate and solve tasks. Capturing and replicating such coordinated activity is critical for virtual characters that behave realistically. Surprisingly, most methods treat the 3D modeling and tracking of bodies and hands separately. Here we formulate a model of hands and bodies interacting together and fit it to full-body 4D sequences. When scanning or capturing the full body in 3D, hands are small and often partially occluded, making their shape and pose hard to recover. To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand. MANO provides a compact mapping from hand poses to pose blend shape corrections and a linear manifold of pose synergies. We attach MANO to a standard parameterized 3D body shape model (SMPL), resulting in a fully articulated body and hand model (SMPL+H). We illustrate SMPL+H by fitting complex, natural, activities of subjects captured with a 4D scanner. The fitting is fully automatic and results in full body models that move naturally with detailed hand motions and a realism not seen before in full body performance capture. The models and data are freely available for research purposes in our website (http://mano.is.tue.mpg.de).

  • 3 authors
·
Jan 7, 2022

Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine

Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric (CMP) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true CMP is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating CMP and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using less wall-clock time. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is available at https://github.com/metauto-ai/HGM.

  • 8 authors
·
Oct 24

MetaFormer: High-fidelity Metalens Imaging via Aberration Correcting Transformers

Metalens is an emerging optical system with an irreplaceable merit in that it can be manufactured in ultra-thin and compact sizes, which shows great promise of various applications such as medical imaging and augmented/virtual reality (AR/VR). Despite its advantage in miniaturization, its practicality is constrained by severe aberrations and distortions, which significantly degrade the image quality. Several previous arts have attempted to address different types of aberrations, yet most of them are mainly designed for the traditional bulky lens and not convincing enough to remedy harsh aberrations of the metalens. While there have existed aberration correction methods specifically for metalens, they still fall short of restoration quality. In this work, we propose MetaFormer, an aberration correction framework for metalens-captured images, harnessing Vision Transformers (ViT) that has shown remarkable restoration performance in diverse image restoration tasks. Specifically, we devise a Multiple Adaptive Filters Guidance (MAFG), where multiple Wiener filters enrich the degraded input images with various noise-detail balances, enhancing output restoration quality. In addition, we introduce a Spatial and Transposed self-Attention Fusion (STAF) module, which aggregates features from spatial self-attention and transposed self-attention modules to further ameliorate aberration correction. We conduct extensive experiments, including correcting aberrated images and videos, and clean 3D reconstruction from the degraded images. The proposed method outperforms the previous arts by a significant margin. We further fabricate a metalens and verify the practicality of MetaFormer by restoring the images captured with the manufactured metalens in the wild. Code and pre-trained models are available at https://benhenryl.github.io/MetaFormer

  • 10 authors
·
Dec 5, 2024

NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research

A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute.

  • 20 authors
·
Nov 15, 2022

General-Purpose In-Context Learning by Meta-Learning Transformers

Modern machine learning requires system designers to specify aspects of the learning pipeline, such as losses, architectures, and optimizers. Meta-learning, or learning-to-learn, instead aims to learn those aspects, and promises to unlock greater capabilities with less manual effort. One particularly ambitious goal of meta-learning is to train general-purpose in-context learning algorithms from scratch, using only black-box models with minimal inductive bias. Such a model takes in training data, and produces test-set predictions across a wide range of problems, without any explicit definition of an inference model, training loss, or optimization algorithm. In this paper we show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners. We characterize transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all, induced by changes in model size, number of tasks, and meta-optimization. We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count. Finally, we propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose in-context learning algorithms.

  • 4 authors
·
Dec 8, 2022

MORPH: Shape-agnostic PDE Foundation Models

We introduce MORPH, a shape-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data dimensionality (1D--3D) at different resolutions, multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorizes full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch in both zero-shot and full-shot generalization. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning.

  • 7 authors
·
Sep 25

MetaAID 2.5: A Secure Framework for Developing Metaverse Applications via Large Language Models

Large language models (LLMs) are increasingly being used in Metaverse environments to generate dynamic and realistic content and to control the behavior of non-player characters (NPCs). However, the cybersecurity concerns associated with LLMs have become increasingly prominent. Previous research has primarily focused on patching system vulnerabilities to enhance cybersecurity, but these approaches are not well-suited to the Metaverse, where the virtual space is more complex, LLMs are vulnerable, and ethical user interaction is critical. Moreover, the scope of cybersecurity in the Metaverse is expected to expand significantly. This paper proposes a method for enhancing cybersecurity through the simulation of user interaction with LLMs. Our goal is to educate users and strengthen their defense capabilities through exposure to a comprehensive simulation system. This system includes extensive Metaverse cybersecurity Q&A and attack simulation scenarios. By engaging with these, users will improve their ability to recognize and withstand risks. Additionally, to address the ethical implications of user input, we propose using LLMs as evaluators to assess user content across five dimensions. We further adapt the models through vocabulary expansion training to better understand personalized inputs and emoticons. We conduct experiments on multiple LLMs and find that our approach is effective.

  • 1 authors
·
Dec 22, 2023

Meta-Transformer: A Unified Framework for Multimodal Learning

Multimodal learning aims to build models that can process and relate information from multiple modalities. Despite years of development in this field, it still remains challenging to design a unified network for processing various modalities (e.g. natural language, 2D images, 3D point clouds, audio, video, time series, tabular data) due to the inherent gaps among them. In this work, we propose a framework, named Meta-Transformer, that leverages a frozen encoder to perform multimodal perception without any paired multimodal training data. In Meta-Transformer, the raw input data from various modalities are mapped into a shared token space, allowing a subsequent encoder with frozen parameters to extract high-level semantic features of the input data. Composed of three main components: a unified data tokenizer, a modality-shared encoder, and task-specific heads for downstream tasks, Meta-Transformer is the first framework to perform unified learning across 12 modalities with unpaired data. Experiments on different benchmarks reveal that Meta-Transformer can handle a wide range of tasks including fundamental perception (text, image, point cloud, audio, video), practical application (X-Ray, infrared, hyperspectral, and IMU), and data mining (graph, tabular, and time-series). Meta-Transformer indicates a promising future for developing unified multimodal intelligence with transformers. Code will be available at https://github.com/invictus717/MetaTransformer

  • 7 authors
·
Jul 20, 2023 3

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

  • 2 authors
·
Jun 16, 2023

GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars

Photo-realistic and controllable 3D avatars are crucial for various applications such as virtual and mixed reality (VR/MR), telepresence, gaming, and film production. Traditional methods for avatar creation often involve time-consuming scanning and reconstruction processes for each avatar, which limits their scalability. Furthermore, these methods do not offer the flexibility to sample new identities or modify existing ones. On the other hand, by learning a strong prior from data, generative models provide a promising alternative to traditional reconstruction methods, easing the time constraints for both data capture and processing. Additionally, generative methods enable downstream applications beyond reconstruction, such as editing and stylization. Nonetheless, the research on generative 3D avatars is still in its infancy, and therefore current methods still have limitations such as creating static avatars, lacking photo-realism, having incomplete facial details, or having limited drivability. To address this, we propose a text-conditioned generative model that can generate photo-realistic facial avatars of diverse identities, with more complete details like hair, eyes and mouth interior, and which can be driven through a powerful non-parametric latent expression space. Specifically, we integrate the generative and editing capabilities of latent diffusion models with a strong prior model for avatar expression driving. Our model can generate and control high-fidelity avatars, even those out-of-distribution. We also highlight its potential for downstream applications, including avatar editing and single-shot avatar reconstruction.

  • 12 authors
·
Aug 24, 2024 3

MagicPose4D: Crafting Articulated Models with Appearance and Motion Control

With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike traditional methods, MagicPose4D accepts monocular videos as motion prompts, enabling precise and customizable motion generation. MagicPose4D comprises two key modules: i) Dual-Phase 4D Reconstruction Module} which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase refines the model using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. ii) Cross-category Motion Transfer Module} leverages the predictions from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.

  • 5 authors
·
May 22, 2024

AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using Garment Rigging Model

Recent communities have seen significant progress in building photo-realistic animatable avatars from sparse multi-view videos. However, current workflows struggle to render realistic garment dynamics for loose-fitting characters as they predominantly rely on naked body models for human modeling while leaving the garment part un-modeled. This is mainly due to that the deformations yielded by loose garments are highly non-rigid, and capturing such deformations often requires dense views as supervision. In this paper, we introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos (4-8 in our setting). To allow the capturing and appearance learning of loose garments in such a situation, we employ a virtual bone-based garment rigging model obtained from physics-based simulation data. Such a model allows us to capture and render complex garment dynamics through a set of low-dimensional bone transformations. Technically, we develop a novel method for estimating temporal coherent garment dynamics from a sparse multi-view video. To build a realistic rendering for unseen garment status using coarse estimations, a pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts. At test time, the new garment poses can be captured from unseen situations, derived from a physics-based or neural network-based simulator to drive unseen garment dynamics. To evaluate our approach, we create a multi-view dataset that captures loose-dressed performers with diverse motions. Experiments show that our method is able to render natural garment dynamics that deviate highly from the body and generalize well to both unseen views and poses, surpassing the performance of existing methods. The code and data will be publicly available.

  • 6 authors
·
Jan 27, 2024