new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Reinforcing the Diffusion Chain of Lateral Thought with Diffusion Language Models

We introduce the Diffusion Chain of Lateral Thought (DCoLT), a reasoning framework for diffusion language models. DCoLT treats each intermediate step in the reverse diffusion process as a latent "thinking" action and optimizes the entire reasoning trajectory to maximize the reward on the correctness of the final answer with outcome-based Reinforcement Learning (RL). Unlike traditional Chain-of-Thought (CoT) methods that follow a causal, linear thinking process, DCoLT allows bidirectional, non-linear reasoning with no strict rule on grammatical correctness amid its intermediate steps of thought. We implement DCoLT on two representative Diffusion Language Models (DLMs). First, we choose SEDD as a representative continuous-time discrete diffusion model, where its concrete score derives a probabilistic policy to maximize the RL reward over the entire sequence of intermediate diffusion steps. We further consider the discrete-time masked diffusion language model -- LLaDA, and find that the order to predict and unmask tokens plays an essential role to optimize its RL action resulting from the ranking-based Unmasking Policy Module (UPM) defined by the Plackett-Luce model. Experiments on both math and code generation tasks show that using only public data and 16 H800 GPUs, DCoLT-reinforced DLMs outperform other DLMs trained by SFT or RL or even both. Notably, DCoLT-reinforced LLaDA boosts its reasoning accuracy by +9.8%, +5.7%, +11.4%, +19.5% on GSM8K, MATH, MBPP, and HumanEval.

  • 5 authors
·
May 15

PLD: A Choice-Theoretic List-Wise Knowledge Distillation

Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation, it has become the de facto approach to augment cross-entropy with a distillation term. Typically, this term is either a KL divergence that matches marginal probabilities or a correlation-based loss that captures intra- and inter-class relationships. In every case, it acts as an additional term to cross-entropy. This term has its own weight, which must be carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce "Plackett-Luce Distillation (PLD)", a weighted list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single "teacher-optimal" ranking. The true label is placed first, followed by the remaining classes in descending teacher confidence. This process yields a convex and translation-invariant surrogate that subsumes weighted cross-entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives, including divergence-based, correlation-based, and feature-based methods, in both homogeneous and heterogeneous teacher-student pairs.

  • 3 authors
·
Jun 14

Policy-Gradient Training of Language Models for Ranking

Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.

  • 5 authors
·
Oct 6, 2023

BRAIn: Bayesian Reward-conditioned Amortized Inference for natural language generation from feedback

Following the success of Proximal Policy Optimization (PPO) for Reinforcement Learning from Human Feedback (RLHF), new techniques such as Sequence Likelihood Calibration (SLiC) and Direct Policy Optimization (DPO) have been proposed that are offline in nature and use rewards in an indirect manner. These techniques, in particular DPO, have recently become the tools of choice for LLM alignment due to their scalability and performance. However, they leave behind important features of the PPO approach. Methods such as SLiC or RRHF make use of the Reward Model (RM) only for ranking/preference, losing fine-grained information and ignoring the parametric form of the RM (eg., Bradley-Terry, Plackett-Luce), while methods such as DPO do not use even a separate reward model. In this work, we propose a novel approach, named BRAIn, that re-introduces the RM as part of a distribution matching approach.BRAIn considers the LLM distribution conditioned on the assumption of output goodness and applies Bayes theorem to derive an intractable posterior distribution where the RM is explicitly represented. BRAIn then distills this posterior into an amortized inference network through self-normalized importance sampling, leading to a scalable offline algorithm that significantly outperforms prior art in summarization and AntropicHH tasks. BRAIn also has interesting connections to PPO and DPO for specific RM choices.

  • 9 authors
·
Feb 4, 2024 2

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations

Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.

  • 5 authors
·
May 4, 2023

Context is Key: A Benchmark for Forecasting with Essential Textual Information

Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.

  • 11 authors
·
Oct 24, 2024

First Light and Reionization Epoch Simulations (FLARES) -- XVIII: the ionising emissivities and hydrogen recombination line properties of early AGN

One of the most remarkable results from the James Webb Space Telescope has been the discovery of a large population of compact sources exhibiting strong broad Halpha emission, typically interpreted to be low-luminosity broad-line (Type 1) active galactic nuclei (BLAGN). An important question is whether these observations are in tension with galaxy formation models, and if so how? While comparisons have been made using physical properties (i.e.~black hole mass and accretion rate) inferred from observations, these require the use of SED modelling assumptions, or locally inferred scaling relations, which may be unjustified, at least in the distant high-redshift Universe. In this work we take an alternative approach and forward model predictions from the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations to predict the observable properties of BLAGN. We achieve this by first coupling \flares\ with the \qsosed\ model to predict the ionising photon luminosities of high-redshift (z>5) AGN. To model the observed broad Halpha emission we then assume a constant conversion factor and covering fraction, and the fraction of AGN that have observable broad-lines. With a reasonable choice of these parameters, \flares\ is able to reproduce observational constraints on the Halpha luminosity function and equivalent width distribution at z=5.

  • 13 authors
·
May 8

Platypus: A Generalized Specialist Model for Reading Text in Various Forms

Reading text from images (either natural scenes or documents) has been a long-standing research topic for decades, due to the high technical challenge and wide application range. Previously, individual specialist models are developed to tackle the sub-tasks of text reading (e.g., scene text recognition, handwritten text recognition and mathematical expression recognition). However, such specialist models usually cannot effectively generalize across different sub-tasks. Recently, generalist models (such as GPT-4V), trained on tremendous data in a unified way, have shown enormous potential in reading text in various scenarios, but with the drawbacks of limited accuracy and low efficiency. In this work, we propose Platypus, a generalized specialist model for text reading. Specifically, Platypus combines the best of both worlds: being able to recognize text of various forms with a single unified architecture, while achieving excellent accuracy and high efficiency. To better exploit the advantage of Platypus, we also construct a text reading dataset (called Worms), the images of which are curated from previous datasets and partially re-labeled. Experiments on standard benchmarks demonstrate the effectiveness and superiority of the proposed Platypus model. Model and data will be made publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/Platypus.

  • 7 authors
·
Aug 27, 2024 2

MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.

  • 1 authors
·
May 19, 2021

Pixel-level modelling of group-scale strong lens CASSOWARY 19

We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.

  • 9 authors
·
Apr 15

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach

Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.

  • 10 authors
·
Aug 13, 2024

Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning

Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability (L propto N^{0.068}), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

  • 2 authors
·
Jul 23

Simulated Rotation Measure Sky from Primordial Magnetic Fields

Primordial Magnetic Fields (PMFs) -- magnetic fields originating in the early Universe and permeating the cosmological scales today -- can explain the observed microGauss-level magnetisation of galaxies and their clusters. In light of current and upcoming all-sky radio surveys, PMFs have drawn attention not only as major candidates for explaining the large-scale magnetisation of the Universe, but also as potential probes of early-Universe physics. In this paper, using cosmological simulations coupled with light-cone analysis, we study for the first time the imprints of the PMF structure on the mean rotation measure (RM) originating in the intergalactic medium (IGM), langle RM_{IGM}rangle. We introduce a new method for producing full-sky RM_{IGM} distributions and analyse the autocorrelation of RM_{IGM} on small and large angular scales; we find that PMF structures indeed show distinct signatures. The large-scale uniform model (characterised by an initially unlimited coherence scale) leads to correlations up to 90 degrees, while correlations for small-scale stochastic PMF models drop by factor of 100 at 0.17, 0.13 and 0.11 degrees angular scales, corresponding to 5.24, 4.03 and 3.52 Mpc scales (at z=2 redshift) for magnetic fields with comoving 3.49, 1.81, 1.00 Mpc/h coherence scales, respectively; the correlation amplitude of the PMF model with comoving sim 19 Mpc/h coherence scale drops only by factor of 10 at 1 degree (30.6 Mpc). These results suggests that improvements in the modelling of Galactic RM will be necessary to investigate the signature of large-scale correlated PMFs. A comparison of langle RM_{IGM}rangle redshift dependence obtained from our simulations with that from the LOFAR Two-metre Sky Survey shows agreement with our previous upper limits' estimates on the PMF strength derived from RM-rms analysis.

  • 6 authors
·
Nov 23

Machine Learning and Deep Learning -- A review for Ecologists

1. The popularity of Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated. 2. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, missing out on synthesizing the wealth of ML algorithms with different advantages and general principles. 3. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences to traditional statistical tools, and universal ML principles. We then discuss why and when ML and DL models excel at prediction tasks and where they could offer alternatives to traditional statistical methods for inference, highlighting current and emerging applications for ecological problems. Finally, we summarize emerging trends such as scientific and causal ML, explainable AI, and responsible AI that may significantly impact ecological data analysis in the future. 4. We conclude that ML and DL are powerful new tools for predictive modeling and data analysis. The superior performance of ML and DL algorithms compared to statistical models can be explained by their higher flexibility and automatic data-dependent complexity optimization. However, their use for causal inference is still disputed as the focus of ML and DL methods on predictions creates challenges for the interpretation of these models. Nevertheless, we expect ML and DL to become an indispensable tool in E&E, comparable to other traditional statistical tools.

  • 2 authors
·
Apr 11, 2022

LABOR-LLM: Language-Based Occupational Representations with Large Language Models

Many empirical studies of labor market questions rely on estimating relatively simple predictive models using small, carefully constructed longitudinal survey datasets based on hand-engineered features. Large Language Models (LLMs), trained on massive datasets, encode vast quantities of world knowledge and can be used for the next job prediction problem. However, while an off-the-shelf LLM produces plausible career trajectories when prompted, the probability with which an LLM predicts a particular job transition conditional on career history will not, in general, align with the true conditional probability in a given population. Recently, Vafa et al. (2024) introduced a transformer-based "foundation model", CAREER, trained using a large, unrepresentative resume dataset, that predicts transitions between jobs; it further demonstrated how transfer learning techniques can be used to leverage the foundation model to build better predictive models of both transitions and wages that reflect conditional transition probabilities found in nationally representative survey datasets. This paper considers an alternative where the fine-tuning of the CAREER foundation model is replaced by fine-tuning LLMs. For the task of next job prediction, we demonstrate that models trained with our approach outperform several alternatives in terms of predictive performance on the survey data, including traditional econometric models, CAREER, and LLMs with in-context learning, even though the LLM can in principle predict job titles that are not allowed in the survey data. Further, we show that our fine-tuned LLM-based models' predictions are more representative of the career trajectories of various workforce subpopulations than off-the-shelf LLM models and CAREER. We conduct experiments and analyses that highlight the sources of the gains in the performance of our models for representative predictions.

  • 5 authors
·
Jun 25, 2024

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

  • 55 authors
·
Feb 18

Can an Anti-de Sitter Vacuum in the Dark Energy Sector Explain JWST High-Redshift Galaxy and Reionization Observations?

The James Webb Space Telescope's (JWST) discovery of an unexpectedly high abundance of UV-bright galaxies at redshifts z > 10 poses a significant challenge to the standard LambdaCDM cosmology. This work tests whether this tension can be resolved solely by modifying the cosmological background, without invoking significant evolution in the astrophysical properties of early galaxies. We investigate an alternative framework featuring the presence of an anti-de Sitter vacuum in the dark energy sector, a model that naturally arises in quantum gravity models like string theory and can enhance early structure formation. Using a self-consistent semi-analytical model that couples galaxy evolution with reionization, we confront this scenario with a wide range of observations. We first show that while a model tailored to fit the high-z UV luminosity functions (UVLFs) shows promise, it is in strong tension with well-established cosmological constraints from the CMB and other low-redshift probes. Conversely, models within this framework that are consistent with these constraints provide only a modest boost to structure formation and fail to reproduce the observed JWST galaxy abundances at z > 10. While these models remain consistent with the cosmic reionization history, our primary result is that this class of cosmological modifications is insufficient on its own to explain the galaxy excess. Our study underscores the critical importance of holistic testing for any beyond-LambdaCDM proposal; apparent success in one observational regime does not guarantee overall viability. By demonstrating the limitations of a purely cosmological solution, our results strengthen the case that evolving astrophysical properties are a necessary ingredient for solving the challenge of early galaxy formation.

  • 4 authors
·
Sep 2

Suppressing the sample variance of DESI-like galaxy clustering with fast simulations

Ongoing and upcoming galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) survey, will observe vast regions of sky and a wide range of redshifts. In order to model the observations and address various systematic uncertainties, N-body simulations are routinely adopted, however, the number of large simulations with sufficiently high mass resolution is usually limited by available computing time. Therefore, achieving a simulation volume with the effective statistical errors significantly smaller than those of the observations becomes prohibitively expensive. In this study, we apply the Convergence Acceleration by Regression and Pooling (CARPool) method to mitigate the sample variance of the DESI-like galaxy clustering in the AbacusSummit simulations, with the assistance of the quasi-N-body simulations FastPM. Based on the halo occupation distribution (HOD) models, we construct different FastPM galaxy catalogs, including the luminous red galaxies (LRGs), emission line galaxies (ELGs), and quasars, with their number densities and two-point clustering statistics well matched to those of AbacusSummit. We also employ the same initial conditions between AbacusSummit and FastPM to achieve high cross-correlation, as it is useful in effectively suppressing the variance. Our method of reducing noise in clustering is equivalent to performing a simulation with volume larger by a factor of 5 and 4 for LRGs and ELGs, respectively. We also mitigate the standard deviation of the LRG bispectrum with the triangular configurations k_2=2k_1=0.2 h/Mpc by a factor of 1.6. With smaller sample variance on galaxy clustering, we are able to constrain the baryon acoustic oscillations (BAO) scale parameters to higher precision. The CARPool method will be beneficial to better constrain the theoretical systematics of BAO, redshift space distortions (RSD) and primordial non-Gaussianity (NG).

  • 47 authors
·
Apr 3, 2024

What Benefits Drive Membership in Medicare Advantage Plans?

We seek to identify the most relevant benefits offered by Medicare Advantage Health Plans that drive membership and market share. As an example, we explore plans operating in a single county in New Jersey between 2018 and 2023. A dataset of benefits from publicly available data sources was created and the variance inflation factor was applied to identify the correlation between the extracted features, to avoid multicollinearity and overparameterization problems. We categorized the variable Market Share and used it as a multinomial response variable with three categories: less than 0.3\%, 0.3\% to 1.5\%, and over 1.5\%. Categories were chosen to achieve approximately uniform distribution of plans (47, 60, and 65 respectively). We built a multinomial Lasso model using 5-fold cross-validation to tune the penalty parameter. Lasso forced some features to be dropped from the model, which reduces the risk of overfitting and increases the interpretability of the results. For each category, important variables are different. Certain brands drive market share, as do PPO plans and prescription drug coverage. Benefits, particularly ancillary benefits that are not part of CMS's required benefits, appear to have little influence, while financial terms such as deductibles, copays, and out-of-pocket limits are associated with higher market share. Finally, we evaluated the predictive accuracy of the Lasso model with the test set. The accuracy is 0.76.

  • 2 authors
·
Nov 3

Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations

Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.

  • 2 authors
·
Jan 20

Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs

Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.

  • 6 authors
·
Sep 18, 2023

First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts

Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes.

  • 9 authors
·
Oct 31, 2024

First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies

We present the photometric properties of galaxies in the First Light and Reionisation Epoch Simulations (FLARES). The simulations trace the evolution of galaxies in a range of overdensities through the Epoch of Reionistion (EoR). With a novel weighting scheme we combine these overdensities, extending significantly the dynamic range of observed composite distribution functions compared to periodic simulation boxes. FLARES predicts a significantly larger number of intrinsically bright galaxies, which can be explained through a simple model linking dust-attenuation to the metal content of the interstellar medium, using a line-of-sight (LOS) extinction model. With this model we present the photometric properties of the FLARES galaxies for z in [5,10]. We show that the ultraviolet (UV) luminosity function (LF) matches the observations at all redshifts. The function is fit by Schechter and double power-law forms, with the latter being favoured at these redshifts by the FLARES composite UV LF. We also present predictions for the UV continuum slope as well as the attenuation in the UV. The impact of environment on the UV LF is also explored, with the brightest galaxies forming in the densest environments. We then present the line luminosity and equivalent widths of some prominent nebular emission lines arising from the galaxies, finding rough agreement with available observations. We also look at the relative contribution of obscured and unobscured star formation, finding comparable contributions at these redshifts.

  • 8 authors
·
Aug 13, 2020

Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange

The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics.

  • 6 authors
·
Oct 8

Rethinking Large Language Model Architectures for Sequential Recommendations

Recently, sequential recommendation has been adapted to the LLM paradigm to enjoy the power of LLMs. LLM-based methods usually formulate recommendation information into natural language and the model is trained to predict the next item in an auto-regressive manner. Despite their notable success, the substantial computational overhead of inference poses a significant obstacle to their real-world applicability. In this work, we endeavor to streamline existing LLM-based recommendation models and propose a simple yet highly effective model Lite-LLM4Rec. The primary goal of Lite-LLM4Rec is to achieve efficient inference for the sequential recommendation task. Lite-LLM4Rec circumvents the beam search decoding by using a straight item projection head for ranking scores generation. This design stems from our empirical observation that beam search decoding is ultimately unnecessary for sequential recommendations. Additionally, Lite-LLM4Rec introduces a hierarchical LLM structure tailored to efficiently handle the extensive contextual information associated with items, thereby reducing computational overhead while enjoying the capabilities of LLMs. Experiments on three publicly available datasets corroborate the effectiveness of Lite-LLM4Rec in both performance and inference efficiency (notably 46.8% performance improvement and 97.28% efficiency improvement on ML-1m) over existing LLM-based methods. Our implementations will be open sourced.

  • 10 authors
·
Feb 14, 2024

Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region

In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.

  • 2 authors
·
May 9, 2023