- BIM-GPT: a Prompt-Based Virtual Assistant Framework for BIM Information Retrieval Efficient information retrieval (IR) from building information models (BIMs) poses significant challenges due to the necessity for deep BIM knowledge or extensive engineering efforts for automation. We introduce BIM-GPT, a prompt-based virtual assistant (VA) framework integrating BIM and generative pre-trained transformer (GPT) technologies to support NL-based IR. A prompt manager and dynamic template generate prompts for GPT models, enabling interpretation of NL queries, summarization of retrieved information, and answering BIM-related questions. In tests on a BIM IR dataset, our approach achieved 83.5% and 99.5% accuracy rates for classifying NL queries with no data and 2% data incorporated in prompts, respectively. Additionally, we validated the functionality of BIM-GPT through a VA prototype for a hospital building. This research contributes to the development of effective and versatile VAs for BIM IR in the construction industry, significantly enhancing BIM accessibility and reducing engineering efforts and training data requirements for processing NL queries. 2 authors · Apr 18, 2023
- ChatLang-8: An LLM-Based Synthetic Data Generation Framework for Grammatical Error Correction We explore and improve the capabilities of LLMs to generate data for grammatical error correction (GEC). When merely producing parallel sentences, their patterns are too simplistic to be valuable as a corpus. To address this issue, we propose an automated framework that includes a Subject Selector, Grammar Selector, Prompt Manager, and Evaluator. Additionally, we introduce a new dataset for GEC tasks, named ChatLang-8, which encompasses eight types of subject nouns and 23 types of grammar. It consists of 1 million pairs featuring human-like grammatical errors. Our experiments reveal that ChatLang-8 exhibits a more uniform pattern composition compared to existing GEC datasets. Furthermore, we observe improved model performance when using ChatLang-8 instead of existing GEC datasets. The experimental results suggest that our framework and ChatLang-8 are valuable resources for enhancing ChatGPT's data generation capabilities. 3 authors · Jun 5, 2024