- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER. 7 authors · Apr 18, 2019
- From Independence to Interaction: Speaker-Aware Simulation of Multi-Speaker Conversational Timing We present a speaker-aware approach for simulating multi-speaker conversations that captures temporal consistency and realistic turn-taking dynamics. Prior work typically models aggregate conversational statistics under an independence assumption across speakers and turns. In contrast, our method uses speaker-specific deviation distributions enforcing intra-speaker temporal consistency, while a Markov chain governs turn-taking and a fixed room impulse response preserves spatial realism. We also unify pauses and overlaps into a single gap distribution, modeled with kernel density estimation for smooth continuity. Evaluation on Switchboard using intrinsic metrics - global gap statistics, correlations between consecutive gaps, copula-based higher-order dependencies, turn-taking entropy, and gap survival functions - shows that speaker-aware simulation better aligns with real conversational patterns than the baseline method, capturing fine-grained temporal dependencies and realistic speaker alternation, while revealing open challenges in modeling long-range conversational structure. 2 authors · Sep 19
- Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue Large Language Models (LLMs) have demonstrated superior abilities in tasks such as chatting, reasoning, and question-answering. However, standard LLMs may ignore crucial paralinguistic information, such as sentiment, emotion, and speaking style, which are essential for achieving natural, human-like spoken conversation, especially when such information is conveyed by acoustic cues. We therefore propose Paralinguistics-enhanced Generative Pretrained Transformer (ParalinGPT), an LLM that utilizes text and speech modalities to better model the linguistic content and paralinguistic attributes of spoken dialogue. The model takes the conversational context of text, speech embeddings, and paralinguistic attributes as input prompts within a serialized multitasking multimodal framework. Specifically, our framework serializes tasks in the order of current paralinguistic attribute prediction, response paralinguistic attribute prediction, and response text generation with autoregressive conditioning. We utilize the Switchboard-1 corpus, including its sentiment labels as the paralinguistic attribute, as our spoken dialogue dataset. Experimental results indicate the proposed serialized multitasking method outperforms typical sequence classification techniques on current and response sentiment classification. Furthermore, leveraging conversational context and speech embeddings significantly improves both response text generation and sentiment prediction. Our proposed framework achieves relative improvements of 6.7%, 12.0%, and 3.5% in current sentiment accuracy, response sentiment accuracy, and response text BLEU score, respectively. 9 authors · Dec 23, 2023
- A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling. 6 authors · May 19, 2020
1 Decoder-only Architecture for Speech Recognition with CTC Prompts and Text Data Augmentation Collecting audio-text pairs is expensive; however, it is much easier to access text-only data. Unless using shallow fusion, end-to-end automatic speech recognition (ASR) models require architecture modifications or additional training schemes to use text-only data. Inspired by recent advances in decoder-only language models (LMs), such as GPT-3 and PaLM adopted for speech-processing tasks, we propose using a decoder-only architecture for ASR with simple text augmentation. To provide audio information, encoder features compressed by CTC prediction are used as prompts for the decoder, which can be regarded as refining CTC prediction using the decoder-only model. Because the decoder architecture is the same as an autoregressive LM, it is simple to enhance the model by leveraging external text data with LM training. An experimental comparison using LibriSpeech and Switchboard shows that our proposed models with text augmentation training reduced word error rates from ordinary CTC by 0.3% and 1.4% on LibriSpeech test-clean and testother set, respectively, and 2.9% and 5.0% on Switchboard and CallHome. The proposed model had advantage on computational efficiency compared with conventional encoder-decoder ASR models with a similar parameter setup, and outperformed them on the LibriSpeech 100h and Switchboard training scenarios. 5 authors · Sep 16, 2023
- A study of latent monotonic attention variants End-to-end models reach state-of-the-art performance for speech recognition, but global soft attention is not monotonic, which might lead to convergence problems, to instability, to bad generalisation, cannot be used for online streaming, and is also inefficient in calculation. Monotonicity can potentially fix all of this. There are several ad-hoc solutions or heuristics to introduce monotonicity, but a principled introduction is rarely found in literature so far. In this paper, we present a mathematically clean solution to introduce monotonicity, by introducing a new latent variable which represents the audio position or segment boundaries. We compare several monotonic latent models to our global soft attention baseline such as a hard attention model, a local windowed soft attention model, and a segmental soft attention model. We can show that our monotonic models perform as good as the global soft attention model. We perform our experiments on Switchboard 300h. We carefully outline the details of our training and release our code and configs. 3 authors · Mar 30, 2021
- A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks Dialogue act recognition is an important part of natural language understanding. We investigate the way dialogue act corpora are annotated and the learning approaches used so far. We find that the dialogue act is context-sensitive within the conversation for most of the classes. Nevertheless, previous models of dialogue act classification work on the utterance-level and only very few consider context. We propose a novel context-based learning method to classify dialogue acts using a character-level language model utterance representation, and we notice significant improvement. We evaluate this method on the Switchboard Dialogue Act corpus, and our results show that the consideration of the preceding utterances as a context of the current utterance improves dialogue act detection. 4 authors · May 16, 2018
- A Comprehensive Study of Deep Bidirectional LSTM RNNs for Acoustic Modeling in Speech Recognition We present a comprehensive study of deep bidirectional long short-term memory (LSTM) recurrent neural network (RNN) based acoustic models for automatic speech recognition (ASR). We study the effect of size and depth and train models of up to 8 layers. We investigate the training aspect and study different variants of optimization methods, batching, truncated backpropagation, different regularization techniques such as dropout and L_2 regularization, and different gradient clipping variants. The major part of the experimental analysis was performed on the Quaero corpus. Additional experiments also were performed on the Switchboard corpus. Our best LSTM model has a relative improvement in word error rate of over 14\% compared to our best feed-forward neural network (FFNN) baseline on the Quaero task. On this task, we get our best result with an 8 layer bidirectional LSTM and we show that a pretraining scheme with layer-wise construction helps for deep LSTMs. Finally we compare the training calculation time of many of the presented experiments in relation with recognition performance. All the experiments were done with RETURNN, the RWTH extensible training framework for universal recurrent neural networks in combination with RASR, the RWTH ASR toolkit. 5 authors · Jun 22, 2016
- On Sampling-Based Training Criteria for Neural Language Modeling As the vocabulary size of modern word-based language models becomes ever larger, many sampling-based training criteria are proposed and investigated. The essence of these sampling methods is that the softmax-related traversal over the entire vocabulary can be simplified, giving speedups compared to the baseline. A problem we notice about the current landscape of such sampling methods is the lack of a systematic comparison and some myths about preferring one over another. In this work, we consider Monte Carlo sampling, importance sampling, a novel method we call compensated partial summation, and noise contrastive estimation. Linking back to the three traditional criteria, namely mean squared error, binary cross-entropy, and cross-entropy, we derive the theoretical solutions to the training problems. Contrary to some common belief, we show that all these sampling methods can perform equally well, as long as we correct for the intended class posterior probabilities. Experimental results in language modeling and automatic speech recognition on Switchboard and LibriSpeech support our claim, with all sampling-based methods showing similar perplexities and word error rates while giving the expected speedups. 6 authors · Apr 21, 2021
- Is this Dialogue Coherent? Learning from Dialogue Acts and Entities In this work, we investigate the human perception of coherence in open-domain dialogues. In particular, we address the problem of annotating and modeling the coherence of next-turn candidates while considering the entire history of the dialogue. First, we create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings, where next-turn candidate utterances ratings are provided considering the full dialogue context. Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities previously introduced and the Dialogue Acts used. Second, we experiment with different architectures to model entities, Dialogue Acts and their combination and evaluate their performance in predicting human coherence ratings on SWBD-Coh. We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating. 2 authors · Jun 17, 2020
- A New Training Pipeline for an Improved Neural Transducer The RNN transducer is a promising end-to-end model candidate. We compare the original training criterion with the full marginalization over all alignments, to the commonly used maximum approximation, which simplifies, improves and speeds up our training. We also generalize from the original neural network model and study more powerful models, made possible due to the maximum approximation. We further generalize the output label topology to cover RNN-T, RNA and CTC. We perform several studies among all these aspects, including a study on the effect of external alignments. We find that the transducer model generalizes much better on longer sequences than the attention model. Our final transducer model outperforms our attention model on Switchboard 300h by over 6% relative WER. 4 authors · May 19, 2020
- Dialogue Act Recognition via CRF-Attentive Structured Network Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap. 5 authors · Nov 15, 2017
- Dialogue Act Sequence Labeling using Hierarchical encoder with CRF Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data. 5 authors · Sep 13, 2017
1 DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels. 2 authors · Jun 13, 2024
2 CCC-wav2vec 2.0: Clustering aided Cross Contrastive Self-supervised learning of speech representations While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. We make all our codes publicly available on GitHub. 3 authors · Oct 5, 2022
- Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix. 3 authors · Aug 20, 2024
- data2vec-aqc: Search for the right Teaching Assistant in the Teacher-Student training setup In this paper, we propose a new Self-Supervised Learning (SSL) algorithm called data2vec-aqc, for speech representation learning from unlabeled speech data. Our goal is to improve SSL for speech in domains where both unlabeled and labeled data are limited. Building on the recently introduced data2vec, we introduce additional modules to the data2vec framework that leverage the benefit of data augmentations, quantized representations, and clustering. The interaction between these modules helps solve the cross-contrastive loss as an additional self-supervised objective. data2vec-aqc achieves up to 14.1% and 20.9% relative WER improvement over the existing state-of-the-art data2vec system over the test-clean and test-other sets, respectively of LibriSpeech, without the use of any language model (LM). Our proposed model also achieves up to 17.8\% relative WER gains over the baseline data2vec when fine-tuned on a subset of the Switchboard dataset. Code: https://github.com/Speech-Lab-IITM/data2vec-aqc. 3 authors · Nov 2, 2022
- SpeechStew: Simply Mix All Available Speech Recognition Data to Train One Large Neural Network We present SpeechStew, a speech recognition model that is trained on a combination of various publicly available speech recognition datasets: AMI, Broadcast News, Common Voice, LibriSpeech, Switchboard/Fisher, Tedlium, and Wall Street Journal. SpeechStew simply mixes all of these datasets together, without any special re-weighting or re-balancing of the datasets. SpeechStew achieves SoTA or near SoTA results across a variety of tasks, without the use of an external language model. Our results include 9.0\% WER on AMI-IHM, 4.7\% WER on Switchboard, 8.3\% WER on CallHome, and 1.3\% on WSJ, which significantly outperforms prior work with strong external language models. We also demonstrate that SpeechStew learns powerful transfer learning representations. We fine-tune SpeechStew on a noisy low resource speech dataset, CHiME-6. We achieve 38.9\% WER without a language model, which compares to 38.6\% WER to a strong HMM baseline with a language model. 6 authors · Apr 5, 2021
- Dialogue Act Classification with Context-Aware Self-Attention Recent work in Dialogue Act classification has treated the task as a sequence labeling problem using hierarchical deep neural networks. We build on this prior work by leveraging the effectiveness of a context-aware self-attention mechanism coupled with a hierarchical recurrent neural network. We conduct extensive evaluations on standard Dialogue Act classification datasets and show significant improvement over state-of-the-art results on the Switchboard Dialogue Act (SwDA) Corpus. We also investigate the impact of different utterance-level representation learning methods and show that our method is effective at capturing utterance-level semantic text representations while maintaining high accuracy. 2 authors · Apr 4, 2019
- Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DA classification problem ranging from multi-classification to structured prediction, which suffer from two limitations: a) these methods are either handcrafted feature-based or have limited memories. b) adversarial examples can't be correctly classified by traditional training methods. To address these issues, in this paper we first cast the problem into a question and answering problem and proposed an improved dynamic memory networks with hierarchical pyramidal utterance encoder. Moreover, we apply adversarial training to train our proposed model. We evaluate our model on two public datasets, i.e., Switchboard dialogue act corpus and the MapTask corpus. Extensive experiments show that our proposed model is not only robust, but also achieves better performance when compared with some state-of-the-art baselines. 6 authors · Nov 12, 2018
- Improved training of end-to-end attention models for speech recognition Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech. We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword units. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model. 4 authors · May 8, 2018
1 Semi-Autoregressive Streaming ASR With Label Context Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy. 4 authors · Sep 19, 2023
1 Svarah: Evaluating English ASR Systems on Indian Accents India is the second largest English-speaking country in the world with a speaker base of roughly 130 million. Thus, it is imperative that automatic speech recognition (ASR) systems for English should be evaluated on Indian accents. Unfortunately, Indian speakers find a very poor representation in existing English ASR benchmarks such as LibriSpeech, Switchboard, Speech Accent Archive, etc. In this work, we address this gap by creating Svarah, a benchmark that contains 9.6 hours of transcribed English audio from 117 speakers across 65 geographic locations throughout India, resulting in a diverse range of accents. Svarah comprises both read speech and spontaneous conversational data, covering various domains, such as history, culture, tourism, etc., ensuring a diverse vocabulary. We evaluate 6 open source ASR models and 2 commercial ASR systems on Svarah and show that there is clear scope for improvement on Indian accents. Svarah as well as all our code will be publicly available. 9 authors · May 25, 2023
1 PADA: Pruning Assisted Domain Adaptation for Self-Supervised Speech Representations While self-supervised speech representation learning (SSL) models serve a variety of downstream tasks, these models have been observed to overfit to the domain from which the unlabelled data originates. To alleviate this issue, we propose PADA (Pruning Assisted Domain Adaptation) and zero out redundant weights from models pre-trained on large amounts of out-of-domain (OOD) data. Intuitively, this helps to make space for the target-domain ASR finetuning. The redundant weights can be identified through various pruning strategies which have been discussed in detail as a part of this work. Specifically, we investigate the effect of the recently discovered Task-Agnostic and Task-Aware pruning on PADA and propose a new pruning paradigm based on the latter, which we call Cross-Domain Task-Aware Pruning (CD-TAW). CD-TAW obtains the initial pruning mask from a well fine-tuned OOD model, which makes it starkly different from the rest of the pruning strategies discussed in the paper. Our proposed CD-TAW methodology achieves up to 20.6% relative WER improvement over our baseline when fine-tuned on a 2-hour subset of Switchboard data without language model (LM) decoding. Furthermore, we conduct a detailed analysis to highlight the key design choices of our proposed method. 3 authors · Mar 31, 2022
- NIST SRE CTS Superset: A large-scale dataset for telephony speaker recognition This document provides a brief description of the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) conversational telephone speech (CTS) Superset. The CTS Superset has been created in an attempt to provide the research community with a large-scale dataset along with uniform metadata that can be used to effectively train and develop telephony (narrowband) speaker recognition systems. It contains a large number of telephony speech segments from more than 6800 speakers with speech durations distributed uniformly in the [10s, 60s] range. The segments have been extracted from the source corpora used to compile prior SRE datasets (SRE1996-2012), including the Greybeard corpus as well as the Switchboard and Mixer series collected by the Linguistic Data Consortium (LDC). In addition to the brief description, we also report speaker recognition results on the NIST 2020 CTS Speaker Recognition Challenge, obtained using a system trained with the CTS Superset. The results will serve as a reference baseline for the challenge. 1 authors · Aug 16, 2021
- Deep Speech: Scaling up end-to-end speech recognition We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a "phoneme." Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems. 11 authors · Dec 17, 2014
- RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition We compare the fast training and decoding speed of RETURNN of attention models for translation, due to fast CUDA LSTM kernels, and a fast pure TensorFlow beam search decoder. We show that a layer-wise pretraining scheme for recurrent attention models gives over 1% BLEU improvement absolute and it allows to train deeper recurrent encoder networks. Promising preliminary results on max. expected BLEU training are presented. We are able to train state-of-the-art models for translation and end-to-end models for speech recognition and show results on WMT 2017 and Switchboard. The flexibility of RETURNN allows a fast research feedback loop to experiment with alternative architectures, and its generality allows to use it on a wide range of applications. 3 authors · May 14, 2018