1 ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of Large Language Models in Real-world Scenarios Existing evaluations of tool learning primarily focus on validating the alignment of selected tools for large language models (LLMs) with expected outcomes. However, these approaches rely on a limited set of scenarios where answers can be pre-determined, diverging from genuine needs. Furthermore, a sole emphasis on outcomes disregards the intricate capabilities essential for LLMs to effectively utilize tools. To tackle this issue, we propose ToolEyes, a fine-grained system tailored for the evaluation of the LLMs' tool learning capabilities in authentic scenarios. The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning: format alignment, intent comprehension, behavior planning, tool selection, and answer organization. Additionally, ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world. Evaluations involving ten LLMs across three categories reveal a preference for specific scenarios and limited cognitive abilities in tool learning. Intriguingly, expanding the model size even exacerbates the hindrance to tool learning. These findings offer instructive insights aimed at advancing the field of tool learning. The data is available att https://github.com/Junjie-Ye/ToolEyes. 11 authors · Jan 1, 2024
- ToolExpander: Extending the Frontiers of Tool-Using Reinforcement Learning to Weak LLMs Training Large Language Models (LLMs) with Group Relative Policy Optimization (GRPO) encounters a significant challenge: models often fail to produce accurate responses, particularly in small-scale architectures. This limitation not only diminishes performance improvements and undermines the potential of GRPO but also frequently leads to mid-training collapse, adversely affecting stability and final efficacy. To address these issues, we propose ToolExpander, a novel framework that advances tool-oriented reinforcement learning for resource-constrained LLMs through two key innovations:(1) Dynamic Multi-Round Hard Sampling, which dynamically substitutes challenging samples(those without correct outputs over 10 rollouts) with high-quality few-shot demonstrations during training, coupled with an exponential learning rate decay strategy to mitigate oscillations;(2) Self-Exemplifying Thinking, an enhanced GRPO framework that eliminates KL divergence and incorporates adjusted clipping coefficients, encouraging models to autonomously generate and analyze few-shot examples via a minimal additional reward (0.01).Experimental results demonstrate that ToolExpander significantly enhances tool-using capabilities in LLMs, especially in weaker small-scale models, improving both training stability and overall performance. 6 authors · Oct 8, 2025
1 Neural Inverse Rendering from Propagating Light We present the first system for physically based, neural inverse rendering from multi-viewpoint videos of propagating light. Our approach relies on a time-resolved extension of neural radiance caching -- a technique that accelerates inverse rendering by storing infinite-bounce radiance arriving at any point from any direction. The resulting model accurately accounts for direct and indirect light transport effects and, when applied to captured measurements from a flash lidar system, enables state-of-the-art 3D reconstruction in the presence of strong indirect light. Further, we demonstrate view synthesis of propagating light, automatic decomposition of captured measurements into direct and indirect components, as well as novel capabilities such as multi-view time-resolved relighting of captured scenes. 5 authors · Jun 5, 2025
- HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling Volumetric scene representations enable photorealistic view synthesis for static scenes and form the basis of several existing 6-DoF video techniques. However, the volume rendering procedures that drive these representations necessitate careful trade-offs in terms of quality, rendering speed, and memory efficiency. In particular, existing methods fail to simultaneously achieve real-time performance, small memory footprint, and high-quality rendering for challenging real-world scenes. To address these issues, we present HyperReel -- a novel 6-DoF video representation. The two core components of HyperReel are: (1) a ray-conditioned sample prediction network that enables high-fidelity, high frame rate rendering at high resolutions and (2) a compact and memory-efficient dynamic volume representation. Our 6-DoF video pipeline achieves the best performance compared to prior and contemporary approaches in terms of visual quality with small memory requirements, while also rendering at up to 18 frames-per-second at megapixel resolution without any custom CUDA code. 7 authors · Jan 5, 2023