Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models
Large Language Models (LLMs) have demonstrated promising reasoning capabilities in robotics; however, their application in multi-robot systems remains limited, particularly in handling task dependencies. This paper introduces DART-LLM, a novel framework that employs Directed Acyclic Graphs (DAGs) to model task dependencies, enabling the decomposition of natural language instructions into well-coordinated subtasks for multi-robot execution. DART-LLM comprises four key components: a Question-Answering (QA) LLM module for dependency-aware task decomposition, a Breakdown Function module for robot assignment, an Actuation module for execution, and a Vision-Language Model (VLM)-based object detector for environmental perception, achieving end-to-end task execution. Experimental results across three task complexity levels demonstrate that DART-LLM achieves state-of-the-art performance, significantly outperforming the baseline across all evaluation metrics. Among the tested models, DeepSeek-r1-671B achieves the highest success rate, whereas Llama-3.1-8B exhibits superior response time reliability. Ablation studies further confirm that explicit dependency modeling notably enhances the performance of smaller models, facilitating efficient deployment on resource-constrained platforms. Please refer to the project website https://wyd0817.github.io/project-dart-llm/ for videos and code.
Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes
Controllable music generation with deep generative models has become increasingly reliant on disentanglement learning techniques. However, current disentanglement metrics, such as mutual information gap (MIG), are often inadequate and misleading when used for evaluating latent representations in the presence of interdependent semantic attributes often encountered in real-world music datasets. In this work, we propose a dependency-aware information metric as a drop-in replacement for MIG that accounts for the inherent relationship between semantic attributes.
Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.
You Only Forward Once: An Efficient Compositional Judging Paradigm
Multimodal large language models (MLLMs) show strong potential as judges. However, existing approaches face a fundamental trade-off: adapting MLLMs to output a single score misaligns with the generative nature of MLLMs and limits fine-grained requirement understanding, whereas autoregressively generating judging analyses is prohibitively slow in high-throughput settings. Observing that judgment reduces to verifying whether inputs satisfy a set of structured requirements, we propose YOFO, a template-conditioned method that judges all requirements in a single forward pass. Built on an autoregressive model, YOFO accepts a structured requirement template and, in one inference step, produces a binary yes/no decision for each requirement by reading the logits of the final token associated with that requirement. This design yields orders-of-magnitude speedups while preserving interpretability. Extensive experiments show that YOFO not only achieves state-of-the-art results on standard recommendation datasets, but also supports dependency-aware analysis-where subsequent judgments are conditioned on previous ones-and further benefits from post-hoc CoT.
Foam-Agent: Towards Automated Intelligent CFD Workflows
Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent
LayerCraft: Enhancing Text-to-Image Generation with CoT Reasoning and Layered Object Integration
Text-to-image generation (T2I) has become a key area of research with broad applications. However, existing methods often struggle with complex spatial relationships and fine-grained control over multiple concepts. Many existing approaches require significant architectural modifications, extensive training, or expert-level prompt engineering. To address these challenges, we introduce LayerCraft, an automated framework that leverages large language models (LLMs) as autonomous agents for structured procedural generation. LayerCraft enables users to customize objects within an image and supports narrative-driven creation with minimal effort. At its core, the system includes a coordinator agent that directs the process, along with two specialized agents: ChainArchitect, which employs chain-of-thought (CoT) reasoning to generate a dependency-aware 3D layout for precise instance-level control, and the Object-Integration Network (OIN), which utilizes LoRA fine-tuning on pre-trained T2I models to seamlessly blend objects into specified regions of an image based on textual prompts without requiring architectural changes. Extensive evaluations demonstrate LayerCraft's versatility in applications ranging from multi-concept customization to storytelling. By providing non-experts with intuitive, precise control over T2I generation, our framework democratizes creative image creation. Our code will be released upon acceptance at github.com/PeterYYZhang/LayerCraft
LoRAFusion: Efficient LoRA Fine-Tuning for LLMs
Low-Rank Adaptation (LoRA) has become the leading Parameter-Efficient Fine-Tuning (PEFT) method for Large Language Models (LLMs), as it significantly reduces GPU memory usage while maintaining competitive fine-tuned model quality on downstream tasks. Despite these benefits, we identify two key inefficiencies in existing LoRA fine-tuning systems. First, they incur substantial runtime overhead due to redundant memory accesses on large activation tensors. Second, they miss the opportunity to concurrently fine-tune multiple independent LoRA adapters that share the same base model on the same set of GPUs. This leads to missed performance gains such as reduced pipeline bubbles, better communication overlap, and improved GPU load balance. To address these issues, we introduce LoRAFusion, an efficient LoRA fine-tuning system for LLMs. At the kernel level, we propose a graph-splitting method that fuses memory-bound operations. This design eliminates unnecessary memory accesses and preserves the performance of compute-bound GEMMs without incurring the cost of recomputation or synchronization. At the scheduling level, LoRAFusion introduces an adaptive batching algorithm for multi-job fine-tuning. It first splits LoRA adapters into groups to intentionally stagger batch execution across jobs, and then solves a bin-packing problem within each group to generate balanced, dependency-aware microbatches. LoRAFusion achieves up to 1.96times (1.47times on average) end-to-end speedup compared to Megatron-LM, and up to 1.46times (1.29times on average) improvement over mLoRA, the state-of-the-art multi-LoRA fine-tuning system. Our fused kernel achieves up to 1.39times (1.27times on average) kernel performance improvement and can directly serve as a plug-and-play replacement in existing LoRA systems. We open-source LoRAFusion at https://github.com/CentML/lorafusion.
LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from Discours de la m\'ethode, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.
Automatic Joint Structured Pruning and Quantization for Efficient Neural Network Training and Compression
Structured pruning and quantization are fundamental techniques used to reduce the size of deep neural networks (DNNs) and typically are applied independently. Applying these techniques jointly via co-optimization has the potential to produce smaller, high-quality models. However, existing joint schemes are not widely used because of (1) engineering difficulties (complicated multi-stage processes), (2) black-box optimization (extensive hyperparameter tuning to control the overall compression), and (3) insufficient architecture generalization. To address these limitations, we present the framework GETA, which automatically and efficiently performs joint structured pruning and quantization-aware training on any DNNs. GETA introduces three key innovations: (i) a quantization-aware dependency graph (QADG) that constructs a pruning search space for generic quantization-aware DNN, (ii) a partially projected stochastic gradient method that guarantees layerwise bit constraints are satisfied, and (iii) a new joint learning strategy that incorporates interpretable relationships between pruning and quantization. We present numerical experiments on both convolutional neural networks and transformer architectures that show that our approach achieves competitive (often superior) performance compared to existing joint pruning and quantization methods.
Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency
Catastrophic overfitting (CO) presents a significant challenge in single-step adversarial training (AT), manifesting as highly distorted deep neural networks (DNNs) that are vulnerable to multi-step adversarial attacks. However, the underlying factors that lead to the distortion of decision boundaries remain unclear. In this work, we delve into the specific changes within different DNN layers and discover that during CO, the former layers are more susceptible, experiencing earlier and greater distortion, while the latter layers show relative insensitivity. Our analysis further reveals that this increased sensitivity in former layers stems from the formation of pseudo-robust shortcuts, which alone can impeccably defend against single-step adversarial attacks but bypass genuine-robust learning, resulting in distorted decision boundaries. Eliminating these shortcuts can partially restore robustness in DNNs from the CO state, thereby verifying that dependence on them triggers the occurrence of CO. This understanding motivates us to implement adaptive weight perturbations across different layers to hinder the generation of pseudo-robust shortcuts, consequently mitigating CO. Extensive experiments demonstrate that our proposed method, Layer-Aware Adversarial Weight Perturbation (LAP), can effectively prevent CO and further enhance robustness.
Quality-Aware Image-Text Alignment for Opinion-Unaware Image Quality Assessment
No-Reference Image Quality Assessment (NR-IQA) focuses on designing methods to measure image quality in alignment with human perception when a high-quality reference image is unavailable. Most state-of-the-art NR-IQA approaches are opinion-aware, i.e. they require human annotations for training. This dependency limits their scalability and broad applicability. To overcome this limitation, we propose QualiCLIP (Quality-aware CLIP), a CLIP-based self-supervised opinion-unaware approach that does not require human opinions. In particular, we introduce a quality-aware image-text alignment strategy to make CLIP generate quality-aware image representations. Starting from pristine images, we synthetically degrade them with increasing levels of intensity. Then, we train CLIP to rank these degraded images based on their similarity to quality-related antonym text prompts. At the same time, we force CLIP to generate consistent representations for images with similar content and the same level of degradation. Our experiments show that the proposed method improves over existing opinion-unaware approaches across multiple datasets with diverse distortion types. Moreover, despite not requiring human annotations, QualiCLIP achieves excellent performance against supervised opinion-aware methods in cross-dataset experiments, thus demonstrating remarkable generalization capabilities. The code and the model are publicly available at https://github.com/miccunifi/QualiCLIP.
Syntax-aware Data Augmentation for Neural Machine Translation
Data augmentation is an effective performance enhancement in neural machine translation (NMT) by generating additional bilingual data. In this paper, we propose a novel data augmentation enhancement strategy for neural machine translation. Different from existing data augmentation methods which simply choose words with the same probability across different sentences for modification, we set sentence-specific probability for word selection by considering their roles in sentence. We use dependency parse tree of input sentence as an effective clue to determine selecting probability for every words in each sentence. Our proposed method is evaluated on WMT14 English-to-German dataset and IWSLT14 German-to-English dataset. The result of extensive experiments show our proposed syntax-aware data augmentation method may effectively boost existing sentence-independent methods for significant translation performance improvement.
StableVideo: Text-driven Consistency-aware Diffusion Video Editing
Diffusion-based methods can generate realistic images and videos, but they struggle to edit existing objects in a video while preserving their appearance over time. This prevents diffusion models from being applied to natural video editing in practical scenarios. In this paper, we tackle this problem by introducing temporal dependency to existing text-driven diffusion models, which allows them to generate consistent appearance for the edited objects. Specifically, we develop a novel inter-frame propagation mechanism for diffusion video editing, which leverages the concept of layered representations to propagate the appearance information from one frame to the next. We then build up a text-driven video editing framework based on this mechanism, namely StableVideo, which can achieve consistency-aware video editing. Extensive experiments demonstrate the strong editing capability of our approach. Compared with state-of-the-art video editing methods, our approach shows superior qualitative and quantitative results. Our code is available at https://github.com/rese1f/StableVideo{this https URL}.
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference
The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.
SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation
Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results in high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods. The code is available at https://github.com/ubc-tea/SADM-Longitudinal-Medical-Image-Generation.
Context-Aware Cross-Attention for Non-Autoregressive Translation
Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a localness perception problem in NAT cross-attention, for which it is difficult to adequately capture source context. To alleviate this problem, we propose to enhance signals of neighbour source tokens into conventional cross-attention. Experimental results on several representative datasets show that our approach can consistently improve translation quality over strong NAT baselines. Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of source contexts by leveraging both local and global information.
SyntaxShap: Syntax-aware Explainability Method for Text Generation
To harness the power of large language models in safety-critical domains we need to ensure the explainability of their predictions. However, despite the significant attention to model interpretability, there remains an unexplored domain in explaining sequence-to-sequence tasks using methods tailored for textual data. This paper introduces SyntaxShap, a local, model-agnostic explainability method for text generation that takes into consideration the syntax in the text data. The presented work extends Shapley values to account for parsing-based syntactic dependencies. Taking a game theoric approach, SyntaxShap only considers coalitions constraint by the dependency tree. We adopt a model-based evaluation to compare SyntaxShap and its weighted form to state-of-the-art explainability methods adapted to text generation tasks, using diverse metrics including faithfulness, complexity, coherency, and semantic alignment of the explanations to the model. We show that our syntax-aware method produces explanations that help build more faithful, coherent, and interpretable explanations for predictions by autoregressive models.
Structure-Aware Fusion with Progressive Injection for Multimodal Molecular Representation Learning
Multimodal molecular models often suffer from 3D conformer unreliability and modality collapse, limiting their robustness and generalization. We propose MuMo, a structured multimodal fusion framework that addresses these challenges in molecular representation through two key strategies. To reduce the instability of conformer-dependent fusion, we design a Structured Fusion Pipeline (SFP) that combines 2D topology and 3D geometry into a unified and stable structural prior. To mitigate modality collapse caused by naive fusion, we introduce a Progressive Injection (PI) mechanism that asymmetrically integrates this prior into the sequence stream, preserving modality-specific modeling while enabling cross-modal enrichment. Built on a state space backbone, MuMo supports long-range dependency modeling and robust information propagation. Across 29 benchmark tasks from Therapeutics Data Commons (TDC) and MoleculeNet, MuMo achieves an average improvement of 2.7% over the best-performing baseline on each task, ranking first on 22 of them, including a 27% improvement on the LD50 task. These results validate its robustness to 3D conformer noise and the effectiveness of multimodal fusion in molecular representation. The code is available at: github.com/selmiss/MuMo.
Adaptive Preference Optimization with Uncertainty-aware Utility Anchor
Offline preference optimization methods are efficient for large language models (LLMs) alignment. Direct Preference optimization (DPO)-like learning, one of the most popular approaches, stands out for its efficiency in reward modeling. However, these methods typically follow the convention to use Bradley-Terry (BT) reward modeling that faces several critical assumptions, including the requirement for pairwise training data, model distribution shifting, human rationality assumption, etc. To address these limitations, we propose a general framework for offline preference optimization methods, Adaptive Preference Optimization with Utility Anchor (UAPO), which introduces an anchoring function to estimate the uncertainties brought from preference data annotation. Our method enables training even in scenarios where the data is unpaired, significantly enhancing data utilization efficiency. Moreover, the anchor design makes UAPO more robust in the training process. Experimental results demonstrate that UAPO achieves competitive outcomes without the strict dependency on data pairing, paving the way for more flexible and effective preference optimization methods.
TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation
Despite remarkable advancements in emulating human-like behavior through Large Language Models (LLMs), current textual simulations do not adequately address the notion of time. To this end, we introduce TimeArena, a novel textual simulated environment that incorporates complex temporal dynamics and constraints that better reflect real-life planning scenarios. In TimeArena, agents are asked to complete multiple tasks as soon as possible, allowing for parallel processing to save time. We implement the dependency between actions, the time duration for each action, and the occupancy of the agent and the objects in the environment. TimeArena grounds to 30 real-world tasks in cooking, household activities, and laboratory work. We conduct extensive experiments with various state-of-the-art LLMs using TimeArena. Our findings reveal that even the most powerful models, e.g., GPT-4, still lag behind humans in effective multitasking, underscoring the need for enhanced temporal awareness in the development of language agents.
Spatial-Aware Token for Weakly Supervised Object Localization
Weakly supervised object localization (WSOL) is a challenging task aiming to localize objects with only image-level supervision. Recent works apply visual transformer to WSOL and achieve significant success by exploiting the long-range feature dependency in self-attention mechanism. However, existing transformer-based methods synthesize the classification feature maps as the localization map, which leads to optimization conflicts between classification and localization tasks. To address this problem, we propose to learn a task-specific spatial-aware token (SAT) to condition localization in a weakly supervised manner. Specifically, a spatial token is first introduced in the input space to aggregate representations for localization task. Then a spatial aware attention module is constructed, which allows spatial token to generate foreground probabilities of different patches by querying and to extract localization knowledge from the classification task. Besides, for the problem of sparse and unbalanced pixel-level supervision obtained from the image-level label, two spatial constraints, including batch area loss and normalization loss, are designed to compensate and enhance this supervision. Experiments show that the proposed SAT achieves state-of-the-art performance on both CUB-200 and ImageNet, with 98.45% and 73.13% GT-known Loc, respectively. Even under the extreme setting of using only 1 image per class from ImageNet for training, SAT already exceeds the SOTA method by 2.1% GT-known Loc. Code and models are available at https://github.com/wpy1999/SAT.
Self-Aware Feedback-Based Self-Learning in Large-Scale Conversational AI
Self-learning paradigms in large-scale conversational AI agents tend to leverage user feedback in bridging between what they say and what they mean. However, such learning, particularly in Markov-based query rewriting systems have far from addressed the impact of these models on future training where successive feedback is inevitably contingent on the rewrite itself, especially in a continually updating environment. In this paper, we explore the consequences of this inherent lack of self-awareness towards impairing the model performance, ultimately resulting in both Type I and II errors over time. To that end, we propose augmenting the Markov Graph construction with a superposition-based adjacency matrix. Here, our method leverages an induced stochasticity to reactively learn a locally-adaptive decision boundary based on the performance of the individual rewrites in a bi-variate beta setting. We also surface a data augmentation strategy that leverages template-based generation in abridging complex conversation hierarchies of dialogs so as to simplify the learning process. All in all, we demonstrate that our self-aware model improves the overall PR-AUC by 27.45%, achieves a relative defect reduction of up to 31.22%, and is able to adapt quicker to changes in global preferences across a large number of customers.
On the Loss of Context-awareness in General Instruction Fine-tuning
Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.
ViTAD: Timing Violation-Aware Debugging of RTL Code using Large Language Models
In modern Very Large Scale Integrated (VLSI) circuit design flow, the Register-Transfer Level (RTL) stage presents a critical opportunity for timing optimization. Addressing timing violations at this early stage is essential, as modern systems demand higher speeds, where even minor timing violations can lead to functional failures or system crashes. However, traditional timing optimization heavily relies on manual expertise, requiring engineers to iteratively analyze timing reports and debug. To automate this process, this paper proposes ViTAD, a method that efficiently analyzes the root causes of timing violations and dynamically generates targeted repair strategies. Specifically, we first parse Verilog code and timing reports to construct a Signal Timing Dependency Graph (STDG). Based on the STDG, we perform violation path analysis and use large language models (LLMs) to infer the root causes of violations. Finally, by analyzing the causes of violations, we selectively retrieve relevant debugging knowledge from a domain-specific knowledge base to generate customized repair solutions. To evaluate the effectiveness of our method, we construct a timing violation dataset based on real-world open-source projects. This dataset contains 54 cases of violations. Experimental results show that our method achieves a 73.68% success rate in repairing timing violations, while the baseline using only LLM is 54.38%. Our method improves the success rate by 19.30%.
FastGraphTTS: An Ultrafast Syntax-Aware Speech Synthesis Framework
This paper integrates graph-to-sequence into an end-to-end text-to-speech framework for syntax-aware modelling with syntactic information of input text. Specifically, the input text is parsed by a dependency parsing module to form a syntactic graph. The syntactic graph is then encoded by a graph encoder to extract the syntactic hidden information, which is concatenated with phoneme embedding and input to the alignment and flow-based decoding modules to generate the raw audio waveform. The model is experimented on two languages, English and Mandarin, using single-speaker, few samples of target speakers, and multi-speaker datasets, respectively. Experimental results show better prosodic consistency performance between input text and generated audio, and also get higher scores in the subjective prosodic evaluation, and show the ability of voice conversion. Besides, the efficiency of the model is largely boosted through the design of the AI chip operator with 5x acceleration.
Learning Trajectory-Aware Transformer for Video Super-Resolution
Video super-resolution (VSR) aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts. Although some progress has been made, there are grand challenges to effectively utilize temporal dependency in entire video sequences. Existing approaches usually align and aggregate video frames from limited adjacent frames (e.g., 5 or 7 frames), which prevents these approaches from satisfactory results. In this paper, we take one step further to enable effective spatio-temporal learning in videos. We propose a novel Trajectory-aware Transformer for Video Super-Resolution (TTVSR). In particular, we formulate video frames into several pre-aligned trajectories which consist of continuous visual tokens. For a query token, self-attention is only learned on relevant visual tokens along spatio-temporal trajectories. Compared with vanilla vision Transformers, such a design significantly reduces the computational cost and enables Transformers to model long-range features. We further propose a cross-scale feature tokenization module to overcome scale-changing problems that often occur in long-range videos. Experimental results demonstrate the superiority of the proposed TTVSR over state-of-the-art models, by extensive quantitative and qualitative evaluations in four widely-used video super-resolution benchmarks. Both code and pre-trained models can be downloaded at https://github.com/researchmm/TTVSR.
TRACED: Execution-aware Pre-training for Source Code
Most existing pre-trained language models for source code focus on learning the static code text, typically augmented with static code structures (abstract syntax tree, dependency graphs, etc.). However, program semantics will not be fully exposed before the real execution. Without an understanding of the program execution, statically pre-trained models fail to comprehensively capture the dynamic code properties, such as the branch coverage and the runtime variable values, and they are consequently less effective at code understanding tasks, such as retrieving semantic clones and detecting software vulnerabilities. To close the gap between the static nature of language models and the dynamic characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for source code. Specifically, we pre-train code language models with a combination of source code, executable inputs, and corresponding execution traces. Our goal is to teach code models the complicated execution logic during the pre-training, enabling the model to statically estimate the dynamic code properties without repeatedly executing code during task-specific fine-tuning. To illustrate the effectiveness of our proposed approach, we fine-tune and evaluate TRACED on three downstream tasks: static execution estimation, clone retrieval, and vulnerability detection. The empirical results show that TRACED relatively improves the statically pre-trained code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable value predictions. TRACED also significantly outperforms statically pre-trained models in clone retrieval and vulnerability detection across four public benchmarks.
SaMam: Style-aware State Space Model for Arbitrary Image Style Transfer
Global effective receptive field plays a crucial role for image style transfer (ST) to obtain high-quality stylized results. However, existing ST backbones (e.g., CNNs and Transformers) suffer huge computational complexity to achieve global receptive fields. Recently, the State Space Model (SSM), especially the improved variant Mamba, has shown great potential for long-range dependency modeling with linear complexity, which offers a approach to resolve the above dilemma. In this paper, we develop a Mamba-based style transfer framework, termed SaMam. Specifically, a mamba encoder is designed to efficiently extract content and style information. In addition, a style-aware mamba decoder is developed to flexibly adapt to various styles. Moreover, to address the problems of local pixel forgetting, channel redundancy and spatial discontinuity of existing SSMs, we introduce both local enhancement and zigzag scan. Qualitative and quantitative results demonstrate that our SaMam outperforms state-of-the-art methods in terms of both accuracy and efficiency.
Self-Supervised Monocular Depth Estimation by Direction-aware Cumulative Convolution Network
Monocular depth estimation is known as an ill-posed task in which objects in a 2D image usually do not contain sufficient information to predict their depth. Thus, it acts differently from other tasks (e.g., classification and segmentation) in many ways. In this paper, we find that self-supervised monocular depth estimation shows a direction sensitivity and environmental dependency in the feature representation. But the current backbones borrowed from other tasks pay less attention to handling different types of environmental information, limiting the overall depth accuracy. To bridge this gap, we propose a new Direction-aware Cumulative Convolution Network (DaCCN), which improves the depth feature representation in two aspects. First, we propose a direction-aware module, which can learn to adjust the feature extraction in each direction, facilitating the encoding of different types of information. Secondly, we design a new cumulative convolution to improve the efficiency for aggregating important environmental information. Experiments show that our method achieves significant improvements on three widely used benchmarks, KITTI, Cityscapes, and Make3D, setting a new state-of-the-art performance on the popular benchmarks with all three types of self-supervision.
FS-RWKV: Leveraging Frequency Spatial-Aware RWKV for 3T-to-7T MRI Translation
Ultra-high-field 7T MRI offers enhanced spatial resolution and tissue contrast that enables the detection of subtle pathological changes in neurological disorders. However, the limited availability of 7T scanners restricts widespread clinical adoption due to substantial infrastructure costs and technical demands. Computational approaches for synthesizing 7T-quality images from accessible 3T acquisitions present a viable solution to this accessibility challenge. Existing CNN approaches suffer from limited spatial coverage, while Transformer models demand excessive computational overhead. RWKV architectures offer an efficient alternative for global feature modeling in medical image synthesis, combining linear computational complexity with strong long-range dependency capture. Building on this foundation, we propose Frequency Spatial-RWKV (FS-RWKV), an RWKV-based framework for 3T-to-7T MRI translation. To better address the challenges of anatomical detail preservation and global tissue contrast recovery, FS-RWKV incorporates two key modules: (1) Frequency-Spatial Omnidirectional Shift (FSO-Shift), which performs discrete wavelet decomposition followed by omnidirectional spatial shifting on the low-frequency branch to enhance global contextual representation while preserving high-frequency anatomical details; and (2) Structural Fidelity Enhancement Block (SFEB), a module that adaptively reinforces anatomical structure through frequency-aware feature fusion. Comprehensive experiments on UNC and BNU datasets demonstrate that FS-RWKV consistently outperforms existing CNN-, Transformer-, GAN-, and RWKV-based baselines across both T1w and T2w modalities, achieving superior anatomical fidelity and perceptual quality.
TRAJECT-Bench:A Trajectory-Aware Benchmark for Evaluating Agentic Tool Use
Large language model (LLM)-based agents increasingly rely on tool use to complete real-world tasks. While existing works evaluate the LLMs' tool use capability, they largely focus on the final answers yet overlook the detailed tool usage trajectory, i.e., whether tools are selected, parameterized, and ordered correctly. We introduce TRAJECT-Bench, a trajectory-aware benchmark to comprehensively evaluate LLMs' tool use capability through diverse tasks with fine-grained evaluation metrics. TRAJECT-Bench pairs high-fidelity, executable tools across practical domains with tasks grounded in production-style APIs, and synthesizes trajectories that vary in breadth (parallel calls) and depth (interdependent chains). Besides final accuracy, TRAJECT-Bench also reports trajectory-level diagnostics, including tool selection and argument correctness, and dependency/order satisfaction. Analyses reveal failure modes such as similar tool confusion and parameter-blind selection, and scaling behavior with tool diversity and trajectory length where the bottleneck of transiting from short to mid-length trajectories is revealed, offering actionable guidance for LLMs' tool use.
Not All Features Deserve Attention: Graph-Guided Dependency Learning for Tabular Data Generation with Language Models
Large Language Models (LLMs) have shown strong potential for tabular data generation by modeling textualized feature-value pairs. However, tabular data inherently exhibits sparse feature-level dependencies, where many feature interactions are structurally insignificant. This creates a fundamental mismatch as LLMs' self-attention mechanism inevitably distributes focus across all pairs, diluting attention on critical relationships, particularly in datasets with complex dependencies or semantically ambiguous features. To address this limitation, we propose GraDe (Graph-Guided Dependency Learning), a novel method that explicitly integrates sparse dependency graphs into LLMs' attention mechanism. GraDe employs a lightweight dynamic graph learning module guided by externally extracted functional dependencies, prioritizing key feature interactions while suppressing irrelevant ones. Our experiments across diverse real-world datasets demonstrate that GraDe outperforms existing LLM-based approaches by up to 12% on complex datasets while achieving competitive results with state-of-the-art approaches in synthetic data quality. Our method is minimally intrusive yet effective, offering a practical solution for structure-aware tabular data modeling with LLMs.
DesignRepair: Dual-Stream Design Guideline-Aware Frontend Repair with Large Language Models
The rise of Large Language Models (LLMs) has streamlined frontend interface creation through tools like Vercel's V0, yet surfaced challenges in design quality (e.g., accessibility, and usability). Current solutions, often limited by their focus, generalisability, or data dependency, fall short in addressing these complexities. Moreover, none of them examine the quality of LLM-generated UI design. In this work, we introduce DesignRepair, a novel dual-stream design guideline-aware system to examine and repair the UI design quality issues from both code aspect and rendered page aspect. We utilised the mature and popular Material Design as our knowledge base to guide this process. Specifically, we first constructed a comprehensive knowledge base encoding Google's Material Design principles into low-level component knowledge base and high-level system design knowledge base. After that, DesignRepair employs a LLM for the extraction of key components and utilizes the Playwright tool for precise page analysis, aligning these with the established knowledge bases. Finally, we integrate Retrieval-Augmented Generation with state-of-the-art LLMs like GPT-4 to holistically refine and repair frontend code through a strategic divide and conquer approach. Our extensive evaluations validated the efficacy and utility of our approach, demonstrating significant enhancements in adherence to design guidelines, accessibility, and user experience metrics.
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments
Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.
VoxCPM: Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning
Generative models for speech synthesis face a fundamental trade-off: discrete tokens ensure stability but sacrifice expressivity, while continuous signals retain acoustic richness but suffer from error accumulation due to task entanglement. This challenge has driven the field towards multi-stage pipelines that rely on pre-trained speech tokenizers, but these create a semantic-acoustic divide, limiting holistic and expressive speech generation. We resolve these dilemma through hierarchical semantic-acoustic modeling with semi-discrete residual representations and present a novel tokenizer-free TTS model VoxCPM. Our framework introduces a differentiable quantization bottleneck that induces natural specialization: a Text-Semantic Language Model (TSLM) generates semantic-prosodic plans, while a Residual Acoustic Model (RALM) recovers fine-grained acoustic details. This hierarchical semantic-acoustic representation guides a local diffusion-based decoder to generate high-fidelity speech latents. Critically, the entire architecture is trained end-to-end under a simple diffusion objective, eliminating dependency on external speech tokenizers. Trained on a massive 1.8 million hours of bilingual corpus, our VoxCPM-0.5B model achieves state-of-the-art zero-shot TTS performance among open-source systems, demonstrating that our approach delivers expressive and stable synthesis. Besides, VoxCPM shows the capability to comprehend text to infer and generate appropriate prosody and style, delivering speech with context-aware expressiveness and natural flow. To facilitate community-driven research and development, VoxCPM is publicly accessible under Apache 2.0.
Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement
The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
Detecting fake news by enhanced text representation with multi-EDU-structure awareness
Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.
Few Exemplar-Based General Medical Image Segmentation via Domain-Aware Selective Adaptation
Medical image segmentation poses challenges due to domain gaps, data modality variations, and dependency on domain knowledge or experts, especially for low- and middle-income countries (LMICs). Whereas for humans, given a few exemplars (with corresponding labels), we are able to segment different medical images even without exten-sive domain-specific clinical training. In addition, current SAM-based medical segmentation models use fine-grained visual prompts, such as the bounding rectangle generated from manually annotated target segmentation mask, as the bounding box (bbox) prompt during the testing phase. However, in actual clinical scenarios, no such precise prior knowledge is available. Our experimental results also reveal that previous models nearly fail to predict when given coarser bbox prompts. Considering these issues, in this paper, we introduce a domain-aware selective adaptation approach to adapt the general knowledge learned from a large model trained with natural images to the corresponding medical domains/modalities, with access to only a few (e.g. less than 5) exemplars. Our method mitigates the aforementioned limitations, providing an efficient and LMICs-friendly solution. Extensive experimental analysis showcases the effectiveness of our approach, offering potential advancements in healthcare diagnostics and clinical applications in LMICs.
A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
Video-Based Human Pose Regression via Decoupled Space-Time Aggregation
By leveraging temporal dependency in video sequences, multi-frame human pose estimation algorithms have demonstrated remarkable results in complicated situations, such as occlusion, motion blur, and video defocus. These algorithms are predominantly based on heatmaps, resulting in high computation and storage requirements per frame, which limits their flexibility and real-time application in video scenarios, particularly on edge devices. In this paper, we develop an efficient and effective video-based human pose regression method, which bypasses intermediate representations such as heatmaps and instead directly maps the input to the output joint coordinates. Despite the inherent spatial correlation among adjacent joints of the human pose, the temporal trajectory of each individual joint exhibits relative independence. In light of this, we propose a novel Decoupled Space-Time Aggregation network (DSTA) to separately capture the spatial contexts between adjacent joints and the temporal cues of each individual joint, thereby avoiding the conflation of spatiotemporal dimensions. Concretely, DSTA learns a dedicated feature token for each joint to facilitate the modeling of their spatiotemporal dependencies. With the proposed joint-wise local-awareness attention mechanism, our method is capable of efficiently and flexibly utilizing the spatial dependency of adjacent joints and the temporal dependency of each joint itself. Extensive experiments demonstrate the superiority of our method. Compared to previous regression-based single-frame human pose estimation methods, DSTA significantly enhances performance, achieving an 8.9 mAP improvement on PoseTrack2017. Furthermore, our approach either surpasses or is on par with the state-of-the-art heatmap-based multi-frame human pose estimation methods. Project page: https://github.com/zgspose/DSTA.
v-CLR: View-Consistent Learning for Open-World Instance Segmentation
In this paper, we address the challenging problem of open-world instance segmentation. Existing works have shown that vanilla visual networks are biased toward learning appearance information, \eg texture, to recognize objects. This implicit bias causes the model to fail in detecting novel objects with unseen textures in the open-world setting. To address this challenge, we propose a learning framework, called view-Consistent LeaRning (v-CLR), which aims to enforce the model to learn appearance-invariant representations for robust instance segmentation. In v-CLR, we first introduce additional views for each image, where the texture undergoes significant alterations while preserving the image's underlying structure. We then encourage the model to learn the appearance-invariant representation by enforcing the consistency between object features across different views, for which we obtain class-agnostic object proposals using off-the-shelf unsupervised models that possess strong object-awareness. These proposals enable cross-view object feature matching, greatly reducing the appearance dependency while enhancing the object-awareness. We thoroughly evaluate our method on public benchmarks under both cross-class and cross-dataset settings, achieving state-of-the-art performance. Project page: https://visual-ai.github.io/vclr
Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to 27.6times throughput improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks
Large language models (LLMs) have been widely adopted across diverse software engineering domains, such as code generation, program repair, and vulnerability detection. These applications require understanding beyond surface-level code patterns: value propagation, control flow, and interdependence between program elements. However, existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated, leaving the models ability for program semantic reasoning underexplored. This work presents CoRe, a high-quality, human-verified benchmark designed to evaluate LLMs on fundamental static analysis tasks. CoRe includes 12,553 task instances spanning data dependency, control dependency, and information flow across programs written in C/C++, Java, and Python. To ensure semantic diversity and reasoning complexity, we propose a semantics-aware diverse sampling strategy that selects targets and task instances based on structural coverage and dependency depth. We evaluate 10 mainstream LLMs and show that, while they perform well at identifying dependencies, models still struggle with tasks that require deeper semantic understanding and multi-step reasoning. We further conduct qualitative analyses to uncover key challenges, such as complex control structures and backward dependency patterns, offering insights into improving LLMs code reasoning capabilities.
GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training
Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge graphs, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT).Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.
GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning Benchmarks
Label errors have been found to be prevalent in popular text, vision, and audio datasets, which heavily influence the safe development and evaluation of machine learning algorithms. Despite increasing efforts towards improving the quality of generic data types, such as images and texts, the problem of mislabel detection in graph data remains underexplored. To bridge the gap, we explore mislabelling issues in popular real-world graph datasets and propose GraphCleaner, a post-hoc method to detect and correct these mislabelled nodes in graph datasets. GraphCleaner combines the novel ideas of 1) Synthetic Mislabel Dataset Generation, which seeks to generate realistic mislabels; and 2) Neighborhood-Aware Mislabel Detection, where neighborhood dependency is exploited in both labels and base classifier predictions. Empirical evaluations on 6 datasets and 6 experimental settings demonstrate that GraphCleaner outperforms the closest baseline, with an average improvement of 0.14 in F1 score, and 0.16 in MCC. On real-data case studies, GraphCleaner detects real and previously unknown mislabels in popular graph benchmarks: PubMed, Cora, CiteSeer and OGB-arxiv; we find that at least 6.91% of PubMed data is mislabelled or ambiguous, and simply removing these mislabelled data can boost evaluation performance from 86.71% to 89.11%.
Teaching Code LLMs to Use Autocompletion Tools in Repository-Level Code Generation
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Static Validity Rate. The results demonstrate that ToolGen significantly improves Dependency Coverage by 15.2% to 45.8% and Static Validity Rate by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
Principled Architecture-aware Scaling of Hyperparameters
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process. Current works try to automatically optimize or design principles of hyperparameters, such that they can generalize to diverse unseen scenarios. However, most designs or optimization methods are agnostic to the choice of network structures, and thus largely ignore the impact of neural architectures on hyperparameters. In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture, which includes the network depth, width, convolutional kernel size, and connectivity patterns. By pursuing every parameter to be maximally updated with the same mean squared change in pre-activations, we can generalize our initialization and learning rates across MLPs (multi-layer perception) and CNNs (convolutional neural network) with sophisticated graph topologies. We verify our principles with comprehensive experiments. More importantly, our strategy further sheds light on advancing current benchmarks for architecture design. A fair comparison of AutoML algorithms requires accurate network rankings. However, we demonstrate that network rankings can be easily changed by better training networks in benchmarks with our architecture-aware learning rates and initialization.
Boundary-aware Supervoxel-level Iteratively Refined Interactive 3D Image Segmentation with Multi-agent Reinforcement Learning
Interactive segmentation has recently been explored to effectively and efficiently harvest high-quality segmentation masks by iteratively incorporating user hints. While iterative in nature, most existing interactive segmentation methods tend to ignore the dynamics of successive interactions and take each interaction independently. We here propose to model iterative interactive image segmentation with a Markov decision process (MDP) and solve it with reinforcement learning (RL) where each voxel is treated as an agent. Considering the large exploration space for voxel-wise prediction and the dependence among neighboring voxels for the segmentation tasks, multi-agent reinforcement learning is adopted, where the voxel-level policy is shared among agents. Considering that boundary voxels are more important for segmentation, we further introduce a boundary-aware reward, which consists of a global reward in the form of relative cross-entropy gain, to update the policy in a constrained direction, and a boundary reward in the form of relative weight, to emphasize the correctness of boundary predictions. To combine the advantages of different types of interactions, i.e., simple and efficient for point-clicking, and stable and robust for scribbles, we propose a supervoxel-clicking based interaction design. Experimental results on four benchmark datasets have shown that the proposed method significantly outperforms the state-of-the-arts, with the advantage of fewer interactions, higher accuracy, and enhanced robustness.
Perception-Aware Policy Optimization for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose Perception-Aware Policy Optimization (PAPO), a simple yet effective extension of GRPO that encourages the model to learn to perceive while learning to reason, entirely from internal supervision signals. Notably, PAPO does not rely on additional data curation, external reward models, or proprietary models. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term to the GRPO objective, which, despite its simplicity, yields significant overall improvements (4.4%) on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%, on tasks with high vision dependency. We also observe a substantial reduction (30.5%) in perception errors, indicating improved perceptual capabilities with PAPO. We conduct comprehensive analysis of PAPO and identify a unique loss hacking issue, which we rigorously analyze and mitigate through a Double Entropy Loss. Overall, our work introduces a deeper integration of perception-aware supervision into RLVR learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Project page: https://mikewangwzhl.github.io/PAPO.
MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second
We present MoVieS, a novel feed-forward model that synthesizes 4D dynamic novel views from monocular videos in one second. MoVieS represents dynamic 3D scenes using pixel-aligned grids of Gaussian primitives, explicitly supervising their time-varying motion. This allows, for the first time, the unified modeling of appearance, geometry and motion, and enables view synthesis, reconstruction and 3D point tracking within a single learning-based framework. By bridging novel view synthesis with dynamic geometry reconstruction, MoVieS enables large-scale training on diverse datasets with minimal dependence on task-specific supervision. As a result, it also naturally supports a wide range of zero-shot applications, such as scene flow estimation and moving object segmentation. Extensive experiments validate the effectiveness and efficiency of MoVieS across multiple tasks, achieving competitive performance while offering several orders of magnitude speedups.
TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling
Speech tokenizers serve as foundational components for speech language models, yet current designs exhibit several limitations, including: 1) dependence on multi-layer residual vector quantization structures or high frame rates, 2) reliance on auxiliary pre-trained models for semantic distillation, and 3) requirements for complex two-stage training processes. In this work, we introduce the Text-aware Diffusion Transformer Speech Codec (TaDiCodec), a novel approach designed to overcome these challenges. TaDiCodec employs end-to-end optimization for quantization and reconstruction through a diffusion autoencoder, while integrating text guidance into the diffusion decoder to enhance reconstruction quality and achieve optimal compression. TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding bitrate of 0.0875 kbps with a single-layer codebook for 24 kHz speech, while maintaining superior performance on critical speech generation evaluation metrics such as Word Error Rate (WER), speaker similarity (SIM), and speech quality (UTMOS). Notably, TaDiCodec employs a single-stage, end-to-end training paradigm, and obviating the need for auxiliary pre-trained models. We also validate the compatibility of TaDiCodec in language model based zero-shot text-to-speech with both autoregressive modeling and masked generative modeling, demonstrating its effectiveness and efficiency for speech language modeling, as well as a significantly small reconstruction-generation gap. We will open source our code and model checkpoints. Audio samples are are available at https:/tadicodec.github.io/. We release code and model checkpoints at https:/github.com/HeCheng0625/Diffusion-Speech-Tokenizer.
CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution
Transformer-based methods have demonstrated impressive performance in low-level visual tasks such as Image Super-Resolution (SR). However, its computational complexity grows quadratically with the spatial resolution. A series of works attempt to alleviate this problem by dividing Low-Resolution images into local windows, axial stripes, or dilated windows. SR typically leverages the redundancy of images for reconstruction, and this redundancy appears not only in local regions but also in long-range regions. However, these methods limit attention computation to content-agnostic local regions, limiting directly the ability of attention to capture long-range dependency. To address these issues, we propose a lightweight Content-Aware Token Aggregation Network (CATANet). Specifically, we propose an efficient Content-Aware Token Aggregation module for aggregating long-range content-similar tokens, which shares token centers across all image tokens and updates them only during the training phase. Then we utilize intra-group self-attention to enable long-range information interaction. Moreover, we design an inter-group cross-attention to further enhance global information interaction. The experimental results show that, compared with the state-of-the-art cluster-based method SPIN, our method achieves superior performance, with a maximum PSNR improvement of 0.33dB and nearly double the inference speed.
CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation
Ensuring truthfulness in large language models remains a critical challenge for reliable text generation. While supervised fine-tuning and reinforcement learning with human feedback have shown promise, they require substantial amount of annotated data and computational resources, limiting scalability. In contrast, decoding-time interventions offer lightweight alternatives without model retraining. However, existing decoding strategies often face issues like prompt sensitivity, limited generalization, or dependence on internal model states. We propose a context-aware adaptive decoding method that leverages a compact reference grounding space, built from as few as 10 annotated examples and comprising pairs of context embeddings and next token logits from truthful responses, to enable retrieval-based logit shaping during inference. At each decoding step, our method retrieves top-N semantically similar contexts and aggregates their associated next token logits to modify the LLM's logits. Across three open-ended question-answering benchmarks, our approach achieves a 2.8 percent average improvement on TruthfulQA and further outperforms existing baselines on both Biographies and WikiQA. Experimental results also demonstrate cross-task generalization, with TruthfulQA-derived grounding enhancing biography generation. Our model-agnostic, scalable, and efficient method requires only a single generation pass, highlighting the potential of context-aware decoding for factual reliability in LLMs.
LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying. Source codes are open at https://github.com/ChocoWu/LasUIE.
StreamVoice: Streamable Context-Aware Language Modeling for Real-time Zero-Shot Voice Conversion
Recent language model (LM) advancements have showcased impressive zero-shot voice conversion (VC) performance. However, existing LM-based VC models usually apply offline conversion from source semantics to acoustic features, demanding the complete source speech, and limiting their deployment to real-time applications. In this paper, we introduce StreamVoice, a novel streaming LM-based model for zero-shot VC, facilitating real-time conversion given arbitrary speaker prompts and source speech. Specifically, to enable streaming capability, StreamVoice employs a fully causal context-aware LM with a temporal-independent acoustic predictor, while alternately processing semantic and acoustic features at each time step of autoregression which eliminates the dependence on complete source speech. To address the potential performance degradation from the incomplete context in streaming processing, we enhance the context-awareness of the LM through two strategies: 1) teacher-guided context foresight, using a teacher model to summarize the present and future semantic context during training to guide the model's forecasting for missing context; 2) semantic masking strategy, promoting acoustic prediction from preceding corrupted semantic and acoustic input, enhancing context-learning ability. Notably, StreamVoice is the first LM-based streaming zero-shot VC model without any future look-ahead. Experimental results demonstrate StreamVoice's streaming conversion capability while maintaining zero-shot performance comparable to non-streaming VC systems.
Data-independent Module-aware Pruning for Hierarchical Vision Transformers
Hierarchical vision transformers (ViTs) have two advantages over conventional ViTs. First, hierarchical ViTs achieve linear computational complexity with respect to image size by local self-attention. Second, hierarchical ViTs create hierarchical feature maps by merging image patches in deeper layers for dense prediction. However, existing pruning methods ignore the unique properties of hierarchical ViTs and use the magnitude value as the weight importance. This approach leads to two main drawbacks. First, the "local" attention weights are compared at a "global" level, which may cause some "locally" important weights to be pruned due to their relatively small magnitude "globally". The second issue with magnitude pruning is that it fails to consider the distinct weight distributions of the network, which are essential for extracting coarse to fine-grained features at various hierarchical levels. To solve the aforementioned issues, we have developed a Data-independent Module-Aware Pruning method (DIMAP) to compress hierarchical ViTs. To ensure that "local" attention weights at different hierarchical levels are compared fairly in terms of their contribution, we treat them as a module and examine their contribution by analyzing their information distortion. Furthermore, we introduce a novel weight metric that is solely based on weights and does not require input images, thereby eliminating the dependence on the patch merging process. Our method validates its usefulness and strengths on Swin Transformers of different sizes on ImageNet-1k classification. Notably, the top-5 accuracy drop is only 0.07% when we remove 52.5% FLOPs and 52.7% parameters of Swin-B. When we reduce 33.2% FLOPs and 33.2% parameters of Swin-S, we can even achieve a 0.8% higher relative top-5 accuracy than the original model. Code is available at: https://github.com/he-y/Data-independent-Module-Aware-Pruning
The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models
Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs
Tool-integrated reasoning has emerged as a key focus for enabling agentic applications. Among these, DeepResearch Agents have gained significant attention for their strong performance on complex, open-ended information-seeking tasks. We introduce Fathom-DeepResearch, an agentic system composed of two specialized models. The first is Fathom-Search-4B, a DeepSearch model trained from Qwen3-4B and optimized for evidence-based investigation through live web search and targeted webpage querying. Its training combines three advances: (i) DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learning with Verifiable Rewards through curriculum pruning, reward-aware advantage scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward that classifies each tool call by cognitive behavior and marginal utility, enabling explicit control over search trajectory breadth, depth, and horizon. These improvements enable reliable extension of tool-calling beyond 20 calls when warranted. The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system achieves state-of-the-art performance in the open-weights category while demonstrating strong generalization to diverse reasoning tasks including HLE, AIME-25, GPQA-Diamond, and MedQA.
Context-aware Rotary Position Embedding
Positional encoding is a vital component of Transformer architectures, enabling models to incorporate sequence order into self-attention mechanisms. Rotary Positional Embeddings (RoPE) have become a widely adopted solution due to their compatibility with relative position encoding and computational efficiency. However, RoPE relies on static, input-independent sinusoidal frequency patterns, limiting its ability to model context-sensitive relationships. In this work, we propose CARoPE (Context-Aware Rotary Positional Embedding), a novel generalization of RoPE that dynamically generates head-specific frequency patterns conditioned on token embeddings. This design introduces token- and context-sensitive positional representations while preserving RoPE efficiency and architectural simplicity. CARoPE computes input-dependent phase shifts using a bounded transformation of token embeddings and integrates them into the rotary mechanism across attention heads. We evaluate CARoPE on the FineWeb-Edu-10B dataset using GPT-2 variants trained on next-token prediction tasks. Experimental results show that CARoPE consistently outperforms RoPE and other common positional encoding baselines, achieving significantly lower perplexity, even at longer context lengths. Additionally, CARoPE enables faster training throughput without sacrificing model stability. These findings demonstrate that CARoPE offers a scalable, expressive, and efficient upgrade to existing positional encoding strategies in Transformer models.
SCENIC: Scene-aware Semantic Navigation with Instruction-guided Control
Synthesizing natural human motion that adapts to complex environments while allowing creative control remains a fundamental challenge in motion synthesis. Existing models often fall short, either by assuming flat terrain or lacking the ability to control motion semantics through text. To address these limitations, we introduce SCENIC, a diffusion model designed to generate human motion that adapts to dynamic terrains within virtual scenes while enabling semantic control through natural language. The key technical challenge lies in simultaneously reasoning about complex scene geometry while maintaining text control. This requires understanding both high-level navigation goals and fine-grained environmental constraints. The model must ensure physical plausibility and precise navigation across varied terrain, while also preserving user-specified text control, such as ``carefully stepping over obstacles" or ``walking upstairs like a zombie." Our solution introduces a hierarchical scene reasoning approach. At its core is a novel scene-dependent, goal-centric canonicalization that handles high-level goal constraint, and is complemented by an ego-centric distance field that captures local geometric details. This dual representation enables our model to generate physically plausible motion across diverse 3D scenes. By implementing frame-wise text alignment, our system achieves seamless transitions between different motion styles while maintaining scene constraints. Experiments demonstrate our novel diffusion model generates arbitrarily long human motions that both adapt to complex scenes with varying terrain surfaces and respond to textual prompts. Additionally, we show SCENIC can generalize to four real-scene datasets. Our code, dataset, and models will be released at https://virtualhumans.mpi-inf.mpg.de/scenic/.
Nested Attention: Semantic-aware Attention Values for Concept Personalization
Personalizing text-to-image models to generate images of specific subjects across diverse scenes and styles is a rapidly advancing field. Current approaches often face challenges in maintaining a balance between identity preservation and alignment with the input text prompt. Some methods rely on a single textual token to represent a subject, which limits expressiveness, while others employ richer representations but disrupt the model's prior, diminishing prompt alignment. In this work, we introduce Nested Attention, a novel mechanism that injects a rich and expressive image representation into the model's existing cross-attention layers. Our key idea is to generate query-dependent subject values, derived from nested attention layers that learn to select relevant subject features for each region in the generated image. We integrate these nested layers into an encoder-based personalization method, and show that they enable high identity preservation while adhering to input text prompts. Our approach is general and can be trained on various domains. Additionally, its prior preservation allows us to combine multiple personalized subjects from different domains in a single image.
NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Recent advances in R1-like reasoning models leveraging Group Relative Policy Optimization (GRPO) have significantly improved the performance of language models on mathematical reasoning tasks. However, current GRPO implementations encounter critical challenges, including reward sparsity due to binary accuracy metrics, limited incentives for conciseness, and insufficient focus on complex reasoning tasks. To address these issues, we propose GRPO-LEAD, a suite of novel enhancements tailored for mathematical reasoning. Specifically, GRPO-LEAD introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems. Furthermore, we systematically examine the impact of model scale and supervised fine-tuning (SFT) strategies, demonstrating that larger-scale base models and carefully curated datasets significantly enhance reinforcement learning effectiveness. Extensive empirical evaluations and ablation studies confirm that GRPO-LEAD substantially mitigates previous shortcomings, resulting in language models that produce more concise, accurate, and robust reasoning across diverse mathematical tasks.
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning
Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data for scale-dependent domains, such as remote sensing. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a 2.4 - 5.6% non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a 0.9 mIoU to 1.7 mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
Length-Aware Motion Synthesis via Latent Diffusion
The target duration of a synthesized human motion is a critical attribute that requires modeling control over the motion dynamics and style. Speeding up an action performance is not merely fast-forwarding it. However, state-of-the-art techniques for human behavior synthesis have limited control over the target sequence length. We introduce the problem of generating length-aware 3D human motion sequences from textual descriptors, and we propose a novel model to synthesize motions of variable target lengths, which we dub "Length-Aware Latent Diffusion" (LADiff). LADiff consists of two new modules: 1) a length-aware variational auto-encoder to learn motion representations with length-dependent latent codes; 2) a length-conforming latent diffusion model to generate motions with a richness of details that increases with the required target sequence length. LADiff significantly improves over the state-of-the-art across most of the existing motion synthesis metrics on the two established benchmarks of HumanML3D and KIT-ML.
Shape-Aware Masking for Inpainting in Medical Imaging
Inpainting has recently been proposed as a successful deep learning technique for unsupervised medical image model discovery. The masks used for inpainting are generally independent of the dataset and are not tailored to perform on different given classes of anatomy. In this work, we introduce a method for generating shape-aware masks for inpainting, which aims at learning the statistical shape prior. We hypothesize that although the variation of masks improves the generalizability of inpainting models, the shape of the masks should follow the topology of the organs of interest. Hence, we propose an unsupervised guided masking approach based on an off-the-shelf inpainting model and a superpixel over-segmentation algorithm to generate a wide range of shape-dependent masks. Experimental results on abdominal MR image reconstruction show the superiority of our proposed masking method over standard methods using square-shaped or dataset of irregular shape masks.
Context-aware Embedding for Targeted Aspect-based Sentiment Analysis
Attention-based neural models were employed to detect the different aspects and sentiment polarities of the same target in targeted aspect-based sentiment analysis (TABSA). However, existing methods do not specifically pre-train reasonable embeddings for targets and aspects in TABSA. This may result in targets or aspects having the same vector representations in different contexts and losing the context-dependent information. To address this problem, we propose a novel method to refine the embeddings of targets and aspects. Such pivotal embedding refinement utilizes a sparse coefficient vector to adjust the embeddings of target and aspect from the context. Hence the embeddings of targets and aspects can be refined from the highly correlative words instead of using context-independent or randomly initialized vectors. Experiment results on two benchmark datasets show that our approach yields the state-of-the-art performance in TABSA task.
3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose Estimation
Regression-based methods for 3D human pose estimation directly predict the 3D pose parameters from a 2D image using deep networks. While achieving state-of-the-art performance on standard benchmarks, their performance degrades under occlusion. In contrast, optimization-based methods fit a parametric body model to 2D features in an iterative manner. The localized reconstruction loss can potentially make them robust to occlusion, but they suffer from the 2D-3D ambiguity. Motivated by the recent success of generative models in rigid object pose estimation, we propose 3D-aware Neural Body Fitting (3DNBF) - an approximate analysis-by-synthesis approach to 3D human pose estimation with SOTA performance and occlusion robustness. In particular, we propose a generative model of deep features based on a volumetric human representation with Gaussian ellipsoidal kernels emitting 3D pose-dependent feature vectors. The neural features are trained with contrastive learning to become 3D-aware and hence to overcome the 2D-3D ambiguity. Experiments show that 3DNBF outperforms other approaches on both occluded and standard benchmarks. Code is available at https://github.com/edz-o/3DNBF
Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning
Visual Parameter-Efficient Fine-Tuning (PEFT) has become a powerful alternative for full fine-tuning so as to adapt pre-trained vision models to downstream tasks, which only tunes a small number of parameters while freezing the vast majority ones to ease storage burden and optimization difficulty. However, existing PEFT methods introduce trainable parameters to the same positions across different tasks depending solely on human heuristics and neglect the domain gaps. To this end, we study where to introduce and how to allocate trainable parameters by proposing a novel Sensitivity-aware visual Parameter-efficient fine-Tuning (SPT) scheme, which adaptively allocates trainable parameters to task-specific important positions given a desired tunable parameter budget. Specifically, our SPT first quickly identifies the sensitive parameters that require tuning for a given task in a data-dependent way. Next, our SPT further boosts the representational capability for the weight matrices whose number of sensitive parameters exceeds a pre-defined threshold by utilizing existing structured tuning methods, e.g., LoRA [23] or Adapter [22], to replace directly tuning the selected sensitive parameters (unstructured tuning) under the budget. Extensive experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods and largely boosts their performance, e.g., SPT improves Adapter with supervised pre-trained ViT-B/16 backbone by 4.2% and 1.4% mean Top-1 accuracy, reaching SOTA performance on FGVC and VTAB-1k benchmarks, respectively. Source code is at https://github.com/ziplab/SPT
Weight-dependent Gates for Network Pruning
In this paper, a simple yet effective network pruning framework is proposed to simultaneously address the problems of pruning indicator, pruning ratio, and efficiency constraint. This paper argues that the pruning decision should depend on the convolutional weights, and thus proposes novel weight-dependent gates (W-Gates) to learn the information from filter weights and obtain binary gates to prune or keep the filters automatically. To prune the network under efficiency constraints, a switchable Efficiency Module is constructed to predict the hardware latency or FLOPs of candidate pruned networks. Combined with the proposed Efficiency Module, W-Gates can perform filter pruning in an efficiency-aware manner and achieve a compact network with a better accuracy-efficiency trade-off. We have demonstrated the effectiveness of the proposed method on ResNet34, ResNet50, and MobileNet V2, respectively achieving up to 1.33/1.28/1.1 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art methods, W-Gates also achieves superior performance.
Positional Encoding via Token-Aware Phase Attention
We prove under practical assumptions that Rotary Positional Embedding (RoPE) introduces an intrinsic distance-dependent bias in attention scores that limits RoPE's ability to model long-context. RoPE extension methods may alleviate this issue, but they typically require post-hoc adjustments after pretraining, such as rescaling or hyperparameters retuning. This paper introduces Token-Aware Phase Attention (TAPA), a new positional encoding method that incorporates a learnable phase function into the attention mechanism. TAPA preserves token interactions over long range, extends to longer contexts with direct and light fine-tuning, extrapolates to unseen lengths, and attains significantly lower perplexity on long-context than RoPE families.
Vulnerability-Aware Alignment: Mitigating Uneven Forgetting in Harmful Fine-Tuning
Harmful fine-tuning (HFT), performed directly on open-source LLMs or through Fine-tuning-as-a-Service, breaks safety alignment and poses significant threats. Existing methods aim to mitigate HFT risks by learning robust representation on alignment data or making harmful data unlearnable, but they treat each data sample equally, leaving data vulnerability patterns understudied. In this work, we reveal that certain subsets of alignment data are consistently more prone to forgetting during HFT across different fine-tuning tasks. Inspired by these findings, we propose Vulnerability-Aware Alignment (VAA), which estimates data vulnerability, partitions data into "vulnerable" and "invulnerable" groups, and encourages balanced learning using a group distributionally robust optimization (Group DRO) framework. Specifically, VAA learns an adversarial sampler that samples examples from the currently underperforming group and then applies group-dependent adversarial perturbations to the data during training, aiming to encourage a balanced learning process across groups. Experiments across four fine-tuning tasks demonstrate that VAA significantly reduces harmful scores while preserving downstream task performance, outperforming state-of-the-art baselines.
CREPE: Coordinate-Aware End-to-End Document Parser
In this study, we formulate an OCR-free sequence generation model for visual document understanding (VDU). Our model not only parses text from document images but also extracts the spatial coordinates of the text based on the multi-head architecture. Named as Coordinate-aware End-to-end Document Parser (CREPE), our method uniquely integrates these capabilities by introducing a special token for OCR text, and token-triggered coordinate decoding. We also proposed a weakly-supervised framework for cost-efficient training, requiring only parsing annotations without high-cost coordinate annotations. Our experimental evaluations demonstrate CREPE's state-of-the-art performances on document parsing tasks. Beyond that, CREPE's adaptability is further highlighted by its successful usage in other document understanding tasks such as layout analysis, document visual question answering, and so one. CREPE's abilities including OCR and semantic parsing not only mitigate error propagation issues in existing OCR-dependent methods, it also significantly enhance the functionality of sequence generation models, ushering in a new era for document understanding studies.
TRAM: Bridging Trust Regions and Sharpness Aware Minimization
Sharpness-aware minimization (SAM) reports improving domain generalization by reducing the loss surface curvature in the parameter space. However, generalization during fine-tuning is often more dependent on the transferability of representations in the function space. Trust-region methods (TR) target this goal by regularizing representation curvature to reduce catastrophic forgetting of pre-trained task-agnostic information while adopting task-specific skills. We consider unifying these strategies for low curvature in both parameter space and function space to improve out-of-domain (OOD) generalization. We propose Trust Region Aware Minimization (TRAM), a SAM algorithm fine-tuning for low parameter sharpness and smooth, informative representations preserving pre-trained structure. TRAM uses a trust region bound to inform the SAM adversarial neighborhood, introducing an awareness of function curvature within optimization for flatter minima. We empirically validate TRAM in vision (cross-dataset adaptation) and text (OOD language modeling, zero-shot cross-lingual transfer) tasks where robust domain transfer and representation generality are critical. TRAM outperforms SAM- and TR-based optimization across all tasks, notably surpassing competing methods for hard transfer between anticorrelated domains. TRAM establishes a novel standard in fine-tuning for domain-generalizable models with minimal additional computation over previous sharpness-aware methods.
RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration
Although point cloud registration has achieved remarkable advances in object-level and indoor scenes, large-scale registration methods are rarely explored. Challenges mainly arise from the huge point number, complex distribution, and outliers of outdoor LiDAR scans. In addition, most existing registration works generally adopt a two-stage paradigm: They first find correspondences by extracting discriminative local features and then leverage estimators (eg. RANSAC) to filter outliers, which are highly dependent on well-designed descriptors and post-processing choices. To address these problems, we propose an end-to-end transformer network (RegFormer) for large-scale point cloud alignment without any further post-processing. Specifically, a projection-aware hierarchical transformer is proposed to capture long-range dependencies and filter outliers by extracting point features globally. Our transformer has linear complexity, which guarantees high efficiency even for large-scale scenes. Furthermore, to effectively reduce mismatches, a bijective association transformer is designed for regressing the initial transformation. Extensive experiments on KITTI and NuScenes datasets demonstrate that our RegFormer achieves competitive performance in terms of both accuracy and efficiency.
Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.
Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed Scenes
Completing a corrupted image with correct structures and reasonable textures for a mixed scene remains an elusive challenge. Since the missing hole in a mixed scene of a corrupted image often contains various semantic information, conventional two-stage approaches utilizing structural information often lead to the problem of unreliable structural prediction and ambiguous image texture generation. In this paper, we propose a Semantic Guidance and Evaluation Network (SGE-Net) to iteratively update the structural priors and the inpainted image in an interplay framework of semantics extraction and image inpainting. It utilizes semantic segmentation map as guidance in each scale of inpainting, under which location-dependent inferences are re-evaluated, and, accordingly, poorly-inferred regions are refined in subsequent scales. Extensive experiments on real-world images of mixed scenes demonstrated the superiority of our proposed method over state-of-the-art approaches, in terms of clear boundaries and photo-realistic textures.
SMARTIES: Spectrum-Aware Multi-Sensor Auto-Encoder for Remote Sensing Images
From optical sensors to microwave radars, leveraging the complementary strengths of remote sensing (RS) sensors is crucial for achieving dense spatio-temporal monitoring of our planet. In contrast, recent deep learning models, whether task-specific or foundational, are often specific to single sensors or to fixed combinations: adapting such models to different sensory inputs requires both architectural changes and re-training, limiting scalability and generalization across multiple RS sensors. On the contrary, a single model able to modulate its feature representations to accept diverse sensors as input would pave the way to agile and flexible multi-sensor RS data processing. To address this, we introduce SMARTIES, a generic and versatile foundation model lifting sensor-specific/dependent efforts and enabling scalability and generalization to diverse RS sensors: SMARTIES projects data from heterogeneous sensors into a shared spectrum-aware space, enabling the use of arbitrary combinations of bands both for training and inference. To obtain sensor-agnostic representations, we train a single, unified transformer model reconstructing masked multi-sensor data with cross-sensor token mixup. On both single- and multi-modal tasks across diverse sensors, SMARTIES outperforms previous models that rely on sensor-specific pretraining. Our code and pretrained models are available at https://gsumbul.github.io/SMARTIES.
6DGS: Enhanced Direction-Aware Gaussian Splatting for Volumetric Rendering
Novel view synthesis has advanced significantly with the development of neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS). However, achieving high quality without compromising real-time rendering remains challenging, particularly for physically-based ray tracing with view-dependent effects. Recently, N-dimensional Gaussians (N-DG) introduced a 6D spatial-angular representation to better incorporate view-dependent effects, but the Gaussian representation and control scheme are sub-optimal. In this paper, we revisit 6D Gaussians and introduce 6D Gaussian Splatting (6DGS), which enhances color and opacity representations and leverages the additional directional information in the 6D space for optimized Gaussian control. Our approach is fully compatible with the 3DGS framework and significantly improves real-time radiance field rendering by better modeling view-dependent effects and fine details. Experiments demonstrate that 6DGS significantly outperforms 3DGS and N-DG, achieving up to a 15.73 dB improvement in PSNR with a reduction of 66.5% Gaussian points compared to 3DGS. The project page is: https://gaozhongpai.github.io/6dgs/
DEL: Context-Aware Dynamic Exit Layer for Efficient Self-Speculative Decoding
Speculative Decoding (SD) is a widely used approach to accelerate the inference of large language models (LLMs) without reducing generation quality. It operates by first using a compact model to draft multiple tokens efficiently, followed by parallel verification using the target LLM. This approach leads to faster inference compared to auto-regressive decoding. While there are multiple approaches to create a draft model, one promising approach is to use early-exit methods. These methods draft candidate tokens by using a subset of layers of the primary model and applying the remaining layers for verification, allowing a single model to handle both drafting and verification. While this technique reduces memory usage and computational cost, its performance relies on the choice of the exit layer for drafting and the number of tokens drafted (speculation length) in each SD round. Prior works use hyperparameter exploration to statically select these values. However, our evaluations show that these hyperparameter values are task-specific, and even within a task they are dependent on the current sequence context. We introduce DEL, a plug-and-play method that adaptively selects the exit layer and speculation length during inference. DEL dynamically tracks the token acceptance rate if the tokens are drafted at each layer of an LLM and uses that knowledge to heuristically select the optimal exit layer and speculation length. Our experiments across a broad range of models and downstream tasks show that DEL achieves overall speedups of 2.16timessim2.50times over vanilla auto-regressive decoding and improves upon the state-of-the-art SD methods by up to 0.27times.
SMART: Self-Aware Agent for Tool Overuse Mitigation
Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce SMART-ER, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop SMARTAgent, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4o. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.
RoBERTa-BiLSTM: A Context-Aware Hybrid Model for Sentiment Analysis
Effectively analyzing the comments to uncover latent intentions holds immense value in making strategic decisions across various domains. However, several challenges hinder the process of sentiment analysis including the lexical diversity exhibited in comments, the presence of long dependencies within the text, encountering unknown symbols and words, and dealing with imbalanced datasets. Moreover, existing sentiment analysis tasks mostly leveraged sequential models to encode the long dependent texts and it requires longer execution time as it processes the text sequentially. In contrast, the Transformer requires less execution time due to its parallel processing nature. In this work, we introduce a novel hybrid deep learning model, RoBERTa-BiLSTM, which combines the Robustly Optimized BERT Pretraining Approach (RoBERTa) with Bidirectional Long Short-Term Memory (BiLSTM) networks. RoBERTa is utilized to generate meaningful word embedding vectors, while BiLSTM effectively captures the contextual semantics of long-dependent texts. The RoBERTa-BiLSTM hybrid model leverages the strengths of both sequential and Transformer models to enhance performance in sentiment analysis. We conducted experiments using datasets from IMDb, Twitter US Airline, and Sentiment140 to evaluate the proposed model against existing state-of-the-art methods. Our experimental findings demonstrate that the RoBERTa-BiLSTM model surpasses baseline models (e.g., BERT, RoBERTa-base, RoBERTa-GRU, and RoBERTa-LSTM), achieving accuracies of 80.74%, 92.36%, and 82.25% on the Twitter US Airline, IMDb, and Sentiment140 datasets, respectively. Additionally, the model achieves F1-scores of 80.73%, 92.35%, and 82.25% on the same datasets, respectively.
CultureCLIP: Empowering CLIP with Cultural Awareness through Synthetic Images and Contextualized Captions
Pretrained vision-language models (VLMs) such as CLIP excel in general multimodal comprehension but often struggle to capture nuanced, context-dependent visual cues. This makes it difficult to distinguish between similar-looking concepts with potentially different cultural meanings. Such deficiencies are mainly due to a limited amount of high-quality cultural data, contextual information, and the lack of negative examples that highlight subtle differences. To mitigate this, we design a data curation pipeline leveraging open-sourced VLMs and text-to-image models to construct CulTwin, a synthetic cultural dataset. This dataset consists of paired concept-caption-image triplets, where concepts visually resemble each other but are culturally different. Then, we fine-tune CLIP on CulTwin to develop CultureCLIP, which aligns cultural concepts with contextually enhanced captions and synthetic images through tailored contrastive learning. Experiments on culture-specific benchmarks show that CultureCLIP outperforms the base CLIP, achieving up to a notable 5.49% improvement in fine-grained concept recognition on certain tasks while preserving CLIP's original generalization ability, validating the effectiveness of our data synthesis and VLM backbone training paradigm in capturing subtle cultural distinctions.
PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.
ProNeRF: Learning Efficient Projection-Aware Ray Sampling for Fine-Grained Implicit Neural Radiance Fields
Recent advances in neural rendering have shown that, albeit slow, implicit compact models can learn a scene's geometries and view-dependent appearances from multiple views. To maintain such a small memory footprint but achieve faster inference times, recent works have adopted `sampler' networks that adaptively sample a small subset of points along each ray in the implicit neural radiance fields. Although these methods achieve up to a 10times reduction in rendering time, they still suffer from considerable quality degradation compared to the vanilla NeRF. In contrast, we propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes). ProNeRF is equipped with a novel projection-aware sampling (PAS) network together with a new training strategy for ray exploration and exploitation, allowing for efficient fine-grained particle sampling. Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel. Our exploration and exploitation training strategy allows ProNeRF to learn the full scenes' color and density distributions while also learning efficient ray sampling focused on the highest-density regions. We provide extensive experimental results that support the effectiveness of our method on the widely adopted forward-facing and 360 datasets, LLFF and Blender, respectively.
HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.
GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image
Recently, we have witnessed the explosive growth of various volumetric representations in modeling animatable head avatars. However, due to the diversity of frameworks, there is no practical method to support high-level applications like 3D head avatar editing across different representations. In this paper, we propose a generic avatar editing approach that can be universally applied to various 3DMM driving volumetric head avatars. To achieve this goal, we design a novel expression-aware modification generative model, which enables lift 2D editing from a single image to a consistent 3D modification field. To ensure the effectiveness of the generative modification process, we develop several techniques, including an expression-dependent modification distillation scheme to draw knowledge from the large-scale head avatar model and 2D facial texture editing tools, implicit latent space guidance to enhance model convergence, and a segmentation-based loss reweight strategy for fine-grained texture inversion. Extensive experiments demonstrate that our method delivers high-quality and consistent results across multiple expression and viewpoints. Project page: https://zju3dv.github.io/geneavatar/
Understanding and Improving Knowledge Distillation for Quantization-Aware Training of Large Transformer Encoders
Knowledge distillation (KD) has been a ubiquitous method for model compression to strengthen the capability of a lightweight model with the transferred knowledge from the teacher. In particular, KD has been employed in quantization-aware training (QAT) of Transformer encoders like BERT to improve the accuracy of the student model with the reduced-precision weight parameters. However, little is understood about which of the various KD approaches best fits the QAT of Transformers. In this work, we provide an in-depth analysis of the mechanism of KD on attention recovery of quantized large Transformers. In particular, we reveal that the previously adopted MSE loss on the attention score is insufficient for recovering the self-attention information. Therefore, we propose two KD methods; attention-map and attention-output losses. Furthermore, we explore the unification of both losses to address task-dependent preference between attention-map and output losses. The experimental results on various Transformer encoder models demonstrate that the proposed KD methods achieve state-of-the-art accuracy for QAT with sub-2-bit weight quantization.
Medical Malice: A Dataset for Context-Aware Safety in Healthcare LLMs
The integration of Large Language Models (LLMs) into healthcare demands a safety paradigm rooted in primum non nocere. However, current alignment techniques rely on generic definitions of harm that fail to capture context-dependent violations, such as administrative fraud and clinical discrimination. To address this, we introduce Medical Malice: a dataset of 214,219 adversarial prompts calibrated to the regulatory and ethical complexities of the Brazilian Unified Health System (SUS). Crucially, the dataset includes the reasoning behind each violation, enabling models to internalize ethical boundaries rather than merely memorizing a fixed set of refusals. Using an unaligned agent (Grok-4) within a persona-driven pipeline, we synthesized high-fidelity threats across seven taxonomies, ranging from procurement manipulation and queue-jumping to obstetric violence. We discuss the ethical design of releasing these "vulnerability signatures" to correct the information asymmetry between malicious actors and AI developers. Ultimately, this work advocates for a shift from universal to context-aware safety, providing the necessary resources to immunize healthcare AI against the nuanced, systemic threats inherent to high-stakes medical environments -- vulnerabilities that represent the paramount risk to patient safety and the successful integration of AI in healthcare systems.
Acoustic-based Gender Differentiation in Speech-aware Language Models
Speech-aware Language Models (SpeechLMs) have fundamentally transformed human-AI interaction by enabling voice-based communication, yet they may exhibit acoustic-based gender differentiation where identical questions lead to different responses based on the speaker's gender. This paper propose a new dataset that enables systematic analysis of this phenomenon, containing 9,208 speech samples across three categories: Gender-Independent, Gender-Stereotypical, and Gender-Dependent. We further evaluated LLaMA-Omni series and discovered a paradoxical pattern; while overall responses seems identical regardless of gender, the pattern is far from unbiased responses. Specifically, in Gender-Stereotypical questions, all models consistently exhibited male-oriented responses; meanwhile, in Gender-Dependent questions where gender differentiation would be contextually appropriate, models exhibited responses independent to gender instead. We also confirm that this pattern does not result from neutral options nor perceived gender of a voice. When we allow neutral response, models tends to respond neutrally also in Gender-Dependent questions. The paradoxical pattern yet retains when we applied gender neutralization methods on speech. Through comparison between SpeechLMs with corresponding backbone LLMs, we confirmed that these paradoxical patterns primarily stem from Whisper speech encoders, which generates male-oriented acoustic tokens. These findings reveal that current SpeechLMs may not successfully remove gender biases though they prioritized general fairness principles over contextual appropriateness, highlighting the need for more sophisticated techniques to utilize gender information properly in speech technology.
FireEdit: Fine-grained Instruction-based Image Editing via Region-aware Vision Language Model
Currently, instruction-based image editing methods have made significant progress by leveraging the powerful cross-modal understanding capabilities of vision language models (VLMs). However, they still face challenges in three key areas: 1) complex scenarios; 2) semantic consistency; and 3) fine-grained editing. To address these issues, we propose FireEdit, an innovative Fine-grained Instruction-based image editing framework that exploits a REgion-aware VLM. FireEdit is designed to accurately comprehend user instructions and ensure effective control over the editing process. Specifically, we enhance the fine-grained visual perception capabilities of the VLM by introducing additional region tokens. Relying solely on the output of the LLM to guide the diffusion model may lead to suboptimal editing results. Therefore, we propose a Time-Aware Target Injection module and a Hybrid Visual Cross Attention module. The former dynamically adjusts the guidance strength at various denoising stages by integrating timestep embeddings with the text embeddings. The latter enhances visual details for image editing, thereby preserving semantic consistency between the edited result and the source image. By combining the VLM enhanced with fine-grained region tokens and the time-dependent diffusion model, FireEdit demonstrates significant advantages in comprehending editing instructions and maintaining high semantic consistency. Extensive experiments indicate that our approach surpasses the state-of-the-art instruction-based image editing methods. Our project is available at https://zjgans.github.io/fireedit.github.io.
3D$^2$-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling
Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map observation space to canonical space often face challenges in capturing pose-dependent details and generalizing to novel poses. While diffusion models have demonstrated remarkable zero-shot capabilities in 2D image generation, their potential for creating animatable 3D avatars from 2D inputs remains underexplored. In this work, we introduce 3D^2-Actor, a novel approach featuring a pose-conditioned 3D-aware human modeling pipeline that integrates iterative 2D denoising and 3D rectifying steps. The 2D denoiser, guided by pose cues, generates detailed multi-view images that provide the rich feature set necessary for high-fidelity 3D reconstruction and pose rendering. Complementing this, our Gaussian-based 3D rectifier renders images with enhanced 3D consistency through a two-stage projection strategy and a novel local coordinate representation. Additionally, we propose an innovative sampling strategy to ensure smooth temporal continuity across frames in video synthesis. Our method effectively addresses the limitations of traditional numerical solutions in handling ill-posed mappings, producing realistic and animatable 3D human avatars. Experimental results demonstrate that 3D^2-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses. Code is available at: https://github.com/silence-tang/GaussianActor.
EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present EvaSurf, an Efficient View-Aware implicit textured Surface reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
Generative Multiplane Neural Radiance for 3D-Aware Image Generation
We present a method to efficiently generate 3D-aware high-resolution images that are view-consistent across multiple target views. The proposed multiplane neural radiance model, named GMNR, consists of a novel {\alpha}-guided view-dependent representation ({\alpha}-VdR) module for learning view-dependent information. The {\alpha}-VdR module, faciliated by an {\alpha}-guided pixel sampling technique, computes the view-dependent representation efficiently by learning viewing direction and position coefficients. Moreover, we propose a view-consistency loss to enforce photometric similarity across multiple views. The GMNR model can generate 3D-aware high-resolution images that are viewconsistent across multiple camera poses, while maintaining the computational efficiency in terms of both training and inference time. Experiments on three datasets demonstrate the effectiveness of the proposed modules, leading to favorable results in terms of both generation quality and inference time, compared to existing approaches. Our GMNR model generates 3D-aware images of 1024 X 1024 pixels with 17.6 FPS on a single V100. Code : https://github.com/VIROBO-15/GMNR
Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions
We focus on the cross-domain context-dependent text-to-SQL generation task. Based on the observation that adjacent natural language questions are often linguistically dependent and their corresponding SQL queries tend to overlap, we utilize the interaction history by editing the previous predicted query to improve the generation quality. Our editing mechanism views SQL as sequences and reuses generation results at the token level in a simple manner. It is flexible to change individual tokens and robust to error propagation. Furthermore, to deal with complex table structures in different domains, we employ an utterance-table encoder and a table-aware decoder to incorporate the context of the user utterance and the table schema. We evaluate our approach on the SParC dataset and demonstrate the benefit of editing compared with the state-of-the-art baselines which generate SQL from scratch. Our code is available at https://github.com/ryanzhumich/sparc_atis_pytorch.
Referring Expression Generation in Visually Grounded Dialogue with Discourse-aware Comprehension Guiding
We propose an approach to referring expression generation (REG) in visually grounded dialogue that is meant to produce referring expressions (REs) that are both discriminative and discourse-appropriate. Our method constitutes a two-stage process. First, we model REG as a text- and image-conditioned next-token prediction task. REs are autoregressively generated based on their preceding linguistic context and a visual representation of the referent. Second, we propose the use of discourse-aware comprehension guiding as part of a generate-and-rerank strategy through which candidate REs generated with our REG model are reranked based on their discourse-dependent discriminatory power. Results from our human evaluation indicate that our proposed two-stage approach is effective in producing discriminative REs, with higher performance in terms of text-image retrieval accuracy for reranked REs compared to those generated using greedy decoding.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
Feature attribution methods identify which features of an input most influence a model's output. Most widely-used feature attribution methods (such as SHAP, LIME, and Grad-CAM) are "class-dependent" methods in that they generate a feature attribution vector as a function of class. In this work, we demonstrate that class-dependent methods can "leak" information about the selected class, making that class appear more likely than it is. Thus, an end user runs the risk of drawing false conclusions when interpreting an explanation generated by a class-dependent method. In contrast, we introduce "distribution-aware" methods, which favor explanations that keep the label's distribution close to its distribution given all features of the input. We introduce SHAP-KL and FastSHAP-KL, two baseline distribution-aware methods that compute Shapley values. Finally, we perform a comprehensive evaluation of seven class-dependent and three distribution-aware methods on three clinical datasets of different high-dimensional data types: images, biosignals, and text.
CoPE: A Lightweight Complex Positional Encoding
Recent studies have demonstrated the effectiveness of position encoding in transformer architectures. By incorporating positional information, this approach provides essential guidance for modeling dependencies between elements across different sequence positions. We introduce CoPE (a lightweight Complex Positional Encoding), a novel architecture that leverages complex-valued encoding to encode both content and positional information. Our approach replaces traditional positional encodings with complex embeddings where the real part captures semantic content and the imaginary part encodes positional information. We introduce phase-aware attention in the first layer of the transformer model to capture position-dependent patterns, followed by standard attention layers for higher-levels. We show that CoPE doesn't exhibit long term decay and is compatible with linear attention. Experimental evaluation on the GLUE benchmark suggest that our approach achieves superior performance with less computational complexity, compared to RoPE, Sinusoidal and Learned positional encodings.
Self-Augmented Visual Contrastive Decoding
Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal capabilities, but they inherit the tendency to hallucinate from their underlying language models. While visual contrastive decoding has been proposed to mitigate this issue, existing methods often apply generic visual augmentations that disregard the specific context provided by the text query, limiting their effectiveness. This study introduces a novel training-free decoding strategy that addresses these limitations, featuring two key contributions. First, a self-augmentation prompting strategy that leverages the intrinsic knowledge of the model to dynamically align semantics between the query and the visual augmentation. Second, an adaptive thresholding algorithm that adaptively adjusts next token candidate size based on the output sparsity, utilizing full information from the logit distribution. Extensive experiments across four LVLMs and seven benchmarks demonstrate that the proposed decoding significantly enhances factual consistency compared to state-of-the-art decoding methods. This work highlights the importance of integrating query-dependent augmentation and entropy-aware decoding for improving effective generation of LVLMs.
Label-Noise Robust Diffusion Models
Conditional diffusion models have shown remarkable performance in various generative tasks, but training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels. This noise leads to condition mismatch and quality degradation of generated data. This paper proposes Transition-aware weighted Denoising Score Matching (TDSM) for training conditional diffusion models with noisy labels, which is the first study in the line of diffusion models. The TDSM objective contains a weighted sum of score networks, incorporating instance-wise and time-dependent label transition probabilities. We introduce a transition-aware weight estimator, which leverages a time-dependent noisy-label classifier distinctively customized to the diffusion process. Through experiments across various datasets and noisy label settings, TDSM improves the quality of generated samples aligned with given conditions. Furthermore, our method improves generation performance even on prevalent benchmark datasets, which implies the potential noisy labels and their risk of generative model learning. Finally, we show the improved performance of TDSM on top of conventional noisy label corrections, which empirically proving its contribution as a part of label-noise robust generative models. Our code is available at: https://github.com/byeonghu-na/tdsm.
Frappe: Understanding the Usage and Perception of Mobile App Recommendations In-The-Wild
This paper describes a real world deployment of a context-aware mobile app recommender system (RS) called Frappe. Utilizing a hybrid-approach, we conducted a large-scale app market deployment with 1000 Android users combined with a small-scale local user study involving 33 users. The resulting usage logs and subjective feedback enabled us to gather key insights into (1) context-dependent app usage and (2) the perceptions and experiences of end-users while interacting with context-aware mobile app recommendations. While Frappe performs very well based on usage-centric evaluation metrics insights from the small-scale study reveal some negative user experiences. Our results point to a number of actionable lessons learned specifically related to designing, deploying and evaluating mobile context-aware RS in-the-wild with real users.
What Fundamental Structure in Reward Functions Enables Efficient Sparse-Reward Learning?
What fundamental properties of reward functions enable efficient sparse-reward reinforcement learning? We address this question through the lens of low-rank structure in reward matrices, showing that such structure induces a sharp transition from exponential to polynomial sample complexity, the first result of this kind for sparse-reward RL. We introduce Policy-Aware Matrix Completion (PAMC), which connects matrix completion theory with reinforcement learning via a new analysis of policy-dependent sampling. Our framework provides: (i) impossibility results for general sparse reward observation, (ii) reward-free representation learning from dynamics, (iii) distribution-free confidence sets via conformal prediction, and (iv) robust completion guarantees that degrade gracefully when low-rank structure is only approximate. Empirically, we conduct a pre-registered evaluation across 100 systematically sampled domains, finding exploitable structure in over half. PAMC improves sample efficiency by factors between 1.6 and 2.1 compared to strong exploration, structured, and representation-learning baselines, while adding only about 20 percent computational overhead.These results establish structural reward learning as a promising new paradigm, with immediate implications for robotics, healthcare, and other safety-critical, sample-expensive applications.
GeCoNeRF: Few-shot Neural Radiance Fields via Geometric Consistency
We present a novel framework to regularize Neural Radiance Field (NeRF) in a few-shot setting with a geometry-aware consistency regularization. The proposed approach leverages a rendered depth map at unobserved viewpoint to warp sparse input images to the unobserved viewpoint and impose them as pseudo ground truths to facilitate learning of NeRF. By encouraging such geometry-aware consistency at a feature-level instead of using pixel-level reconstruction loss, we regularize the NeRF at semantic and structural levels while allowing for modeling view dependent radiance to account for color variations across viewpoints. We also propose an effective method to filter out erroneous warped solutions, along with training strategies to stabilize training during optimization. We show that our model achieves competitive results compared to state-of-the-art few-shot NeRF models. Project page is available at https://ku-cvlab.github.io/GeCoNeRF/.
Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval
As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.
LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study
Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems.
ArtiLatent: Realistic Articulated 3D Object Generation via Structured Latents
We propose ArtiLatent, a generative framework that synthesizes human-made 3D objects with fine-grained geometry, accurate articulation, and realistic appearance. Our approach jointly models part geometry and articulation dynamics by embedding sparse voxel representations and associated articulation properties, including joint type, axis, origin, range, and part category, into a unified latent space via a variational autoencoder. A latent diffusion model is then trained over this space to enable diverse yet physically plausible sampling. To reconstruct photorealistic 3D shapes, we introduce an articulation-aware Gaussian decoder that accounts for articulation-dependent visibility changes (e.g., revealing the interior of a drawer when opened). By conditioning appearance decoding on articulation state, our method assigns plausible texture features to regions that are typically occluded in static poses, significantly improving visual realism across articulation configurations. Extensive experiments on furniture-like objects from PartNet-Mobility and ACD datasets demonstrate that ArtiLatent outperforms existing approaches in geometric consistency and appearance fidelity. Our framework provides a scalable solution for articulated 3D object synthesis and manipulation.
Robust 3D-Masked Part-level Editing in 3D Gaussian Splatting with Regularized Score Distillation Sampling
Recent advances in 3D neural representations and instance-level editing models have enabled the efficient creation of high-quality 3D content. However, achieving precise local 3D edits remains challenging, especially for Gaussian Splatting, due to inconsistent multi-view 2D part segmentations and inherently ambiguous nature of Score Distillation Sampling (SDS) loss. To address these limitations, we propose RoMaP, a novel local 3D Gaussian editing framework that enables precise and drastic part-level modifications. First, we introduce a robust 3D mask generation module with our 3D-Geometry Aware Label Prediction (3D-GALP), which uses spherical harmonics (SH) coefficients to model view-dependent label variations and soft-label property, yielding accurate and consistent part segmentations across viewpoints. Second, we propose a regularized SDS loss that combines the standard SDS loss with additional regularizers. In particular, an L1 anchor loss is introduced via our Scheduled Latent Mixing and Part (SLaMP) editing method, which generates high-quality part-edited 2D images and confines modifications only to the target region while preserving contextual coherence. Additional regularizers, such as Gaussian prior removal, further improve flexibility by allowing changes beyond the existing context, and robust 3D masking prevents unintended edits. Experimental results demonstrate that our RoMaP achieves state-of-the-art local 3D editing on both reconstructed and generated Gaussian scenes and objects qualitatively and quantitatively, making it possible for more robust and flexible part-level 3D Gaussian editing. Code is available at https://janeyeon.github.io/romap.
WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
HRM^2Avatar: High-Fidelity Real-Time Mobile Avatars from Monocular Phone Scans
We present HRM^2Avatar, a framework for creating high-fidelity avatars from monocular phone scans, which can be rendered and animated in real time on mobile devices. Monocular capture with smartphones provides a low-cost alternative to studio-grade multi-camera rigs, making avatar digitization accessible to non-expert users. Reconstructing high-fidelity avatars from single-view video sequences poses challenges due to limited visual and geometric data. To address these limitations, at the data level, our method leverages two types of data captured with smartphones: static pose sequences for texture reconstruction and dynamic motion sequences for learning pose-dependent deformations and lighting changes. At the representation level, we employ a lightweight yet expressive representation to reconstruct high-fidelity digital humans from sparse monocular data. We extract garment meshes from monocular data to model clothing deformations effectively, and attach illumination-aware Gaussians to the mesh surface, enabling high-fidelity rendering and capturing pose-dependent lighting. This representation efficiently learns high-resolution and dynamic information from monocular data, enabling the creation of detailed avatars. At the rendering level, real-time performance is critical for animating high-fidelity avatars in AR/VR, social gaming, and on-device creation. Our GPU-driven rendering pipeline delivers 120 FPS on mobile devices and 90 FPS on standalone VR devices at 2K resolution, over 2.7times faster than representative mobile-engine baselines. Experiments show that HRM^2Avatar delivers superior visual realism and real-time interactivity, outperforming state-of-the-art monocular methods.
ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment
Diffusion models have demonstrated remarkable performance in the domain of text-to-image generation. However, most widely used models still employ CLIP as their text encoder, which constrains their ability to comprehend dense prompts, encompassing multiple objects, detailed attributes, complex relationships, long-text alignment, etc. In this paper, we introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM) to enhance text alignment without training of either U-Net or LLM. To seamlessly bridge two pre-trained models, we investigate a range of semantic alignment connector designs and propose a novel module, the Timestep-Aware Semantic Connector (TSC), which dynamically extracts timestep-dependent conditions from LLM. Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps. Additionally, ELLA can be readily incorporated with community models and tools to improve their prompt-following capabilities. To assess text-to-image models in dense prompt following, we introduce Dense Prompt Graph Benchmark (DPG-Bench), a challenging benchmark consisting of 1K dense prompts. Extensive experiments demonstrate the superiority of ELLA in dense prompt following compared to state-of-the-art methods, particularly in multiple object compositions involving diverse attributes and relationships.
