new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

The Critique of Critique

Critique, as a natural language description for assessing the quality of model-generated content, has been proven to play an essential role in the training, evaluation, and refinement of Large Language Models (LLMs). However, there is a lack of principled understanding in evaluating the quality of the critique itself. In this paper, we pioneer the critique of critique, termed MetaCritique, which is a framework to evaluate the critique from two aspects, i.e., factuality as precision score and comprehensiveness as recall score. We calculate the harmonic mean of precision and recall as the overall rating called F1 score. To obtain a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique takes each AIU into account and aggregates each AIU's judgment for the overall score. Moreover, given the evaluation process involves intricate reasoning, our MetaCritique provides a natural language rationale to support each judgment. We construct a meta-evaluation dataset containing 300 critiques (2653 AIUs) across four tasks (question answering, reasoning, entailment, and summarization), and we conduct a comparative study to demonstrate the feasibility and effectiveness. Experiments also show superior critique judged by MetaCritique leads to better refinement, indicating generative artificial intelligence indeed has the potential to be significantly advanced with our MetaCritique. We will release relevant code and meta-evaluation datasets at https://github.com/GAIR-NLP/MetaCritique.

  • 6 authors
·
Jan 9, 2024 2

A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles

In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.

  • 5 authors
·
Feb 21

Let AI Entertain You: Increasing User Engagement with Generative AI and Rejection Sampling

While generative AI excels in content generation, it does not always increase user engagement. This can be attributed to two main factors. First, generative AI generates content without incorporating explicit or implicit feedback about user interactions. Even if the generated content seems to be more informative or well-written, it does not necessarily lead to an increase in user activities, such as clicks. Second, there is a concern with the quality of the content generative AI produces, which often lacks the distinctiveness and authenticity that human-created content possesses. These two factors can lead to content that fails to meet specific needs and preferences of users, ultimately reducing its potential to be engaging. This paper presents a generic framework of how to improve user engagement with generative AI by leveraging user feedback. Our solutions employ rejection sampling, a technique used in reinforcement learning, to boost engagement metrics. We leveraged the framework in the context of email notification subject lines generation for an online social network, and achieved significant engagement metric lift including +1% Session and +0.4% Weekly Active Users. We believe our work offers a universal framework that enhances user engagement with generative AI, particularly when standard generative AI reaches its limits in terms of enhancing content to be more captivating. To the best of our knowledge, this represents an early milestone in the industry's successful use of generative AI to enhance user engagement.

  • 6 authors
·
Dec 16, 2023

Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences

The rapid progress in generative models has resulted in impressive leaps in generation quality, blurring the lines between synthetic and real data. Web-scale datasets are now prone to the inevitable contamination by synthetic data, directly impacting the training of future generated models. Already, some theoretical results on self-consuming generative models (a.k.a., iterative retraining) have emerged in the literature, showcasing that either model collapse or stability could be possible depending on the fraction of generated data used at each retraining step. However, in practice, synthetic data is often subject to human feedback and curated by users before being used and uploaded online. For instance, many interfaces of popular text-to-image generative models, such as Stable Diffusion or Midjourney, produce several variations of an image for a given query which can eventually be curated by the users. In this paper, we theoretically study the impact of data curation on iterated retraining of generative models and show that it can be seen as an implicit preference optimization mechanism. However, unlike standard preference optimization, the generative model does not have access to the reward function or negative samples needed for pairwise comparisons. Moreover, our study doesn't require access to the density function, only to samples. We prove that, if the data is curated according to a reward model, then the expected reward of the iterative retraining procedure is maximized. We further provide theoretical results on the stability of the retraining loop when using a positive fraction of real data at each step. Finally, we conduct illustrative experiments on both synthetic datasets and on CIFAR10 showing that such a procedure amplifies biases of the reward model.

  • 4 authors
·
Jun 12, 2024

Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs

The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.

  • 3 authors
·
Apr 18, 2023

Reinforcement Learning for Generative AI: A Survey

Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.

  • 4 authors
·
Aug 28, 2023

Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases

Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.

  • 4 authors
·
Feb 28, 2018

Reinforced Preference Optimization for Recommendation

Recent breakthroughs in large language models (LLMs) have fundamentally shifted recommender systems from discriminative to generative paradigms, where user behavior modeling is achieved by generating target items conditioned on historical interactions. Yet current generative recommenders still suffer from two core limitations: the lack of high-quality negative modeling and the reliance on implicit rewards. Reinforcement learning with verifiable rewards (RLVR) offers a natural solution by enabling on-policy sampling of harder negatives and grounding optimization in explicit reward signals. However, applying RLVR to generative recommenders remains non-trivial. Its unique generation space often leads to invalid or repetitive items that undermine sampling efficiency, and ranking supervision is sparse since most items receive identical zero rewards. To address these challenges, we propose Reinforced Preference Optimization for Recommendation (ReRe), a reinforcement-based paradigm tailored to LLM-based recommenders, an important direction in generative recommendation. ReRe incorporates constrained beam search to improve sampling efficiency and diversify hard negatives, while augmenting rule-based accuracy rewards with auxiliary ranking rewards for finer-grained supervision. Extensive experiments on three real-world datasets demonstrate that ReRe consistently outperforms both traditional and LLM-based recommenders in ranking performance. Further analysis shows that ReRe not only enhances performance across both base and SFT-initialized models but also generalizes robustly across different backbone families and scales. Beyond empirical gains, we systematically investigate the design space of RLVR in recommendation across generation, sampling strategy, reward modeling, and optimization algorithm, offering insights for future research.

  • 10 authors
·
Oct 14

POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation

State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.

  • 6 authors
·
Apr 17

Evaluating the Social Impact of Generative AI Systems in Systems and Society

Generative AI systems across modalities, ranging from text (including code), image, audio, and video, have broad social impacts, but there is no official standard for means of evaluating those impacts or for which impacts should be evaluated. In this paper, we present a guide that moves toward a standard approach in evaluating a base generative AI system for any modality in two overarching categories: what can be evaluated in a base system independent of context and what can be evaluated in a societal context. Importantly, this refers to base systems that have no predetermined application or deployment context, including a model itself, as well as system components, such as training data. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to listed generative modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what can be evaluated in a broader societal context, each with its own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm.

  • 18 authors
·
Jun 9, 2023

I'm Afraid I Can't Do That: Predicting Prompt Refusal in Black-Box Generative Language Models

Since the release of OpenAI's ChatGPT, generative language models have attracted extensive public attention. The increased usage has highlighted generative models' broad utility, but also revealed several forms of embedded bias. Some is induced by the pre-training corpus; but additional bias specific to generative models arises from the use of subjective fine-tuning to avoid generating harmful content. Fine-tuning bias may come from individual engineers and company policies, and affects which prompts the model chooses to refuse. In this experiment, we characterize ChatGPT's refusal behavior using a black-box attack. We first query ChatGPT with a variety of offensive and benign prompts (n=1,706), then manually label each response as compliance or refusal. Manual examination of responses reveals that refusal is not cleanly binary, and lies on a continuum; as such, we map several different kinds of responses to a binary of compliance or refusal. The small manually-labeled dataset is used to train a refusal classifier, which achieves an accuracy of 96%. Second, we use this refusal classifier to bootstrap a larger (n=10,000) dataset adapted from the Quora Insincere Questions dataset. With this machine-labeled data, we train a prompt classifier to predict whether ChatGPT will refuse a given question, without seeing ChatGPT's response. This prompt classifier achieves 76% accuracy on a test set of manually labeled questions (n=985). We examine our classifiers and the prompt n-grams that are most predictive of either compliance or refusal. Our datasets and code are available at https://github.com/maxwellreuter/chatgpt-refusals.

  • 2 authors
·
Jun 6, 2023

Training Language Models to Critique With Multi-agent Feedback

Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.

  • 9 authors
·
Oct 20, 2024

DeepCritic: Deliberate Critique with Large Language Models

As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.

  • 4 authors
·
May 1 8

NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training

We introduce NitroFusion, a fundamentally different approach to single-step diffusion that achieves high-quality generation through a dynamic adversarial framework. While one-step methods offer dramatic speed advantages, they typically suffer from quality degradation compared to their multi-step counterparts. Just as a panel of art critics provides comprehensive feedback by specializing in different aspects like composition, color, and technique, our approach maintains a large pool of specialized discriminator heads that collectively guide the generation process. Each discriminator group develops expertise in specific quality aspects at different noise levels, providing diverse feedback that enables high-fidelity one-step generation. Our framework combines: (i) a dynamic discriminator pool with specialized discriminator groups to improve generation quality, (ii) strategic refresh mechanisms to prevent discriminator overfitting, and (iii) global-local discriminator heads for multi-scale quality assessment, and unconditional/conditional training for balanced generation. Additionally, our framework uniquely supports flexible deployment through bottom-up refinement, allowing users to dynamically choose between 1-4 denoising steps with the same model for direct quality-speed trade-offs. Through comprehensive experiments, we demonstrate that NitroFusion significantly outperforms existing single-step methods across multiple evaluation metrics, particularly excelling in preserving fine details and global consistency.

  • 4 authors
·
Dec 2, 2024 2

Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.

  • 6 authors
·
Apr 15, 2024

GenAI Arena: An Open Evaluation Platform for Generative Models

Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three arenas for text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 27 open-source generative models. GenAI-Arena has been operating for four months, amassing over 6000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, GPT-4o to mimic human voting. We compute the correlation between model voting with human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves a Pearson correlation of 0.22 in the quality subscore, and behaves like random guessing in others.

  • 7 authors
·
Jun 6, 2024

GEO: Generative Engine Optimization

The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves user utility and generative search engine traffic, it poses a huge challenge for the third stakeholder - website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in GE responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to 40\% in GE responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of GEs and content creators.

  • 6 authors
·
Nov 16, 2023

SynerGen: Contextualized Generative Recommender for Unified Search and Recommendation

The dominant retrieve-then-rank pipeline in large-scale recommender systems suffers from mis-calibration and engineering overhead due to its architectural split and differing optimization objectives. While recent generative sequence models have shown promise in unifying retrieval and ranking by auto-regressively generating ranked items, existing solutions typically address either personalized search or query-free recommendation, often exhibiting performance trade-offs when attempting to unify both. We introduce SynerGen, a novel generative recommender model that bridges this critical gap by providing a single generative backbone for both personalized search and recommendation, while simultaneously excelling at retrieval and ranking tasks. Trained on behavioral sequences, our decoder-only Transformer leverages joint optimization with InfoNCE for retrieval and a hybrid pointwise-pairwise loss for ranking, allowing semantic signals from search to improve recommendation and vice versa. We also propose a novel time-aware rotary positional embedding to effectively incorporate time information into the attention mechanism. SynerGen achieves significant improvements on widely adopted recommendation and search benchmarks compared to strong generative recommender and joint search and recommendation baselines. This work demonstrates the viability of a single generative foundation model for industrial-scale unified information access.

  • 14 authors
·
Sep 25

GenIR: Generative Visual Feedback for Mental Image Retrieval

Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.

  • 5 authors
·
Jun 6

MMGRec: Multimodal Generative Recommendation with Transformer Model

Multimodal recommendation aims to recommend user-preferred candidates based on her/his historically interacted items and associated multimodal information. Previous studies commonly employ an embed-and-retrieve paradigm: learning user and item representations in the same embedding space, then retrieving similar candidate items for a user via embedding inner product. However, this paradigm suffers from inference cost, interaction modeling, and false-negative issues. Toward this end, we propose a new MMGRec model to introduce a generative paradigm into multimodal recommendation. Specifically, we first devise a hierarchical quantization method Graph RQ-VAE to assign Rec-ID for each item from its multimodal and CF information. Consisting of a tuple of semantically meaningful tokens, Rec-ID serves as the unique identifier of each item. Afterward, we train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences. The generative paradigm is qualified since this model systematically predicts the tuple of tokens identifying the recommended item in an autoregressive manner. Moreover, a relation-aware self-attention mechanism is devised for the Transformer to handle non-sequential interaction sequences, which explores the element pairwise relation to replace absolute positional encoding. Extensive experiments evaluate MMGRec's effectiveness compared with state-of-the-art methods.

  • 6 authors
·
Apr 25, 2024

Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation

With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with the various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset

  • 11 authors
·
Jun 5, 2024

Generative Recommendation: Towards Next-generation Recommender Paradigm

Recommender systems typically retrieve items from an item corpus for personalized recommendations. However, such a retrieval-based recommender paradigm faces two limitations: 1) the human-generated items in the corpus might fail to satisfy the users' diverse information needs, and 2) users usually adjust the recommendations via inefficient passive feedback, e.g., clicks. Nowadays, AI-Generated Content (AIGC) has revealed significant success, offering the potential to overcome these limitations: 1) generative AI can produce personalized items to satisfy users' information needs, and 2) the newly emerged large language models significantly reduce the efforts of users to precisely express information needs via natural language instructions. In this light, the boom of AIGC points the way towards the next-generation recommender paradigm with two new objectives: 1) generating personalized content through generative AI, and 2) integrating user instructions to guide content generation. To this end, we propose a novel Generative Recommender paradigm named GeneRec, which adopts an AI generator to personalize content generation and leverages user instructions. Specifically, we pre-process users' instructions and traditional feedback via an instructor to output the generation guidance. Given the guidance, we instantiate the AI generator through an AI editor and an AI creator to repurpose existing items and create new items. Eventually, GeneRec can perform content retrieval, repurposing, and creation to satisfy users' information needs. Besides, to ensure the trustworthiness of the generated items, we emphasize various fidelity checks. Moreover, we provide a roadmap to envision future developments of GeneRec and several domain-specific applications of GeneRec with potential research tasks. Lastly, we study the feasibility of implementing AI editor and AI creator on micro-video generation.

  • 5 authors
·
Apr 7, 2023

ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models

Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.

  • 9 authors
·
May 25, 2023

Learning to Generate Text in Arbitrary Writing Styles

Prior work in style-controlled text generation has focused on tasks such as emulating the style of prolific literary authors, producing formal or informal text, and the degree of toxicity of generated text. Plentiful demonstrations of these styles are available, and as a result modern language models are often able to emulate them, either via prompting or discriminative control. However, in applications such as writing assistants, it is desirable for language models to produce text in an author-specific style on the basis of a small writing sample. We find that instruction-tuned language models can struggle to reproduce author-specific style demonstrated in a prompt. Instead, we propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features. A central challenge in doing so is that an author's writing is characterized by surprising token choices under a generic language model. To reconcile this tension, we combine generative re-scoring to achieve an author-specific model, with discriminative control to ensure style consistency at the sequence-level. The combination of these approaches is found to be particularly effective at adhering to an author-specific style in a variety of conditions, including unconditional generation and style transfer, and is applicable to any underlying language model without requiring fine-tuning.

  • 4 authors
·
Dec 28, 2023

LLaVA-Critic-R1: Your Critic Model is Secretly a Strong Policy Model

In vision-language modeling, critic models are typically trained to evaluate outputs -- assigning scalar scores or pairwise preferences -- rather than to generate responses. This separation from policy models, which produce the responses, is so entrenched that critics are rarely considered for direct policy use. In this work, we challenge this convention. We propose to reorganize preference-labeled critic datasets into verifiable training signals and perform reinforcement learning directly on a base generative model, producing LLaVA-Critic-R1, a multimodal critic trained to optimize preference judgments while retaining full generation ability. Surprisingly, LLaVA-Critic-R1 emerges not only as a top-performing critic but also as a competitive policy model -- matching or surpassing specialized reasoning VLMs trained with in-domain data across 26 visual reasoning and understanding benchmarks, with an average gain of +5.7% over its base model (Qwen-2.5-VL-7B). Extending this approach to existing strong reasoning VLMs yields LLaVA-Critic-R1+, which further advances policy performance without sacrificing critic quality, achieving a SoTA performance of 71.9 on MMMU at the 7B scale. Finally, we show that the enhanced critic ability benefits inference: applying self-critique at test time yields an average +13.8% improvement on five representative reasoning tasks without additional training. Our results reveal that RL training on critic data can produce a unified model excelling at both evaluation and generation, offering a simple path toward scalable, self-improving multimodal systems.

  • 7 authors
·
Aug 30 1

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate through the entire learning process via meta-gradients to update the GTN parameters to improve performance on the target task. GTNs have the beneficial property that they can theoretically generate any type of data or training environment, making their potential impact large. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS), which is rate-limited by such evaluations, enabling massive speed-ups in NAS. GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than typical NAS methods. Speculating forward, GTNs may represent a first step toward the ambitious goal of algorithms that generate their own training data and, in doing so, open a variety of interesting new research questions and directions.

  • 5 authors
·
Dec 16, 2019

Critique Ability of Large Language Models

Critical thinking is essential for rational decision-making and problem-solving. This skill hinges on the ability to provide precise and reasoned critiques and is a hallmark of human intelligence. In the era of large language models (LLMs), this study explores the ability of LLMs to deliver accurate critiques across various tasks. We are interested in this topic as a capable critic model could not only serve as a reliable evaluator, but also as a source of supervised signals for model tuning. Particularly, if a model can self-critique, it has the potential for autonomous self-improvement. To examine this, we introduce a unified evaluation framework for assessing the critique abilities of LLMs. We develop a benchmark called CriticBench, which comprises 3K high-quality natural language queries and corresponding model responses; and annotate the correctness of these responses. The benchmark cover tasks such as math problem-solving, code completion, and question answering. We evaluate multiple LLMs on the collected dataset and our analysis reveals several noteworthy insights: (1) Critique is generally challenging for most LLMs, and this capability often emerges only when models are sufficiently large. (2) In particular, self-critique is especially difficult. Even top-performing LLMs struggle to achieve satisfactory performance. (3) Models tend to have lower critique accuracy on problems where they are most uncertain. To this end, we introduce a simple yet effective baseline named self-check, which leverages self-critique to improve task performance for various models. We hope this study serves as an initial exploration into understanding the critique abilities of LLMs, and aims to inform future research, including the development of more proficient critic models and the application of critiques across diverse tasks.

  • 7 authors
·
Oct 7, 2023

LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing

This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.

  • 40 authors
·
Jun 23, 2024

Antagonising explanation and revealing bias directly through sequencing and multimodal inference

Deep generative models produce data according to a learned representation, e.g. diffusion models, through a process of approximation computing possible samples. Approximation can be understood as reconstruction and the large datasets used to train models as sets of records in which we represent the physical world with some data structure (photographs, audio recordings, manuscripts). During the process of reconstruction, e.g., image frames develop each timestep towards a textual input description. While moving forward in time, frame sets are shaped according to learned bias and their production, we argue here, can be considered as going back in time; not by inspiration on the backward diffusion process but acknowledging culture is specifically marked in the records. Futures of generative modelling, namely in film and audiovisual arts, can benefit by dealing with diffusion systems as a process to compute the future by inevitably being tied to the past, if acknowledging the records as to capture fields of view at a specific time, and to correlate with our own finite memory ideals. Models generating new data distributions can target video production as signal processors and by developing sequences through timelines we ourselves also go back to decade-old algorithmic and multi-track methodologies revealing the actual predictive failure of contemporary approaches to synthesis in moving image, both as relevant to composition and not explanatory.

  • 3 authors
·
Aug 25, 2023

Semi-Parametric Neural Image Synthesis

Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.

  • 5 authors
·
Apr 25, 2022

LinEAS: End-to-end Learning of Activation Steering with a Distributional Loss

The growing use of generative models in daily life calls for efficient mechanisms to control their generation, to e.g., produce safe content or provide users with tools to explore style changes. Ideally, such mechanisms should require low volume of unpaired data (i.e., without explicit preference), and should be cheap, both at train and inference time, while preserving output quality. Recent research has shown that such mechanisms can be obtained by intervening exclusively on model activations, with the goal of correcting distributional differences between activations seen when using prompts from a source vs. a target set (e.g., toxic and non-toxic sentences). While cheap, these fast methods are inherently crude: their maps are tuned locally, not accounting for their impact on downstream layers, resulting in interventions that cause unintended shifts when used out-of-sample. We propose in this work linear end-to-end activation steering (LinEAS), an approach trained with a global loss that accounts simultaneously for all layer-wise distributional shifts. In addition to being more robust, the loss used to train LinEAS can be regularized with sparsifying norms, which can automatically carry out neuron selection. LinEAS only requires a handful of unpaired samples to be effective, and beats similar baselines on toxicity mitigation in language models, becoming competitive with oracle-dependent methods that have access to strong supervision. LinEAS is modality-agnostic and we empirically find that it outperforms existing activation steering methods at mitigating and including new concepts at the output of single-step text-to-image generation models.

apple Apple
·
Mar 11 1

Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers

The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

  • 6 authors
·
Sep 13

Generative Judge for Evaluating Alignment

The rapid development of Large Language Models (LLMs) has substantially expanded the range of tasks they can address. In the field of Natural Language Processing (NLP), researchers have shifted their focus from conventional NLP tasks (e.g., sequence tagging and parsing) towards tasks that revolve around aligning with human needs (e.g., brainstorming and email writing). This shift in task distribution imposes new requirements on evaluating these aligned models regarding generality (i.e., assessing performance across diverse scenarios), flexibility (i.e., examining under different protocols), and interpretability (i.e., scrutinizing models with explanations). In this paper, we propose a generative judge with 13B parameters, Auto-J, designed to address these challenges. Our model is trained on user queries and LLM-generated responses under massive real-world scenarios and accommodates diverse evaluation protocols (e.g., pairwise response comparison and single-response evaluation) with well-structured natural language critiques. To demonstrate the efficacy of our approach, we construct a new testbed covering 58 different scenarios. Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models, by a large margin. We also provide detailed analysis and case studies to further reveal the potential of our method and make a variety of resources public at https://github.com/GAIR-NLP/auto-j.

  • 6 authors
·
Oct 9, 2023

NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search

Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.

  • 7 authors
·
May 20 2

Fine-tuning Flow Matching Generative Models with Intermediate Feedback

Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.

  • 5 authors
·
Oct 20

Faithful Persona-based Conversational Dataset Generation with Large Language Models

High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations.

  • 5 authors
·
Dec 15, 2023 1

CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection

The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

  • 7 authors
·
Aug 28

Unifying Self-Supervised Clustering and Energy-Based Models

Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.

  • 2 authors
·
Dec 29, 2023

An Automated Pipeline for Character and Relationship Extraction from Readers' Literary Book Reviews on Goodreads.com

Reader reviews of literary fiction on social media, especially those in persistent, dedicated forums, create and are in turn driven by underlying narrative frameworks. In their comments about a novel, readers generally include only a subset of characters and their relationships, thus offering a limited perspective on that work. Yet in aggregate, these reviews capture an underlying narrative framework comprised of different actants (people, places, things), their roles, and interactions that we label the "consensus narrative framework". We represent this framework in the form of an actant-relationship story graph. Extracting this graph is a challenging computational problem, which we pose as a latent graphical model estimation problem. Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative Machine Learning (ML) model where nodes represent actants, and multi-edges and self-loops among nodes capture context-specific relationships. We develop a pipeline of interlocking automated methods to extract key actants and their relationships, and apply it to thousands of reviews and comments posted on Goodreads.com. We manually derive the ground truth narrative framework from SparkNotes, and then use word embedding tools to compare relationships in ground truth networks with our extracted networks. We find that our automated methodology generates highly accurate consensus narrative frameworks: for our four target novels, with approximately 2900 reviews per novel, we report average coverage/recall of important relationships of > 80% and an average edge detection rate of >89\%. These extracted narrative frameworks can generate insight into how people (or classes of people) read and how they recount what they have read to others.

  • 8 authors
·
Apr 20, 2020