new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models

The representation of visual inputs of large vision-language models (LVLMs) usually involves substantially more tokens than that of textual inputs, leading to significant computational overhead. Several recent studies strive to mitigate this issue by either conducting token compression to prune redundant visual tokens or guiding them to bypass certain computational stages. While most existing work exploits token importance as the redundancy indicator, our study reveals that two largely neglected factors, namely, the diversity of retained visual tokens and their task relevance, often offer more robust criteria in token pruning. To this end, we design ToDRE, a two-stage and training-free token compression framework that achieves superior performance by pruning Tokens based on token Diversity and token-task RElevance. Instead of pruning redundant tokens, ToDRE introduces a greedy k-center algorithm to select and retain a small subset of diverse visual tokens after the vision encoder. Additionally, ToDRE addresses the "information migration" by further eliminating task-irrelevant visual tokens within the decoder of large language model (LLM). Extensive experiments show that ToDRE effectively reduces 90% of visual tokens after vision encoder and adaptively prunes all visual tokens within certain LLM's decoder layers, leading to a 2.6x speed-up in total inference time while maintaining 95.1% of model performance and excellent compatibility with efficient attention operators.

  • 3 authors
·
May 24

Efficient Maximum Fair Clique Search over Large Networks

Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

  • 6 authors
·
Dec 7, 2023

Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence

Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.

  • 3 authors
·
Dec 23, 2017

Minimum Entropy Coupling with Bottleneck

This paper investigates a novel lossy compression framework operating under logarithmic loss, designed to handle situations where the reconstruction distribution diverges from the source distribution. This framework is especially relevant for applications that require joint compression and retrieval, and in scenarios involving distributional shifts due to processing. We show that the proposed formulation extends the classical minimum entropy coupling framework by integrating a bottleneck, allowing for a controlled degree of stochasticity in the coupling. We explore the decomposition of the Minimum Entropy Coupling with Bottleneck (MEC-B) into two distinct optimization problems: Entropy-Bounded Information Maximization (EBIM) for the encoder, and Minimum Entropy Coupling (MEC) for the decoder. Through extensive analysis, we provide a greedy algorithm for EBIM with guaranteed performance, and characterize the optimal solution near functional mappings, yielding significant theoretical insights into the structural complexity of this problem. Furthermore, we illustrate the practical application of MEC-B through experiments in Markov Coding Games (MCGs) under rate limits. These games simulate a communication scenario within a Markov Decision Process, where an agent must transmit a compressed message from a sender to a receiver through its actions. Our experiments highlight the trade-offs between MDP rewards and receiver accuracy across various compression rates, showcasing the efficacy of our method compared to conventional compression baseline.

  • 3 authors
·
Oct 28, 2024 2

EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance

As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.

  • 7 authors
·
Dec 11, 2024

CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation

Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.

  • 6 authors
·
Aug 4

GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs

Vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this issue, we propose a new method for designing ViGs, Dynamic Axial Graph Construction (DAGC), which is more efficient than KNN as it limits the number of considered graph connections made within an image. Additionally, we propose a novel CNN-GNN architecture, GreedyViG, which uses DAGC. Extensive experiments show that GreedyViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification, object detection, instance segmentation, and semantic segmentation tasks. Our smallest model, GreedyViG-S, achieves 81.1% top-1 accuracy on ImageNet-1K, 2.9% higher than Vision GNN and 2.2% higher than Vision HyperGraph Neural Network (ViHGNN), with less GMACs and a similar number of parameters. Our largest model, GreedyViG-B obtains 83.9% top-1 accuracy, 0.2% higher than Vision GNN, with a 66.6% decrease in parameters and a 69% decrease in GMACs. GreedyViG-B also obtains the same accuracy as ViHGNN with a 67.3% decrease in parameters and a 71.3% decrease in GMACs. Our work shows that hybrid CNN-GNN architectures not only provide a new avenue for designing efficient models, but that they can also exceed the performance of current state-of-the-art models.

  • 4 authors
·
May 10, 2024

Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms

Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.

  • 2 authors
·
Aug 12, 2020

Mustafar: Promoting Unstructured Sparsity for KV Cache Pruning in LLM Inference

We demonstrate that unstructured sparsity significantly improves KV cache compression for LLMs, enabling sparsity levels up to 70% without compromising accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning strategies and find per-token magnitude-based pruning as highly effective for both Key and Value caches under unstructured sparsity, surpassing prior structured pruning schemes. The Key cache benefits from prominent outlier elements, while the Value cache surprisingly benefits from a simple magnitude-based pruning despite its uniform distribution. KV cache size is the major bottleneck in decode performance due to high memory overhead for large context lengths. To address this, we use a bitmap-based sparse format and a custom attention kernel capable of compressing and directly computing over compressed caches pruned to arbitrary sparsity patterns, significantly accelerating memory-bound operations in decode computations and thereby compensating for the overhead of runtime pruning and compression. Our custom attention kernel coupled with the bitmap-based format delivers substantial compression of KV cache upto 45% of dense inference and thereby enables longer context length and increased tokens/sec throughput of upto 2.23x compared to dense inference. Our pruning mechanism and sparse attention kernel is available at https://github.com/dhjoo98/mustafar.

  • 4 authors
·
May 28

Optimizing NOTEARS Objectives via Topological Swaps

Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.

  • 4 authors
·
May 26, 2023

ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification

KV cache stores key and value states from previous tokens to avoid re-computation, yet it demands substantial storage space, especially for long sequences. Adaptive KV cache compression seeks to discern the saliency of tokens, preserving vital information while aggressively compressing those of less importance. However, previous methods of this approach exhibit significant performance degradation at high compression ratios due to inaccuracies in identifying salient tokens. In this paper, we present ZipCache, an accurate and efficient KV cache quantization method for LLMs. First, we construct a strong baseline for quantizing KV cache. Through the proposed channel-separable tokenwise quantization scheme, the memory overhead of quantization parameters are substantially reduced compared to fine-grained groupwise quantization. To enhance the compression ratio, we propose normalized attention score as an effective metric for identifying salient tokens by considering the lower triangle characteristics of the attention matrix. Moreover, we develop an efficient approximation method that decouples the saliency metric from full attention scores, enabling compatibility with fast attention implementations like FlashAttention. Extensive experiments demonstrate that ZipCache achieves superior compression ratios, fast generation speed and minimal performance losses compared with previous KV cache compression methods. For instance, when evaluating Mistral-7B model on GSM8k dataset, ZipCache is capable of compressing the KV cache by 4.98times, with only a 0.38% drop in accuracy. In terms of efficiency, ZipCache also showcases a 37.3% reduction in prefill-phase latency, a 56.9% reduction in decoding-phase latency, and a 19.8% reduction in GPU memory usage when evaluating LLaMA3-8B model with a input length of 4096.

  • 6 authors
·
May 23, 2024

Probabilistic Partitive Partitioning (PPP)

Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.

  • 1 authors
·
Mar 9, 2020

Fat Polygonal Partitions with Applications to Visualization and Embeddings

Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  • 3 authors
·
Sep 9, 2010

Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection

To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.

  • 7 authors
·
Apr 1

Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms

Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).

  • 2 authors
·
Oct 12, 2018

Faster Algorithms for Text-to-Pattern Hamming Distances

We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.

  • 4 authors
·
Oct 19, 2023

Beyond Nearest Neighbors: Semantic Compression and Graph-Augmented Retrieval for Enhanced Vector Search

Vector databases typically rely on approximate nearest neighbor (ANN) search to retrieve the top-k closest vectors to a query in embedding space. While effective, this approach often yields semantically redundant results, missing the diversity and contextual richness required by applications such as retrieval-augmented generation (RAG), multi-hop QA, and memory-augmented agents. We introduce a new retrieval paradigm: semantic compression, which aims to select a compact, representative set of vectors that captures the broader semantic structure around a query. We formalize this objective using principles from submodular optimization and information geometry, and show that it generalizes traditional top-k retrieval by prioritizing coverage and diversity. To operationalize this idea, we propose graph-augmented vector retrieval, which overlays semantic graphs (e.g., kNN or knowledge-based links) atop vector spaces to enable multi-hop, context-aware search. We theoretically analyze the limitations of proximity-based retrieval under high-dimensional concentration and highlight how graph structures can improve semantic coverage. Our work outlines a foundation for meaning-centric vector search systems, emphasizing hybrid indexing, diversity-aware querying, and structured semantic retrieval. We make our implementation publicly available to foster future research in this area.

  • 2 authors
·
Jul 25

Capacity Constrained Influence Maximization in Social Networks

Influence maximization (IM) aims to identify a small number of influential individuals to maximize the information spread and finds applications in various fields. It was first introduced in the context of viral marketing, where a company pays a few influencers to promote the product. However, apart from the cost factor, the capacity of individuals to consume content poses challenges for implementing IM in real-world scenarios. For example, players on online gaming platforms can only interact with a limited number of friends. In addition, we observe that in these scenarios, (i) the initial adopters of promotion are likely to be the friends of influencers rather than the influencers themselves, and (ii) existing IM solutions produce sub-par results with high computational demands. Motivated by these observations, we propose a new IM variant called capacity constrained influence maximization (CIM), which aims to select a limited number of influential friends for each initial adopter such that the promotion can reach more users. To solve CIM effectively, we design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the 1/2-approximation ratio. To improve the efficiency, we devise the scalable implementation named RR-OPIM+ with (1/2-epsilon)-approximation and near-linear running time. We extensively evaluate the performance of 9 approaches on 6 real-world networks, and our solutions outperform all competitors in terms of result quality and running time. Additionally, we deploy RR-OPIM+ to online game scenarios, which improves the baseline considerably.

  • 6 authors
·
May 31, 2023

Transductive Few-Shot Learning: Clustering is All You Need?

We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.

  • 5 authors
·
Jun 16, 2021

dKV-Cache: The Cache for Diffusion Language Models

Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.

  • 4 authors
·
May 21 2

Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.

  • 6 authors
·
May 24, 2023

PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation

Recently, large vision-language models (LVLMs) have rapidly gained popularity for their strong generation and reasoning capabilities given diverse multimodal inputs. However, these models incur significant computational and memory overhead during inference, which greatly hinders the efficient deployment in practical scenarios. The extensive key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost. Based on this, recent works have investigated ways to reduce the KV cache size for higher efficiency. Although effective, they generally overlook the distinct importance distributions of KV vectors across layers and maintain the same cache size for each layer during the next token prediction. This results in the significant contextual information loss for certain layers, leading to notable performance decline. To address this, we present PrefixKV. It reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration. With an adaptive layer-wise KV retention recipe based on binary search, the maximum contextual information can thus be preserved in each layer, facilitating the generation. Extensive experiments demonstrate that our method achieves the state-of-the-art performance compared with others. It exhibits superior inference efficiency and generation quality trade-offs, showing promising potential for practical applications. Code is available at https://github.com/THU-MIG/PrefixKV.

  • 8 authors
·
Dec 4, 2024

CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios

Large Language Models (LLMs) have been widely adopted to process long-context tasks. However, the large memory overhead of the key-value (KV) cache poses significant challenges in long-context scenarios. Existing training-free KV cache compression methods typically focus on quantization and token pruning, which have compression limits, and excessive sparsity can lead to severe performance degradation. Other methods design new architectures with less KV overhead but require significant training overhead. To address the above two drawbacks, we further explore the redundancy in the channel dimension and apply an architecture-level design with minor training costs. Therefore, we introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression: (1) We first analyze the singular value distribution of the KV cache, revealing significant redundancy and compression potential along the channel dimension. Based on this observation, we propose using low-rank decomposition for key and value layers and storing the low-dimension features. (2) To preserve model performance, we introduce a bi-branch KV cache, including a window-based full-precision KV cache and a low-precision compressed KV cache. (3) To reduce the training costs, we minimize the layer-wise reconstruction loss for the compressed KV cache instead of retraining the entire LLMs. Extensive experiments show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability. Moreover, we show that our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.

  • 7 authors
·
Sep 16, 2024

Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction

Prevailing Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone, similar to how Large Language Models (LLMs) process the text tokens. However, the number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs. In this paper, we consider improving MLLM's efficiency from two scenarios, (I) Reducing computational cost without degrading the performance. (II) Improving the performance with given budgets. We start with our main finding that the ranking of each vision token sorted by attention scores is similar in each layer except the first layer. Based on it, we assume that the number of essential top vision tokens does not increase along layers. Accordingly, for Scenario I, we propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep. Interestingly, G-Search is able to reach the optimal reduction strategy based on our assumption. For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization. Extensive experiments demonstrate that our approach can significantly accelerate those popular MLLMs, e.g. LLaVA, and InternVL2 models, by more than 2 times without performance drops. Our approach also far outperforms other token reduction methods when budgets are limited, achieving a better trade-off between efficiency and effectiveness.

  • 10 authors
·
Nov 30, 2024

Shortcut Partitions in Minor-Free Graphs: Steiner Point Removal, Distance Oracles, Tree Covers, and More

The notion of shortcut partition, introduced recently by Chang, Conroy, Le, Milenkovi\'c, Solomon, and Than [CCLMST23], is a new type of graph partition into low-diameter clusters. Roughly speaking, the shortcut partition guarantees that for every two vertices u and v in the graph, there exists a path between u and v that intersects only a few clusters. They proved that any planar graph admits a shortcut partition and gave several applications, including a construction of tree cover for arbitrary planar graphs with stretch 1+varepsilon and O(1) many trees for any fixed varepsilon in (0,1). However, the construction heavily exploits planarity in multiple steps, and is thus inherently limited to planar graphs. In this work, we breach the "planarity barrier" to construct a shortcut partition for K_r-minor-free graphs for any r. To this end, we take a completely different approach -- our key contribution is a novel deterministic variant of the cop decomposition in minor-free graphs [And86, AGG14]. Our shortcut partition for K_r-minor-free graphs yields several direct applications. Most notably, we construct the first optimal distance oracle for K_r-minor-free graphs, with 1+varepsilon stretch, linear space, and constant query time for any fixed varepsilon in (0,1). The previous best distance oracle [AG06] uses O(nlog n) space and O(log n) query time, and its construction relies on Robertson-Seymour structural theorem and other sophisticated tools. We also obtain the first tree cover of O(1) size for minor-free graphs with stretch 1+varepsilon, while the previous best (1+varepsilon)-tree cover has size O(log^2 n) [BFN19].

  • 6 authors
·
Jul 31, 2023

Single-pass Adaptive Image Tokenization for Minimum Program Search

According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.

  • 5 authors
·
Jul 10

FIS-ONE: Floor Identification System with One Label for Crowdsourced RF Signals

Floor labels of crowdsourced RF signals are crucial for many smart-city applications, such as multi-floor indoor localization, geofencing, and robot surveillance. To build a prediction model to identify the floor number of a new RF signal upon its measurement, conventional approaches using the crowdsourced RF signals assume that at least few labeled signal samples are available on each floor. In this work, we push the envelope further and demonstrate that it is technically feasible to enable such floor identification with only one floor-labeled signal sample on the bottom floor while having the rest of signal samples unlabeled. We propose FIS-ONE, a novel floor identification system with only one labeled sample. FIS-ONE consists of two steps, namely signal clustering and cluster indexing. We first build a bipartite graph to model the RF signal samples and obtain a latent representation of each node (each signal sample) using our attention-based graph neural network model so that the RF signal samples can be clustered more accurately. Then, we tackle the problem of indexing the clusters with proper floor labels, by leveraging the observation that signals from an access point can be detected on different floors, i.e., signal spillover. Specifically, we formulate a cluster indexing problem as a combinatorial optimization problem and show that it is equivalent to solving a traveling salesman problem, whose (near-)optimal solution can be found efficiently. We have implemented FIS-ONE and validated its effectiveness on the Microsoft dataset and in three large shopping malls. Our results show that FIS-ONE outperforms other baseline algorithms significantly, with up to 23% improvement in adjusted rand index and 25% improvement in normalized mutual information using only one floor-labeled signal sample.

  • 7 authors
·
Jul 12, 2023

An analytical framework for the Levine hats problem: new strategies, bounds and generalizations

We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies.

  • 5 authors
·
Aug 3

LouisKV: Efficient KV Cache Retrieval for Long Input-Output Sequences

While Key-Value (KV) cache succeeds in reducing redundant computations in auto-regressive models, it introduces significant memory overhead, limiting its practical deployment in long-sequence scenarios. Existing KV retrieval methods mitigate this by dynamically retaining only a subset of KV entries on the GPU. However, they still suffer from notable efficiency and accuracy bottlenecks due to per-token retrieval and coarse-grained page-level KV management, especially in long-output reasoning scenarios. With the emergence of large reasoning models, efficiently handling such scenarios has become increasingly important. To address this issue, we present two key observations: (1) critical KVs exhibit strong temporal locality during decoding, and (2) these KVs exhibit distinct distribution patterns across the input prompt and generated output. Building on these observations, we propose LouisKV, an efficient KV cache retrieval framework designed for various long-sequence scenarios. Specifically, LouisKV introduces a semantic-aware retrieval strategy leveraging temporal locality to trigger retrieval only at semantic boundaries, drastically reducing computation and data transfer overhead. LouisKV also designs a decoupled, fine-grained management scheme that tailors differentiated strategies for input and output sequences to create retrieval units that better match the model's attention patterns, enabling precise identification of critical KVs. Furthermore, to boost efficiency, LouisKV incorporates several kernel-level optimizations, including custom Triton and CUDA kernels to accelerate the KV clustering and retrieval. Evaluations show that LouisKV achieves up to 4.7times speedup over state-of-the-art KV retrieval methods while maintaining near-lossless accuracy across diverse long-sequence tasks, including long-input short-output, short-input long-output, and long-input long-output scenarios.

  • 5 authors
·
Oct 13

KVCrush: Key value cache size-reduction using similarity in head-behaviour

Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.

  • 5 authors
·
Feb 23

How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation

In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.

  • 2 authors
·
Oct 6, 2023

Coverage-centric Coreset Selection for High Pruning Rates

One-shot coreset selection aims to select a representative subset of the training data, given a pruning rate, that can later be used to train future models while retaining high accuracy. State-of-the-art coreset selection methods pick the highest importance examples based on an importance metric and are found to perform well at low pruning rates. However, at high pruning rates, they suffer from a catastrophic accuracy drop, performing worse than even random sampling. This paper explores the reasons behind this accuracy drop both theoretically and empirically. We first propose a novel metric to measure the coverage of a dataset on a specific distribution by extending the classical geometric set cover problem to a distribution cover problem. This metric helps explain why coresets selected by SOTA methods at high pruning rates perform poorly compared to random sampling because of worse data coverage. We then propose a novel one-shot coreset selection method, Coverage-centric Coreset Selection (CCS), that jointly considers overall data coverage upon a distribution as well as the importance of each example. We evaluate CCS on five datasets and show that, at high pruning rates (e.g., 90%), it achieves significantly better accuracy than previous SOTA methods (e.g., at least 19.56% higher on CIFAR10) as well as random selection (e.g., 7.04% higher on CIFAR10) and comparable accuracy at low pruning rates. We make our code publicly available at https://github.com/haizhongzheng/Coverage-centric-coreset-selection.

  • 4 authors
·
Oct 27, 2022