new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Is Complexity Required for Neural Network Pruning? A Case Study on Global Magnitude Pruning

Pruning neural networks has become popular in the last decade when it was shown that a large number of weights can be safely removed from modern neural networks without compromising accuracy. Numerous pruning methods have been proposed since then, each claiming to be better than the previous. Many state-of-the-art (SOTA) techniques today rely on complex pruning methodologies utilizing importance scores, getting feedback through back-propagation or having heuristics-based pruning rules amongst others. In this work, we question whether this pattern of introducing complexity is really necessary to achieve better pruning results. We benchmark these SOTA techniques against a naive pruning baseline, namely, Global Magnitude Pruning (Global MP). Global MP ranks weights in order of their magnitudes and prunes the smallest ones. Hence, in its vanilla form, it is one of the simplest pruning techniques. Surprisingly, we find that vanilla Global MP outperforms all the other SOTA techniques and achieves a new SOTA result. It also achieves promising performance on FLOPs sparsification, which we find is enhanced, when pruning is conducted in a gradual fashion. We also find that Global MP is generalizable across tasks, datasets, and models with superior performance. Moreover, a common issue that many pruning algorithms run into at high sparsity rates, namely, layer-collapse, can be easily fixed in Global MP by setting a minimum threshold of weights to be retained in each layer. Lastly, unlike many other SOTA techniques, Global MP does not require any additional algorithm specific hyper-parameters and is very straightforward to tune and implement. We showcase our findings on various models (WRN-28-8, ResNet-32, ResNet-50, MobileNet-V1 and FastGRNN) and multiple datasets (CIFAR-10, ImageNet and HAR-2). Code is available at https://github.com/manasgupta-1/GlobalMP.

  • 8 authors
·
Sep 29, 2022

"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches

Deep learning approaches have provided state-of-the-art performance in many applications by relying on large and overparameterized neural networks. However, such networks have been shown to be very brittle and are difficult to deploy on resource-limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to a more robust and compact model. Many heuristics exist for model pruning, but empirical studies show that some heuristics improve performance whereas others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation and the corresponding impact on model performance. To facilitate a comprehensive comparison and characterization of the high-dimensional model feature space, we introduce a visual geometric analysis of feature representations. We decomposed and evaluated a set of critical geometric concepts from the common adopted classification loss, and used them to design a visualization system to compare and highlight the impact of pruning on model performance and feature representation. The proposed tool provides an environment for in-depth comparison of pruning methods and a comprehensive understanding of how model response to common data corruption. By leveraging the proposed visualization, machine learning researchers can reveal the similarities between pruning methods and redundant in robustness evaluation benchmarks, obtain geometric insights about the differences between pruned models that achieve superior robustness performance, and identify samples that are robust or fragile to model pruning and common data corruption to model pruning and data corruption but also obtain insights and explanations on how some pruned models achieve superior robustness performance.

  • 8 authors
·
Jun 16, 2022

TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling

Recent advancements in aligning large language models via reinforcement learning have achieved remarkable gains in solving complex reasoning problems, but at the cost of expensive on-policy rollouts and limited exploration of diverse reasoning paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm that views sequence generation as a tree-structured searching process. Composed of dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages local uncertainty to warrant additional branches. By amortizing computation across common prefixes and pruning low-value paths early, TreePO essentially reduces the per-update compute burden while preserving or enhancing exploration diversity. Key contributions include: (1) a segment-wise sampling algorithm that alleviates the KV cache burden through contiguous segments and spawns new branches along with an early-stop mechanism; (2) a tree-based segment-level advantage estimation that considers both global and local proximal policy optimization. and (3) analysis on the effectiveness of probability and quality-driven dynamic divergence and fallback strategy. We empirically validate the performance gain of TreePO on a set reasoning benchmarks and the efficiency saving of GPU hours from 22\% up to 43\% of the sampling design for the trained models, meanwhile showing up to 40\% reduction at trajectory-level and 35\% at token-level sampling compute for the existing models. While offering a free lunch of inference efficiency, TreePO reveals a practical path toward scaling RL-based post-training with fewer samples and less compute. Home page locates at https://m-a-p.ai/TreePO.

ByteDance-Seed ByteDance Seed
·
Aug 24, 2025 3

Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training

The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a novel loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost.

  • 6 authors
·
Feb 17, 2023

Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization

Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) yet often fails to maintain comparable performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Although global pruning aims to identify an optimal sparse model, intuitive methods typically adopt a two-stage paradigm that first evaluates substructure saliency and then applies global pruning, which ignores inter-structure dependencies and fails to achieve end-to-end optimization. To address these limitations, we propose T\'yr-the-Pruner, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that T\'yr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters. Code will be available at https://github.com/AMD-AGI/Tyr-the-Pruner.

  • 7 authors
·
Mar 12, 2025

Efficient Maximum Fair Clique Search over Large Networks

Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

  • 6 authors
·
Dec 7, 2023

STUN: Structured-Then-Unstructured Pruning for Scalable MoE Pruning

Mixture-of-experts (MoEs) have been adopted for reducing inference costs by sparsely activating experts in Large language models (LLMs). Despite this reduction, the massive number of experts in MoEs still makes them expensive to serve. In this paper, we study how to address this, by pruning MoEs. Among pruning methodologies, unstructured pruning has been known to achieve the highest performance for a given pruning ratio, compared to structured pruning, since the latter imposes constraints on the sparsification structure. This is intuitive, as the solution space of unstructured pruning subsumes that of structured pruning. However, our counterintuitive finding reveals that expert pruning, a form of structured pruning, can actually precede unstructured pruning to outperform unstructured-only pruning. As existing expert pruning, requiring O(k^n{n}) forward passes for n experts, cannot scale for recent MoEs, we propose a scalable alternative with O(1) complexity, yet outperforming the more expensive methods. The key idea is leveraging a latent structure between experts, based on behavior similarity, such that the greedy decision of whether to prune closely captures the joint pruning effect. Ours is highly effective -- for Snowflake Arctic, a 480B-sized MoE with 128 experts, our method needs only one H100 and two hours to achieve nearly no loss in performance with 40% sparsity, even in generative tasks such as GSM8K, where state-of-the-art unstructured pruning fails to. The code will be made publicly available.

  • 6 authors
·
Sep 10, 2024

Pruning Deep Neural Networks from a Sparsity Perspective

In recent years, deep network pruning has attracted significant attention in order to enable the rapid deployment of AI into small devices with computation and memory constraints. Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance. Many deep pruning algorithms have been proposed with impressive empirical success. However, existing approaches lack a quantifiable measure to estimate the compressibility of a sub-network during each pruning iteration and thus may under-prune or over-prune the model. In this work, we propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm. Our extensive experiments corroborate the hypothesis that for a generic pruning procedure, PQI decreases first when a large model is being effectively regularized and then increases when its compressibility reaches a limit that appears to correspond to the beginning of underfitting. Subsequently, PQI decreases again when the model collapse and significant deterioration in the performance of the model start to occur. Additionally, our experiments demonstrate that the proposed adaptive pruning algorithm with proper choice of hyper-parameters is superior to the iterative pruning algorithms such as the lottery ticket-based pruning methods, in terms of both compression efficiency and robustness.

  • 6 authors
·
Feb 10, 2023

A Survey on Deep Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommendations

Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of seven pairs of contrast settings for pruning (e.g., unstructured/structured) and explore emerging topics, including post-training pruning, different levels of supervision for pruning, and broader applications (e.g., adversarial robustness) to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. To facilitate future research, we build a curated collection of datasets, networks, and evaluations on different applications. Finally, we provide some valuable recommendations on selecting pruning methods and prospect promising research directions. We build a repository at https://github.com/hrcheng1066/awesome-pruning.

  • 3 authors
·
Aug 13, 2023

Advancing Model Pruning via Bi-level Optimization

The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find 'winning tickets'. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient 'one-shot' pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating 2-7 times speedup over IMP for the same level of model accuracy and sparsity.

  • 8 authors
·
Oct 8, 2022

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.

  • 3 authors
·
Jun 22, 2025 2

When Layers Play the Lottery, all Tickets Win at Initialization

Pruning is a standard technique for reducing the computational cost of deep networks. Many advances in pruning leverage concepts from the Lottery Ticket Hypothesis (LTH). LTH reveals that inside a trained dense network exists sparse subnetworks (tickets) able to achieve similar accuracy (i.e., win the lottery - winning tickets). Pruning at initialization focuses on finding winning tickets without training a dense network. Studies on these concepts share the trend that subnetworks come from weight or filter pruning. In this work, we investigate LTH and pruning at initialization from the lens of layer pruning. First, we confirm the existence of winning tickets when the pruning process removes layers. Leveraged by this observation, we propose to discover these winning tickets at initialization, eliminating the requirement of heavy computational resources for training the initial (over-parameterized) dense network. Extensive experiments show that our winning tickets notably speed up the training phase and reduce up to 51% of carbon emission, an important step towards democratization and green Artificial Intelligence. Beyond computational benefits, our winning tickets exhibit robustness against adversarial and out-of-distribution examples. Finally, we show that our subnetworks easily win the lottery at initialization while tickets from filter removal (the standard structured LTH) hardly become winning tickets.

  • 4 authors
·
Jan 25, 2023

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance. We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective. We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

  • 2 authors
·
Mar 9, 2018 1

Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models

Text-to-image (T2I) diffusion models have demonstrated impressive image generation capabilities. Still, their computational intensity prohibits resource-constrained organizations from deploying T2I models after fine-tuning them on their internal target data. While pruning techniques offer a potential solution to reduce the computational burden of T2I models, static pruning methods use the same pruned model for all input prompts, overlooking the varying capacity requirements of different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-network for each prompt, but it prevents batch parallelism on GPUs. To overcome these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning method designed for T2I diffusion models. Central to our approach is a prompt router model, which learns to determine the required capacity for an input text prompt and routes it to an architecture code, given a total desired compute budget for prompts. Each architecture code represents a specialized model tailored to the prompts assigned to it, and the number of codes is a hyperparameter. We train the prompt router and architecture codes using contrastive learning, ensuring that similar prompts are mapped to nearby codes. Further, we employ optimal transport to prevent the codes from collapsing into a single one. We demonstrate APTP's effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and COCO as target datasets. APTP outperforms the single-model pruning baselines in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned by APTP reveals they are semantically meaningful. We also show that APTP can automatically discover previously empirically found challenging prompts for SD, e.g., prompts for generating text images, assigning them to higher capacity codes.

  • 4 authors
·
Jun 17, 2024 1

DarwinLM: Evolutionary Structured Pruning of Large Language Models

Large Language Models (LLMs) have achieved significant success across various NLP tasks. However, their massive computational costs limit their widespread use, particularly in real-time applications. Structured pruning offers an effective solution by compressing models and directly providing end-to-end speed improvements, regardless of the hardware environment. Meanwhile, different components of the model exhibit varying sensitivities towards pruning, calling for non-uniform model compression. However, a pruning method should not only identify a capable substructure, but also account for post-compression training. To this end, we propose \sysname, a method for training-aware structured pruning. \sysname builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival. To assess the effect of post-training, we incorporate a lightweight, multistep training process within the offspring population, progressively increasing the number of tokens and eliminating poorly performing models in each selection stage. We validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured pruning. For instance, \sysname surpasses ShearedLlama while requiring 5times less training data during post-compression training.

  • 5 authors
·
Feb 11, 2025 7

O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Recently, long-thought reasoning LLMs, such as OpenAI's O1, adopt extended reasoning processes similar to how humans ponder over complex problems. This reasoning paradigm significantly enhances the model's problem-solving abilities and has achieved promising results. However, long-thought reasoning process leads to a substantial increase in inference time. A pressing challenge is reducing the inference overhead of long-thought LLMs while ensuring accuracy. In this paper, we experimentally demonstrate that long-thought reasoning models struggle to effectively allocate token budgets based on problem difficulty and reasoning redundancies. To address this, we propose Length-Harmonizing Fine-Tuning (O1-Pruner), aiming at minimizing reasoning overhead while maintaining accuracy. This effective fine-tuning method first estimates the LLM's baseline performance through pre-sampling and then uses RL-style fine-tuning to encourage the model to generate shorter reasoning processes under accuracy constraints. This allows the model to achieve efficient reasoning with lower redundancy while maintaining accuracy. Experiments on various mathematical reasoning benchmarks show that O1-Pruner not only significantly reduces inference overhead but also achieves higher accuracy, providing a novel and promising solution to this challenge. Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner

  • 9 authors
·
Jan 21, 2025 2

A Three-regime Model of Network Pruning

Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.

  • 4 authors
·
May 28, 2023

Lottery Jackpots Exist in Pre-trained Models

Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex searching on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight training, termed "lottery jackpots", exist in pre-trained models with unexpanded width. Furthermore, we improve the efficiency for searching lottery jackpots from two perspectives. Firstly, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Consequently, our searched lottery jackpot removes 90% weights in ResNet-50, while it easily obtains more than 70% top-1 accuracy using only 5 searching epochs on ImageNet. In compliance with this insight, we initialize our sparse mask using the magnitude-based pruning, resulting in at least 3x cost reduction on the lottery jackpot searching while achieving comparable or even better performance. Secondly, we conduct an in-depth analysis of the searching process for lottery jackpots. Our theoretical result suggests that the decrease in training loss during weight searching can be disturbed by the dependency between weights in modern networks. To mitigate this, we propose a novel short restriction method to restrict change of masks that may have potential negative impacts on the training loss. Our code is available at https://github.com/zyxxmu/lottery-jackpots.

  • 5 authors
·
Apr 17, 2021

Network Pruning via Transformable Architecture Search

Network pruning reduces the computation costs of an over-parameterized network without performance damage. Prevailing pruning algorithms pre-define the width and depth of the pruned networks, and then transfer parameters from the unpruned network to pruned networks. To break the structure limitation of the pruned networks, we propose to apply neural architecture search to search directly for a network with flexible channel and layer sizes. The number of the channels/layers is learned by minimizing the loss of the pruned networks. The feature map of the pruned network is an aggregation of K feature map fragments (generated by K networks of different sizes), which are sampled based on the probability distribution.The loss can be back-propagated not only to the network weights, but also to the parameterized distribution to explicitly tune the size of the channels/layers. Specifically, we apply channel-wise interpolation to keep the feature map with different channel sizes aligned in the aggregation procedure. The maximum probability for the size in each distribution serves as the width and depth of the pruned network, whose parameters are learned by knowledge transfer, e.g., knowledge distillation, from the original networks. Experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate the effectiveness of our new perspective of network pruning compared to traditional network pruning algorithms. Various searching and knowledge transfer approaches are conducted to show the effectiveness of the two components. Code is at: https://github.com/D-X-Y/NAS-Projects.

  • 2 authors
·
May 23, 2019

Meta Pruning via Graph Metanetworks : A Meta Learning Framework for Network Pruning

Network pruning, aimed at reducing network size while preserving accuracy, has attracted significant research interest. Numerous pruning techniques have been proposed over time. They are becoming increasingly effective, but more complex and harder to interpret as well. Given the inherent complexity of neural networks, we argue that manually designing pruning criteria has reached a bottleneck. To address this, we propose a novel approach in which we "use a neural network to prune neural networks". More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically which can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and the standard finetuning to prune at state-of-the-art. Our method achieved outstanding results on many popular and representative pruning tasks (including ResNet56 on CIFAR10, VGG19 on CIFAR100, ResNet50 on ImageNet). Our code is available at https://github.com/Yewei-Liu/MetaPruning

  • 3 authors
·
May 24, 2025

Distilling the Knowledge in Data Pruning

With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.

  • 5 authors
·
Mar 12, 2024

Scalable iterative pruning of large language and vision models using block coordinate descent

Pruning neural networks, which involves removing a fraction of their weights, can often maintain high accuracy while significantly reducing model complexity, at least up to a certain limit. We present a neural network pruning technique that builds upon the Combinatorial Brain Surgeon, but solves an optimization problem over a subset of the network weights in an iterative, block-wise manner using block coordinate descent. The iterative, block-based nature of this pruning technique, which we dub ``iterative Combinatorial Brain Surgeon'' (iCBS) allows for scalability to very large models, including large language models (LLMs), that may not be feasible with a one-shot combinatorial optimization approach. When applied to large models like Mistral and DeiT, iCBS achieves higher performance metrics at the same density levels compared to existing pruning methods such as Wanda. This demonstrates the effectiveness of this iterative, block-wise pruning method in compressing and optimizing the performance of large deep learning models, even while optimizing over only a small fraction of the weights. Moreover, our approach allows for a quality-time (or cost) tradeoff that is not available when using a one-shot pruning technique alone. The block-wise formulation of the optimization problem enables the use of hardware accelerators, potentially offsetting the increased computational costs compared to one-shot pruning methods like Wanda. In particular, the optimization problem solved for each block is quantum-amenable in that it could, in principle, be solved by a quantum computer.

  • 7 authors
·
Nov 26, 2024

Lightweight and Post-Training Structured Pruning for On-Device Large Lanaguage Models

Considering the hardware-friendly characteristics and broad applicability, structured pruning has emerged as an efficient solution to reduce the resource demands of large language models (LLMs) on resource-constrained devices. Traditional structured pruning methods often need fine-tuning to recover performance loss, which incurs high memory overhead and substantial data requirements, rendering them unsuitable for on-device applications. Additionally, post-training structured pruning techniques typically necessitate specific activation functions or architectural modifications, thereby limiting their scope of applications. Herein, we introduce COMP, a lightweight post-training structured pruning method that employs a hybrid-granularity pruning strategy. COMP initially prunes selected model layers based on their importance at a coarse granularity, followed by fine-grained neuron pruning within the dense layers of each remaining model layer. To more accurately evaluate neuron importance, COMP introduces a new matrix condition-based metric. Subsequently, COMP utilizes mask tuning to recover accuracy without the need for fine-tuning, significantly reducing memory consumption. Experimental results demonstrate that COMP improves performance by 6.13\% on the LLaMA-2-7B model with a 20\% pruning ratio compared to LLM-Pruner, while simultaneously reducing memory overhead by 80\%.

  • 6 authors
·
Jan 25, 2025

Rethinking the Value of Network Pruning

Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.

  • 5 authors
·
Oct 11, 2018

CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information

The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.

  • 10 authors
·
Sep 20, 2024

Efficient Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks

In this paper, we propose a novel layer-adaptive weight-pruning approach for Deep Neural Networks (DNNs) that addresses the challenge of optimizing the output distortion minimization while adhering to a target pruning ratio constraint. Our approach takes into account the collective influence of all layers to design a layer-adaptive pruning scheme. We discover and utilize a very important additivity property of output distortion caused by pruning weights on multiple layers. This property enables us to formulate the pruning as a combinatorial optimization problem and efficiently solve it through dynamic programming. By decomposing the problem into sub-problems, we achieve linear time complexity, making our optimization algorithm fast and feasible to run on CPUs. Our extensive experiments demonstrate the superiority of our approach over existing methods on the ImageNet and CIFAR-10 datasets. On CIFAR-10, our method achieves remarkable improvements, outperforming others by up to 1.0% for ResNet-32, 0.5% for VGG-16, and 0.7% for DenseNet-121 in terms of top-1 accuracy. On ImageNet, we achieve up to 4.7% and 4.6% higher top-1 accuracy compared to other methods for VGG-16 and ResNet-50, respectively. These results highlight the effectiveness and practicality of our approach for enhancing DNN performance through layer-adaptive weight pruning. Code will be available on https://github.com/Akimoto-Cris/RD_VIT_PRUNE.

  • 7 authors
·
Aug 20, 2023

Stabilizing the Lottery Ticket Hypothesis

Pruning is a well-established technique for removing unnecessary structure from neural networks after training to improve the performance of inference. Several recent results have explored the possibility of pruning at initialization time to provide similar benefits during training. In particular, the "lottery ticket hypothesis" conjectures that typical neural networks contain small subnetworks that can train to similar accuracy in a commensurate number of steps. The evidence for this claim is that a procedure based on iterative magnitude pruning (IMP) reliably finds such subnetworks retroactively on small vision tasks. However, IMP fails on deeper networks, and proposed methods to prune before training or train pruned networks encounter similar scaling limitations. In this paper, we argue that these efforts have struggled on deeper networks because they have focused on pruning precisely at initialization. We modify IMP to search for subnetworks that could have been obtained by pruning early in training (0.1% to 7% through) rather than at iteration 0. With this change, it finds small subnetworks of deeper networks (e.g., 80% sparsity on Resnet-50) that can complete the training process to match the accuracy of the original network on more challenging tasks (e.g., ImageNet). In situations where IMP fails at iteration 0, the accuracy benefits of delaying pruning accrue rapidly over the earliest iterations of training. To explain these behaviors, we study subnetwork "stability," finding that - as accuracy improves in this fashion - IMP subnetworks train to parameters closer to those of the full network and do so with improved consistency in the face of gradient noise. These results offer new insights into the opportunity to prune large-scale networks early in training and the behaviors underlying the lottery ticket hypothesis

  • 4 authors
·
Mar 4, 2019

On the Design and Analysis of LLM-Based Algorithms

We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.

  • 4 authors
·
Jul 20, 2024

All-in-One Tuning and Structural Pruning for Domain-Specific LLMs

Existing pruning techniques for large language models (LLMs) targeting domain-specific applications typically follow a two-stage process: pruning the pretrained general-purpose LLMs and then fine-tuning the pruned LLMs on specific domains. However, the pruning decisions, derived from the pretrained weights, remain unchanged during fine-tuning, even if the weights have been updated. Therefore, such a combination of the pruning decisions and the finetuned weights may be suboptimal, leading to non-negligible performance degradation. To address these limitations, we propose ATP: All-in-One Tuning and Structural Pruning, a unified one-stage structural pruning and fine-tuning approach that dynamically identifies the current optimal substructure throughout the fine-tuning phase via a trainable pruning decision generator. Moreover, given the limited available data for domain-specific applications, Low-Rank Adaptation (LoRA) becomes a common technique to fine-tune the LLMs. In ATP, we introduce LoRA-aware forward and sparsity regularization to ensure that the substructures corresponding to the learned pruning decisions can be directly removed after the ATP process. ATP outperforms the state-of-the-art two-stage pruning methods on tasks in the legal and healthcare domains. More specifically, ATP recovers up to 88% and 91% performance of the dense model when pruning 40% parameters of LLaMA2-7B and LLaMA3-8B models, respectively.

  • 10 authors
·
Dec 18, 2024

FTP: A Fine-grained Token-wise Pruner for Large Language Models via Token Routing

Recently, large language models (LLMs) have demonstrated superior performance across various tasks by adhering to scaling laws, which significantly increase model size. However, the huge computation overhead during inference hinders the deployment in industrial applications. Many works leverage traditional compression approaches to boost model inference, but these always introduce additional training costs to restore the performance and the pruning results typically show noticeable performance drops compared to the original model when aiming for a specific level of acceleration. To address these issues, we propose a fine-grained token-wise pruning approach for the LLMs, which presents a learnable router to adaptively identify the less important tokens and skip them across model blocks to reduce computational cost during inference. To construct the router efficiently, we present a search-based sparsity scheduler for pruning sparsity allocation, a trainable router combined with our proposed four low-dimensional factors as input and three proposed losses. We conduct extensive experiments across different benchmarks on different LLMs to demonstrate the superiority of our method. Our approach achieves state-of-the-art (SOTA) pruning results, surpassing other existing pruning methods. For instance, our method outperforms BlockPruner and ShortGPT by approximately 10 points on both LLaMA2-7B and Qwen1.5-7B in accuracy retention at comparable token sparsity levels.

  • 12 authors
·
Dec 16, 2024

Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models

Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.

  • 4 authors
·
Oct 8, 2023

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to outperforming a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning. Our source code can be found at https://github.com/VITA-Group/Random_Pruning.

  • 7 authors
·
Feb 5, 2022

Beyond Size: How Gradients Shape Pruning Decisions in Large Language Models

Large Language Models (LLMs) with a billion or more parameters are prime targets for network pruning, which aims to reduce a portion of the network weights without compromising performance. Prior approaches such as Weights Magnitude, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained large language models. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the importance pruning score, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguing, after incorporating gradients, the unstructured pruning method tends to reveal some structural patterns post-pruning, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various language benchmarks and perplexity show that GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and SparseGPT (weights+activations+weight update) by significant margins. Our code and models are available at https://github.com/RocktimJyotiDas/GBLM-Pruner.

  • 3 authors
·
Nov 8, 2023

Structurally Prune Anything: Any Architecture, Any Framework, Any Time

Neural network pruning serves as a critical technique for enhancing the efficiency of deep learning models. Unlike unstructured pruning, which only sets specific parameters to zero, structured pruning eliminates entire channels, thus yielding direct computational and storage benefits. However, the diverse patterns for coupling parameters, such as residual connections and group convolutions, the diverse deep learning frameworks, and the various time stages at which pruning can be performed make existing pruning methods less adaptable to different architectures, frameworks, and pruning criteria. To address this, we introduce Structurally Prune Anything (SPA), a versatile structured pruning framework that can prune neural networks with any architecture, from any framework, and at any stage of training. SPA leverages a standardized computational graph and ONNX representation to prune diverse neural network architectures without the need for manual intervention. SPA employs a group-level importance estimation method, which groups dependent computational operators, estimates their importance, and prunes unimportant coupled channels. This enables the transfer of various existing pruning criteria into a structured group style. As a result, SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning. In the context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that achieves state-of-the-art pruning results needing neither fine-tuning nor calibration data. In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures, from popular frameworks, at different pruning times.

  • 4 authors
·
Mar 3, 2024

Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning

The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning.

  • 7 authors
·
Dec 18, 2019