Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAn Empirical Study of Scaling Instruct-Tuned Large Multimodal Models
Visual instruction tuning has recently shown encouraging progress with open-source large multimodal models (LMM) such as LLaVA and MiniGPT-4. However, most existing studies of open-source LMM are performed using models with 13B parameters or smaller. In this paper we present an empirical study of scaling LLaVA up to 33B and 65B/70B, and share our findings from our explorations in image resolution, data mixing and parameter-efficient training methods such as LoRA/QLoRA. These are evaluated by their impact on the multi-modal and language capabilities when completing real-world tasks in the wild. We find that scaling LMM consistently enhances model performance and improves language capabilities, and performance of LoRA/QLoRA tuning of LMM are comparable to the performance of full-model fine-tuning. Additionally, the study highlights the importance of higher image resolutions and mixing multimodal-language data to improve LMM performance, and visual instruction tuning can sometimes improve LMM's pure language capability. We hope that this study makes state-of-the-art LMM research at a larger scale more accessible, thus helping establish stronger baselines for future research. Code and checkpoints will be made public.
BARE: Combining Base and Instruction-Tuned Language Models for Better Synthetic Data Generation
As the demand for high-quality data in model training grows, researchers and developers are increasingly generating synthetic data to tune and train LLMs. A common assumption about synthetic data is that sampling from instruct-tuned models is sufficient; however, these models struggle to produce diverse outputs-a key requirement for generalization. Despite various prompting methods, in this work we show that achieving meaningful diversity from instruct-tuned models remains challenging. In contrast, we find base models without post-training exhibit greater diversity, but are less capable at instruction following and hence of lower quality. Leveraging this insight, we propose Base-Refine (BARE), a synthetic data generation method that combines the diversity of base models with the quality of instruct-tuned models through a two-stage process. With minimal few-shot examples and curation, BARE generates diverse and high-quality datasets, improving downstream task performance. We show that fine-tuning with as few as 1,000 BARE-generated samples can reach performance comparable to the best similarly sized models on LiveCodeBench tasks. Furthermore, fine-tuning with BARE-generated data achieves a 101% improvement over instruct-only data on GSM8K and a 18.4% improvement over SOTA methods on RAFT.
Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning; adoption that has fueled a wealth of new models such as LLaVa, InstructBLIP, and PaLI-3. Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored, making it challenging to understand what factors account for model performance - a challenge further complicated by the lack of objective, consistent evaluations. To address these gaps, we first compile a suite of standardized evaluations spanning visual question answering, object localization from language, and targeted challenge sets that probe properties such as hallucination; evaluations that provide calibrated, fine-grained insight into a VLM's capabilities. Second, we rigorously investigate VLMs along key design axes, including pretrained visual representations and quantifying the tradeoffs of using base vs. instruct-tuned language models, amongst others. We couple our analysis with three resource contributions: (1) a unified framework for evaluating VLMs, (2) optimized, flexible code for VLM training, and (3) checkpoints for all models, including a family of VLMs at the 7-13B scale that strictly outperform InstructBLIP and LLaVa v1.5, the state-of-the-art in open-source VLMs.
LLaDA-MoE: A Sparse MoE Diffusion Language Model
We introduce LLaDA-MoE, a large language diffusion model with the Mixture-of-Experts (MoE) architecture, trained from scratch on approximately 20T tokens. LLaDA-MoE achieves competitive performance with significantly reduced computational overhead by maintaining a 7B-parameter capacity while activating only 1.4B parameters during inference. Our empirical evaluation reveals that LLaDA-MoE achieves state-of-the-art performance among diffusion language models with larger parameters, surpassing previous diffusion language models LLaDA, LLaDA 1.5, and Dream across multiple benchmarks. The instruct-tuned model LLaDA-MoE-7B-A1B-Instruct demonstrates capabilities comparable to Qwen2.5-3B-Instruct in knowledge understanding, code generation, mathematical reasoning, agent and alignment tasks, despite using fewer active parameters. Our results show that integrating a sparse MoE architecture into the training objective of masked diffusion language models still brings out MoE's strengths under efficient inference with few active parameters, and opens ample room for further exploration of diffusion language models. LLaDA-MoE models are available at Huggingface.
Jointly Training Large Autoregressive Multimodal Models
In recent years, advances in the large-scale pretraining of language and text-to-image models have revolutionized the field of machine learning. Yet, integrating these two modalities into a single, robust model capable of generating seamless multimodal outputs remains a significant challenge. To address this gap, we present the Joint Autoregressive Mixture (JAM) framework, a modular approach that systematically fuses existing text and image generation models. We also introduce a specialized, data-efficient instruction-tuning strategy, tailored for mixed-modal generation tasks. Our final instruct-tuned model demonstrates unparalleled performance in generating high-quality multimodal outputs and represents the first model explicitly designed for this purpose.
LLM Pruning and Distillation in Practice: The Minitron Approach
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
Hermes 3 Technical Report
Instruct (or "chat") tuned models have become the primary way in which most people interact with large language models. As opposed to "base" or "foundation" models, instruct-tuned models are optimized to respond to imperative statements. We present Hermes 3, a neutrally-aligned generalist instruct and tool use model with strong reasoning and creative abilities. Its largest version, Hermes 3 405B, achieves state of the art performance among open weight models on several public benchmarks.
Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has significant influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring sample effect. Hypothetical analysis show that SFT efficiency is limited by training data. Guided by our analysis, we propose Re-distillation, a technique that fine-tunes pretrain model through small-scale distillation from the RL-trained policy. Experiments on Knight & Knave and MATH datasets demonstrate re-distillation's surprising efficiency: re-distilled models match RL performance with far fewer samples and less computation. Empirical verification shows that sample effect is a good indicator of performance improvements. As a result, on K&K dataset, our re-distilled Qwen2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. On MATH, Qwen2.5-1.5B fine-tuned with re-distilled 500 samples matches its instruct-tuned variant without RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning
OffsetBias: Leveraging Debiased Data for Tuning Evaluators
Employing Large Language Models (LLMs) to assess the quality of generated responses, such as prompting instruct-tuned models or fine-tuning judge models, has become a widely adopted evaluation method. It is also known that such evaluators are vulnerable to biases, such as favoring longer responses. While it is important to overcome this problem, the specifics of these biases remain under-explored. In this work, we qualitatively identify six types of biases inherent in various judge models. We propose EvalBiasBench as a meta-evaluation collection of hand-crafted test cases for each bias type. Additionally, we present de-biasing dataset construction methods and the associated preference dataset OffsetBias. Experimental results demonstrate that fine-tuning on our dataset significantly enhances the robustness of judge models against biases and improves performance across most evaluation scenarios. We release our datasets and the fine-tuned judge model to public.
The Zamba2 Suite: Technical Report
In this technical report, we present the Zamba2 series -- a suite of 1.2B, 2.7B, and 7.4B parameter hybrid Mamba2-transformer models that achieve state of the art performance against the leading open-weights models of their class, while achieving substantial gains in inference latency, throughput, and memory efficiency. The Zamba2 series builds upon our initial work with Zamba1-7B, optimizing its architecture, training and annealing datasets, and training for up to three trillion tokens. We provide open-source weights for all models of the Zamba2 series as well as instruction-tuned variants that are strongly competitive against comparable instruct-tuned models of their class. We additionally open-source the pretraining dataset, which we call Zyda-2, used to train the Zamba2 series of models. The models and datasets used in this work are openly available at https://huggingface.co/Zyphra
Facilitating large language model Russian adaptation with Learned Embedding Propagation
Rapid advancements of large language model (LLM) technologies led to the introduction of powerful open-source instruction-tuned LLMs that have the same text generation quality as the state-of-the-art counterparts such as GPT-4. While the emergence of such models accelerates the adoption of LLM technologies in sensitive-information environments the authors of such models don not disclose the training data necessary for replication of the results thus making the achievements model-exclusive. Since those open-source models are also multilingual this in turn reduces the benefits of training a language specific LLMs as improved inference computation efficiency becomes the only guaranteed advantage of such costly procedure. More cost-efficient options such as vocabulary extension and subsequent continued pre-training are also inhibited by the lack of access to high-quality instruction-tuning data since it is the major factor behind the resulting LLM task-solving capabilities. To address the limitations and cut the costs of the language adaptation pipeline we propose Learned Embedding Propagation (LEP). Unlike existing approaches our method has lower training data size requirements due to minimal impact on existing LLM knowledge which we reinforce using novel ad-hoc embedding propagation procedure that allows to skip the instruction-tuning step and instead implant the new language knowledge directly into any existing instruct-tuned variant. We evaluated four Russian vocabulary adaptations for LLaMa-3-8B and Mistral-7B, showing that LEP is competitive with traditional instruction-tuning methods, achieving performance comparable to OpenChat 3.5 and LLaMa-3-8B-Instruct, with further improvements via self-calibration and continued tuning enhancing task-solving capabilities.
Introducing DictaLM -- A Large Generative Language Model for Modern Hebrew
We present DictaLM, a large-scale language model tailored for Modern Hebrew. Boasting 7B parameters, this model is predominantly trained on Hebrew-centric data. As a commitment to promoting research and development in the Hebrew language, we release both the foundation model and the instruct-tuned model under a Creative Commons license. Concurrently, we introduce DictaLM-Rab, another foundation model geared towards Rabbinic/Historical Hebrew. These foundation models serve as ideal starting points for fine-tuning various Hebrew-specific tasks, such as instruction, Q&A, sentiment analysis, and more. This release represents a preliminary step, offering an initial Hebrew LLM model for the Hebrew NLP community to experiment with.
TuRTLe: A Unified Evaluation of LLMs for RTL Generation
The rapid advancements in LLMs have driven the adoption of generative AI in various domains, including Electronic Design Automation (EDA). Unlike traditional software development, EDA presents unique challenges, as generated RTL code must not only be syntactically correct and functionally accurate but also synthesizable by hardware generators while meeting performance, power, and area constraints. These additional requirements introduce complexities that existing code-generation benchmarks often fail to capture, limiting their effectiveness in evaluating LLMs for RTL generation. To address this gap, we propose TuRTLe, a unified evaluation framework designed to systematically assess LLMs across key RTL generation tasks. TuRTLe integrates multiple existing benchmarks and automates the evaluation process, enabling a comprehensive assessment of LLM performance in syntax correctness, functional correctness, synthesis, PPA optimization, and exact line completion. Using this framework, we benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks. Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria, but at the cost of increased computational overhead and inference latency. Additionally, base models are better suited in module completion tasks, while instruct-tuned models perform better in specification-to-RTL tasks.
HelpSteer2-Preference: Complementing Ratings with Preferences
Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. We also demonstrate the effectiveness of this reward model at aligning models to follow instructions in RLHF. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2 and openly release the trained Reward Model at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
Introducing Super RAGs in Mistral 8x7B-v1
The relentless pursuit of enhancing Large Language Models (LLMs) has led to the advent of Super Retrieval-Augmented Generation (Super RAGs), a novel approach designed to elevate the performance of LLMs by integrating external knowledge sources with minimal structural modifications. This paper presents the integration of Super RAGs into the Mistral 8x7B v1, a state-of-the-art LLM, and examines the resultant improvements in accuracy, speed, and user satisfaction. Our methodology uses a fine-tuned instruct model setup and a cache tuning fork system, ensuring efficient and relevant data retrieval. The evaluation, conducted over several epochs, demonstrates significant enhancements across all metrics. The findings suggest that Super RAGs can effectively augment LLMs, paving the way for more sophisticated and reliable AI systems. This research contributes to the field by providing empirical evidence of the benefits of Super RAGs and offering insights into their potential applications.
Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data
Instruction fine-tuning is crucial for today's large language models (LLMs) to learn to follow instructions and align with human preferences. Conventionally, supervised data, including the instruction and the correct response, is required for instruction fine-tuning. To obtain such data, some researchers prompted well-trained models like GPT-4 to generate instructions and correct responses. In this paper, we propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response. Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities. This observation is verified by fine-tuning several well-known pre-trained LLMs (e.g., LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, Mistral-7B-v0.1). The "non-instructional data" also improved some models that underwent supervised fine-tuning and human preference alignment. Our LLaMA-3-70B-Instruct fine-tuned through "non-instructional data" is comparable with LLaMA-3.1-70B-Instruct on the Arena Hard leaderboard. We analyzed the "non-instructional data" and ensured it is devoid of content related to instruction fine-tuning. Our findings will inspire further investigation into how to develop instruction-following capabilities without explicit instruction-related data.
Controllable Context Sensitivity and the Knob Behind It
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
LIONs: An Empirically Optimized Approach to Align Language Models
Alignment is a crucial step to enhance the instruction-following and conversational abilities of language models. Despite many recent work proposing new algorithms, datasets, and training pipelines, there is a lack of comprehensive studies measuring the impact of various design choices throughout the whole training process. We first conduct a rigorous analysis over a three-stage training pipeline consisting of supervised fine-tuning, offline preference learning, and online preference learning. We have found that using techniques like sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. We then train from Gemma-2b-base and LLama-3-8b-base, and find that our best models exceed the performance of the official instruct models tuned with closed-source data and algorithms. Our code and models can be found at https://github.com/Columbia-NLP-Lab/LionAlignment.
Birbal: An efficient 7B instruct-model fine-tuned with curated datasets
LLMOps incur significant costs due to hardware requirements, hindering their widespread accessibility. Additionally, a lack of transparency in model training methods and data contributes to the majority of models being non-reproducible. To tackle these challenges, the LLM Efficiency Challenge was introduced at NeurIPS Workshop, aiming to adapt foundation models on a diverse set of tasks via fine-tuning on a single GPU (RTX 4090 or A100 with 40GB) within a 24-hour timeframe. In this system description paper, we introduce Birbal, our Mistral-7B based winning model, fine-tuned on a single RTX 4090 for 16 hours. Birbal's success lies in curating high-quality instructions covering diverse tasks, resulting in a 35% performance improvement over second-best Qwen-14B based submission.
ILLUMINER: Instruction-tuned Large Language Models as Few-shot Intent Classifier and Slot Filler
State-of-the-art intent classification (IC) and slot filling (SF) methods often rely on data-intensive deep learning models, limiting their practicality for industry applications. Large language models on the other hand, particularly instruction-tuned models (Instruct-LLMs), exhibit remarkable zero-shot performance across various natural language tasks. This study evaluates Instruct-LLMs on popular benchmark datasets for IC and SF, emphasizing their capacity to learn from fewer examples. We introduce ILLUMINER, an approach framing IC and SF as language generation tasks for Instruct-LLMs, with a more efficient SF-prompting method compared to prior work. A comprehensive comparison with multiple baselines shows that our approach, using the FLAN-T5 11B model, outperforms the state-of-the-art joint IC+SF method and in-context learning with GPT3.5 (175B), particularly in slot filling by 11.1--32.2 percentage points. Additionally, our in-depth ablation study demonstrates that parameter-efficient fine-tuning requires less than 6% of training data to yield comparable performance with traditional full-weight fine-tuning.
Shadow-FT: Tuning Instruct via Base
Large language models (LLMs) consistently benefit from further fine-tuning on various tasks. However, we observe that directly tuning the INSTRUCT (i.e., instruction tuned) models often leads to marginal improvements and even performance degeneration. Notably, paired BASE models, the foundation for these INSTRUCT variants, contain highly similar weight values (i.e., less than 2% on average for Llama 3.1 8B). Therefore, we propose a novel Shadow-FT framework to tune the INSTRUCT models by leveraging the corresponding BASE models. The key insight is to fine-tune the BASE model, and then directly graft the learned weight updates to the INSTRUCT model. Our proposed Shadow-FT introduces no additional parameters, is easy to implement, and significantly improves performance. We conduct extensive experiments on tuning mainstream LLMs, such as Qwen 3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding, reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-FT consistently outperforms conventional full-parameter and parameter-efficient tuning approaches. Further analyses indicate that Shadow-FT can be applied to multimodal large language models (MLLMs) and combined with direct preference optimization (DPO). Codes and weights are available at https://github.com/wutaiqiang/Shadow-FT{Github}.
EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions
Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 140.41% higher average refusal triggering rate across 9 LLMs, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. LLAMA3.1-8B-INSTRUCT supervisedly fine-tuned on EVOREFUSE-ALIGN achieves up to 14.31% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context.
Adapting LLMs to Hebrew: Unveiling DictaLM 2.0 with Enhanced Vocabulary and Instruction Capabilities
Training large language models (LLMs) in low-resource languages such as Hebrew poses unique challenges. In this paper, we introduce DictaLM2.0 and DictaLM2.0-Instruct, two LLMs derived from the Mistral model, trained on a substantial corpus of approximately 200 billion tokens in both Hebrew and English. Adapting a pre-trained model to a new language involves specialized techniques that differ significantly from training a model from scratch or further training existing models on well-resourced languages such as English. We outline these novel training methodologies, which facilitate effective learning and adaptation to the linguistic properties of Hebrew. Additionally, we fine-tuned DictaLM2.0-Instruct on a comprehensive instruct dataset to enhance its performance on task-specific instructions. To rigorously evaluate our models, we introduce a new benchmark suite for Hebrew LLM evaluation, covering a diverse set of tasks including Question Answering, Sentiment Analysis, Winograd Schema Challenge, Translation, and Summarization. Our work not only addresses the intricacies of training LLMs in low-resource languages but also proposes a framework that can be leveraged for adapting other LLMs to various non-English languages, contributing to the broader field of multilingual NLP.
Retrieval-augmented reasoning with lean language models
This technical report details a novel approach to combining reasoning and retrieval augmented generation (RAG) within a single, lean language model architecture. While existing RAG systems typically rely on large-scale models and external APIs, our work addresses the increasing demand for performant and privacy-preserving solutions deployable in resource-constrained or secure environments. Building on recent developments in test-time scaling and small-scale reasoning models, we develop a retrieval augmented conversational agent capable of interpreting complex, domain-specific queries using a lightweight backbone model. Our system integrates a dense retriever with fine-tuned Qwen2.5-Instruct models, using synthetic query generation and reasoning traces derived from frontier models (e.g., DeepSeek-R1) over a curated corpus, in this case, the NHS A-to-Z condition pages. We explore the impact of summarisation-based document compression, synthetic data design, and reasoning-aware fine-tuning on model performance. Evaluation against both non-reasoning and general-purpose lean models demonstrates that our domain-specific fine-tuning approach yields substantial gains in answer accuracy and consistency, approaching frontier-level performance while remaining feasible for local deployment. All implementation details and code are publicly released to support reproducibility and adaptation across domains.
InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct
Recent advancements in open-source code large language models (LLMs) have demonstrated remarkable coding abilities by fine-tuning on the data generated from powerful closed-source LLMs such as GPT-3.5 and GPT-4 for instruction tuning. This paper explores how to further improve an instruction-tuned code LLM by generating data from itself rather than querying closed-source LLMs. Our key observation is the misalignment between the translation of formal and informal languages: translating formal language (i.e., code) to informal language (i.e., natural language) is more straightforward than the reverse. Based on this observation, we propose INVERSE-INSTRUCT, which summarizes instructions from code snippets instead of the reverse. Specifically, given an instruction tuning corpus for code and the resulting instruction-tuned code LLM, we ask the code LLM to generate additional high-quality instructions for the original corpus through code summarization and self-evaluation. Then, we fine-tune the base LLM on the combination of the original corpus and the self-generated one, which yields a stronger instruction-tuned LLM. We present a series of code LLMs named InverseCoder, which surpasses the performance of the original code LLMs on a wide range of benchmarks, including Python text-to-code generation, multilingual coding, and data-science code generation.
Instruct-SCTG: Guiding Sequential Controlled Text Generation through Instructions
Instruction-tuned large language models have shown remarkable performance in aligning generated text with user intentions across various tasks. However, maintaining human-like discourse structure in the generated text remains a challenging research question. In this paper, we propose Instruct-SCTG, a flexible and effective sequential framework that harnesses instruction-tuned language models to generate structurally coherent text in both fine-tuned and zero-shot setups. Our framework generates articles in a section-by-section manner, aligned with the desired human structure using natural language instructions. Furthermore, we introduce a new automatic metric that measures discourse divergence in a fuzzy manner. Extensive experiments on three datasets from representative domains of news and recipes demonstrate the state-of-the-art performance of our framework in imposing discourse structure during text generation, as verified by both automatic and human evaluation. Our code will be available on Github.
Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy
This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years.
Self-Instruct: Aligning Language Model with Self Generated Instructions
Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
Instruction Tuned Models are Quick Learners
Instruction tuning of language models has demonstrated the ability to enhance model generalization to unseen tasks via in-context learning using a few examples. However, typical supervised learning still requires a plethora of downstream training data for finetuning. Often in real-world situations, there is a scarcity of data available for finetuning, falling somewhere between few shot inference and fully supervised finetuning. In this work, we demonstrate the sample efficiency of instruction tuned models over various tasks by estimating the minimal downstream training data required by them to perform transfer learning and match the performance of state-of-the-art (SOTA) supervised models. We conduct experiments on 119 tasks from Super Natural Instructions (SuperNI) in both the single task learning (STL) and multi task learning (MTL) settings. Our findings reveal that, in the STL setting, instruction tuned models equipped with 25% of the downstream train data surpass the SOTA performance on the downstream tasks. In the MTL setting, an instruction tuned model trained on only 6% of downstream training data achieve SOTA, while using 100% of the training data results in a 3.69% points improvement (ROUGE-L 74.68) over the previous SOTA. We conduct an analysis on T5 vs Tk-Instruct by developing several baselines to demonstrate that instruction tuning aids in increasing both sample efficiency and transfer learning. Additionally, we observe a consistent ~4% performance increase in both settings when pre-finetuning is performed with instructions. Finally, we conduct a categorical study and find that contrary to previous results, tasks in the question rewriting and title generation categories suffer from instruction tuning.
XL-Instruct: Synthetic Data for Cross-Lingual Open-Ended Generation
Cross-lingual open-ended generation -- i.e. generating responses in a desired language different from that of the user's query -- is an important yet understudied problem. We introduce XL-AlpacaEval, a new benchmark for evaluating cross-lingual generation capabilities in Large Language Models (LLMs), and propose XL-Instruct, a high-quality synthetic data generation method. Fine-tuning with just 8K XL-Instruct-generated instructions significantly improves model performance, increasing the win rate against GPT-4o-Mini from 7.4% to 21.5%, and improving on several fine-grained quality metrics. Additionally, models fine-tuned on XL-Instruct exhibit strong zero-shot transfer to both English-only and multilingual generation tasks. Given its consistent gains across the board, we strongly recommend incorporating XL-Instruct in the post-training pipeline of future multilingual LLMs. To facilitate further research, we will publicly and freely release the XL-Instruct and XL-AlpacaEval datasets, which constitute two of the few cross-lingual resources currently available in the literature.
Ada-Instruct: Adapting Instruction Generators for Complex Reasoning
Generating diverse and sophisticated instructions for downstream tasks by Large Language Models (LLMs) is pivotal for advancing the effect. Current approaches leverage closed-source LLMs, employing in-context prompting for instruction generation. However, in this paper, we found that in-context prompting cannot generate complex instructions with length ge 100 for tasks like code completion. To solve this problem, we introduce Ada-Instruct, an adaptive instruction generator developed by fine-tuning open-source LLMs. Our pivotal finding illustrates that fine-tuning open-source LLMs with a mere ten samples generates long instructions that maintain distributional consistency for complex reasoning tasks. We empirically validated Ada-Instruct's efficacy across different applications, including code completion, mathematical reasoning, and commonsense reasoning. The results underscore Ada-Instruct's superiority, evidencing its improvements over its base models, current self-instruct methods, and other state-of-the-art models.
Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
We introduce Spivavtor, a dataset, and instruction-tuned models for text editing focused on the Ukrainian language. Spivavtor is the Ukrainian-focused adaptation of the English-only CoEdIT model. Similar to CoEdIT, Spivavtor performs text editing tasks by following instructions in Ukrainian. This paper describes the details of the Spivavtor-Instruct dataset and Spivavtor models. We evaluate Spivavtor on a variety of text editing tasks in Ukrainian, such as Grammatical Error Correction (GEC), Text Simplification, Coherence, and Paraphrasing, and demonstrate its superior performance on all of them. We publicly release our best-performing models and data as resources to the community to advance further research in this space.
Instruct Once, Chat Consistently in Multiple Rounds: An Efficient Tuning Framework for Dialogue
Tuning language models for dialogue generation has been a prevalent paradigm for building capable dialogue agents. Yet, traditional tuning narrowly views dialogue generation as resembling other language generation tasks, ignoring the role disparities between two speakers and the multi-round interactive process that dialogues ought to be. Such a manner often leads to unsatisfactory chat consistency for the built agent. In this work, we emphasize the interactive, communicative nature of dialogue and argue that it is more feasible to model the speaker roles of agent and user separately, enabling the agent to adhere to its role consistently. With this in mind, we propose an efficient Multi-round Interactive Dialogue Tuning (Midi-Tuning) framework. It models the agent and user individually with two adapters built upon large language models. The adapters make use of respective utterances round by round in alternating order and they are tuned via a round-level memory caching mechanism. Extensive experiments demonstrate that, our framework performs superior to traditional fine-tuning and harbors the tremendous potential for improving dialogue consistency.
Aloe: A Family of Fine-tuned Open Healthcare LLMs
As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
INSTRUCTEVAL: Towards Holistic Evaluation of Instruction-Tuned Large Language Models
Instruction-tuned large language models have revolutionized natural language processing and have shown great potential in applications such as conversational agents. These models, such as GPT-4, can not only master language but also solve complex tasks in areas like mathematics, coding, medicine, and law. Despite their impressive capabilities, there is still a lack of comprehensive understanding regarding their full potential, primarily due to the black-box nature of many models and the absence of holistic evaluation studies. To address these challenges, we present INSTRUCTEVAL, a more comprehensive evaluation suite designed specifically for instruction-tuned large language models. Unlike previous works, our evaluation involves a rigorous assessment of models based on problem-solving, writing ability, and alignment to human values. We take a holistic approach to analyze various factors affecting model performance, including the pretraining foundation, instruction-tuning data, and training methods. Our findings reveal that the quality of instruction data is the most crucial factor in scaling model performance. While open-source models demonstrate impressive writing abilities, there is substantial room for improvement in problem-solving and alignment. We are encouraged by the rapid development of models by the open-source community, but we also highlight the need for rigorous evaluation to support claims made about these models. Through INSTRUCTEVAL, we aim to foster a deeper understanding of instruction-tuned models and advancements in their capabilities. INSTRUCTEVAL is publicly available at https://github.com/declare-lab/instruct-eval.
EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated exceptional performance in code-related tasks. However, most existing models are solely pre-trained on extensive raw code data without instruction fine-tuning. In this paper, we introduce WizardCoder, which empowers Code LLMs with complex instruction fine-tuning, by adapting the Evol-Instruct method to the domain of code. Through comprehensive experiments on four prominent code generation benchmarks, namely HumanEval, HumanEval+, MBPP, and DS-1000, we unveil the exceptional capabilities of our model. It surpasses all other open-source Code LLMs by a substantial margin. Moreover, our model even outperforms the largest closed LLMs, Anthropic's Claude and Google's Bard, on HumanEval and HumanEval+. Our code, model weights, and data are public at https://github.com/nlpxucan/WizardLM
Show Less, Instruct More: Enriching Prompts with Definitions and Guidelines for Zero-Shot NER
Recently, several specialized instruction-tuned Large Language Models (LLMs) for Named Entity Recognition (NER) have emerged. Compared to traditional NER approaches, these models have strong generalization capabilities. Existing LLMs mainly focus on zero-shot NER in out-of-domain distributions, being fine-tuned on an extensive number of entity classes that often highly or completely overlap with test sets. In this work instead, we propose SLIMER, an approach designed to tackle never-seen-before named entity tags by instructing the model on fewer examples, and by leveraging a prompt enriched with definition and guidelines. Experiments demonstrate that definition and guidelines yield better performance, faster and more robust learning, particularly when labelling unseen Named Entities. Furthermore, SLIMER performs comparably to state-of-the-art approaches in out-of-domain zero-shot NER, while being trained on a reduced tag set.
Ensemble-Instruct: Generating Instruction-Tuning Data with a Heterogeneous Mixture of LMs
Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) Categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) Ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful outputs than their larger un-tuned counterparts. Our codebase is available at https://github.com/IBM/ensemble-instruct.
Infinity Instruct: Scaling Instruction Selection and Synthesis to Enhance Language Models
Large Language Models (LLMs) demonstrate strong performance in real-world applications, yet existing open-source instruction datasets often concentrate on narrow domains, such as mathematics or coding, limiting generalization and widening the gap with proprietary models. To bridge this gap, we introduce Infinity-Instruct, a high-quality instruction dataset designed to enhance both foundational and chat capabilities of LLMs through a two-phase pipeline. In Phase 1, we curate 7.4M high-quality foundational instructions (InfInstruct-F-7.4M) from over 100M samples using hybrid data selection techniques. In Phase 2, we synthesize 1.5M high-quality chat instructions (InfInstruct-G-1.5M) through a two-stage process involving instruction selection, evolution, and diagnostic filtering. We empirically evaluate Infinity-Instruct by fine-tuning several open-source models, including Mistral, LLaMA, Qwen, and Yi, and observe substantial performance gains across both foundational and instruction following benchmarks, consistently surpassing official instruction-tuned counterparts. Notably, InfInstruct-LLaMA3.1-70B outperforms GPT-4-0314 by 8.6\% on instruction following tasks while achieving comparable foundational performance. These results underscore the synergy between foundational and chat training and offer new insights into holistic LLM development. Our datasethttps://huggingface.co/datasets/BAAI/Infinity-Instruct and codeshttps://gitee.com/li-touch/infinity-instruct have been publicly released.
Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models
We investigate fine-tuning Vision-Language Models (VLMs) for multi-task medical image understanding, focusing on detection, localization, and counting of findings in medical images. Our objective is to evaluate whether instruction-tuned VLMs can simultaneously improve these tasks, with the goal of enhancing diagnostic accuracy and efficiency. Using MedMultiPoints, a multimodal dataset with annotations from endoscopy (polyps and instruments) and microscopy (sperm cells), we reformulate each task into instruction-based prompts suitable for vision-language reasoning. We fine-tune Qwen2.5-VL-7B-Instruct using Low-Rank Adaptation (LoRA) across multiple task combinations. Results show that multi-task training improves robustness and accuracy. For example, it reduces the Count Mean Absolute Error (MAE) and increases Matching Accuracy in the Counting + Pointing task. However, trade-offs emerge, such as more zero-case point predictions, indicating reduced reliability in edge cases despite overall performance gains. Our study highlights the potential of adapting general-purpose VLMs to specialized medical tasks via prompt-driven fine-tuning. This approach mirrors clinical workflows, where radiologists simultaneously localize, count, and describe findings - demonstrating how VLMs can learn composite diagnostic reasoning patterns. The model produces interpretable, structured outputs, offering a promising step toward explainable and versatile medical AI. Code, model weights, and scripts will be released for reproducibility at https://github.com/simula/PointDetectCount.
EvalYaks: Instruction Tuning Datasets and LoRA Fine-tuned Models for Automated Scoring of CEFR B2 Speaking Assessment Transcripts
Relying on human experts to evaluate CEFR speaking assessments in an e-learning environment creates scalability challenges, as it limits how quickly and widely assessments can be conducted. We aim to automate the evaluation of CEFR B2 English speaking assessments in e-learning environments from conversation transcripts. First, we evaluate the capability of leading open source and commercial Large Language Models (LLMs) to score a candidate's performance across various criteria in the CEFR B2 speaking exam in both global and India-specific contexts. Next, we create a new expert-validated, CEFR-aligned synthetic conversational dataset with transcripts that are rated at different assessment scores. In addition, new instruction-tuned datasets are developed from the English Vocabulary Profile (up to CEFR B2 level) and the CEFR-SP WikiAuto datasets. Finally, using these new datasets, we perform parameter efficient instruction tuning of Mistral Instruct 7B v0.2 to develop a family of models called EvalYaks. Four models in this family are for assessing the four sections of the CEFR B2 speaking exam, one for identifying the CEFR level of vocabulary and generating level-specific vocabulary, and another for detecting the CEFR level of text and generating level-specific text. EvalYaks achieved an average acceptable accuracy of 96%, a degree of variation of 0.35 levels, and performed 3 times better than the next best model. This demonstrates that a 7B parameter LLM instruction tuned with high-quality CEFR-aligned assessment data can effectively evaluate and score CEFR B2 English speaking assessments, offering a promising solution for scalable, automated language proficiency evaluation.
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
Retrieval Augmented Generation (RAG) represents a significant advancement in artificial intelligence combining a retrieval phase with a generative phase, with the latter typically being powered by large language models (LLMs). The current common practices in RAG involve using "instructed" LLMs, which are fine-tuned with supervised training to enhance their ability to follow instructions and are aligned with human preferences using state-of-the-art techniques. Contrary to popular belief, our study demonstrates that base models outperform their instructed counterparts in RAG tasks by 20% on average under our experimental settings. This finding challenges the prevailing assumptions about the superiority of instructed LLMs in RAG applications. Further investigations reveal a more nuanced situation, questioning fundamental aspects of RAG and suggesting the need for broader discussions on the topic; or, as Fromm would have it, "Seldom is a glance at the statistics enough to understand the meaning of the figures".
How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model's parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model's performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation
Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.
Qwen2 Technical Report
This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face1 and ModelScope2, and the supplementary materials including example code on GitHub3. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
FuzzCoder: Byte-level Fuzzing Test via Large Language Model
Fuzzing is an important dynamic program analysis technique designed for finding vulnerabilities in complex software. Fuzzing involves presenting a target program with crafted malicious input to cause crashes, buffer overflows, memory errors, and exceptions. Crafting malicious inputs in an efficient manner is a difficult open problem and the best approaches often apply uniform random mutations to pre-existing valid inputs. In this work, we propose to adopt fine-tuned large language models (FuzzCoder) to learn patterns in the input files from successful attacks to guide future fuzzing explorations. Specifically, we develop a framework to leverage the code LLMs to guide the mutation process of inputs in fuzzing. The mutation process is formulated as the sequence-to-sequence modeling, where LLM receives a sequence of bytes and then outputs the mutated byte sequence. FuzzCoder is fine-tuned on the created instruction dataset (Fuzz-Instruct), where the successful fuzzing history is collected from the heuristic fuzzing tool. FuzzCoder can predict mutation locations and strategies locations in input files to trigger abnormal behaviors of the program. Experimental results show that FuzzCoder based on AFL (American Fuzzy Lop) gain significant improvements in terms of effective proportion of mutation (EPM) and number of crashes (NC) for various input formats including ELF, JPG, MP3, and XML.
MANTIS: Interleaved Multi-Image Instruction Tuning
The recent years have witnessed a great array of large multimodal models (LMMs) to effectively solve single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing multi-image LMMs (e.g. OpenFlamingo, Emu, Idefics, etc) mostly gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from web, which is neither efficient nor effective. In this paper, we aim at building strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K instances from 14 multi-image datasets. We design Mantis-Instruct to cover different multi-image skills like co-reference, reasoning, comparing, temporal understanding. We combine Mantis-Instruct with several single-image visual-language datasets to train our model Mantis to handle any interleaved image-text inputs. We evaluate the trained Mantis on five multi-image benchmarks and eight single-image benchmarks. Though only requiring academic-level resources (i.e. 36 hours on 16xA100-40G), Mantis-8B can achieve state-of-the-art performance on all the multi-image benchmarks and beats the existing best multi-image LMM Idefics2-8B by an average of 9 absolute points. We observe that Mantis performs equivalently well on the held-in and held-out evaluation benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis can maintain a strong single-image performance on par with CogVLM and Emu2. Our results are particularly encouraging as it shows that low-cost instruction tuning is indeed much more effective than intensive pre-training in terms of building multi-image LMMs.
Interactive Planning Using Large Language Models for Partially Observable Robotics Tasks
Designing robotic agents to perform open vocabulary tasks has been the long-standing goal in robotics and AI. Recently, Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks. However, planning for these tasks in the presence of uncertainties is challenging as it requires chain-of-thought reasoning, aggregating information from the environment, updating state estimates, and generating actions based on the updated state estimates. In this paper, we present an interactive planning technique for partially observable tasks using LLMs. In the proposed method, an LLM is used to collect missing information from the environment using a robot and infer the state of the underlying problem from collected observations while guiding the robot to perform the required actions. We also use a fine-tuned Llama 2 model via self-instruct and compare its performance against a pre-trained LLM like GPT-4. Results are demonstrated on several tasks in simulation as well as real-world environments. A video describing our work along with some results could be found here.
Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers
Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.
DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets
A major barrier to developing vision large language models (LLMs) in dermatology is the lack of large image--text pairs dataset. We introduce DermaSynth, a dataset comprising of 92,020 synthetic image--text pairs curated from 45,205 images (13,568 clinical and 35,561 dermatoscopic) for dermatology-related clinical tasks. Leveraging state-of-the-art LLMs, using Gemini 2.0, we used clinically related prompts and self-instruct method to generate diverse and rich synthetic texts. Metadata of the datasets were incorporated into the input prompts by targeting to reduce potential hallucinations. The resulting dataset builds upon open access dermatological image repositories (DERM12345, BCN20000, PAD-UFES-20, SCIN, and HIBA) that have permissive CC-BY-4.0 licenses. We also fine-tuned a preliminary Llama-3.2-11B-Vision-Instruct model, DermatoLlama 1.0, on 5,000 samples. We anticipate this dataset to support and accelerate AI research in dermatology. Data and code underlying this work are accessible at https://github.com/abdurrahimyilmaz/DermaSynth.
Decoding specialised feature neurons in LLMs with the final projection layer
Large Language Models (LLMs) typically have billions of parameters and are thus often difficult to interpret in their operation. Such black-box models can pose a significant risk to safety when trusted to make important decisions. The lack of interpretability of LLMs is more related to their sheer size, rather than the complexity of their individual components. The TARS method for knowledge removal (Davies et al 2024) provides strong evidence for the hypothesis that that linear layer weights which act directly on the residual stream may have high correlation with different concepts encoded in the residual stream. Building upon this, we attempt to decode neuron weights directly into token probabilities through the final projection layer of the model (the LM-head). Firstly, we show that with Llama 3.1 8B we can utilise the LM-head to decode specialised feature neurons that respond strongly to certain concepts, with examples such as "dog" and "California". This is then confirmed by demonstrating that these neurons can be clamped to affect the probability of the concept in the output. This extends to the fine-tuned assistant Llama 3.1 8B instruct model, where we find that over 75% of neurons in the up-projection layers have the same top associated token compared to the pretrained model. Finally, we demonstrate that clamping the "dog" neuron leads the instruct model to always discuss dogs when asked about its favourite animal. Through our method, it is possible to map the entirety of Llama 3.1 8B's up-projection neurons in less than 15 minutes with no parallelization.
SinLlama -- A Large Language Model for Sinhala
Low-resource languages such as Sinhala are often overlooked by open-source Large Language Models (LLMs). In this research, we extend an existing multilingual LLM (Llama-3-8B) to better serve Sinhala. We enhance the LLM tokenizer with Sinhala specific vocabulary and perform continual pre-training on a cleaned 10 million Sinhala corpus, resulting in the SinLlama model. This is the very first decoder-based open-source LLM with explicit Sinhala support. When SinLlama was instruction fine-tuned for three text classification tasks, it outperformed base and instruct variants of Llama-3-8B by a significant margin.
The Lucie-7B LLM and the Lucie Training Dataset: Open resources for multilingual language generation
We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.
Bailong: Bilingual Transfer Learning based on QLoRA and Zip-tie Embedding
Large language models (LLMs) have demonstrated exceptional performance in various NLP applications. However, the majority of existing open-source LLMs are pre-trained primarily on English data and little part of other languages. This deficiency in multilingual training data results in suboptimal performance when applied to languages with fewer available resources. Furthermore, enhancing the performance of LLMs on low-resource languages by full-parameter fine-tuning with additional data requires substantial computational resources, posing computational barriers for research organizations and individual researchers. Consequently, several techniques such as parameter-efficient tuning and advanced embedding initialization have been proposed to address these challenges. In this work, we combine them to facilitate cross-lingual transfer on English-dominated open-source LLM. To effectively enhance the model's proficiency in Traditional Chinese, we conduct secondary pre-training on Llama 2 7B with Traditional Chinese data by leveraging QLoRA and our proposed zip-tie embedding initialization. The resulting model called Bailong, which stands for Bilingual trAnsfer learnIng based on qLOra and zip-tie embeddiNG. We present Bailong-instruct 7B, a fine-tuned version of Bailong 7B optimized for multi-turn dialogue scenarios. Recognizing the inadequacy of benchmark datasets in Traditional Chinese, we further introduce Bailong-bench to assess the alignment of models with human preferences and the capability to follow instructions in both Traditional Chinese and English tasks. In our evaluation, Bailong-instruct 7B exhibits competitive performance on Bailong-bench and other benchmark datasets when compared to other open-source models of similar or even larger parameter sizes. Bailong-instruct 7B and Bailong-bench are publicly available with the aim of empowering the community to build upon our efforts.
Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data. To address these limitations, we introduce Open-FinLLMs, a series of Financial LLMs. We begin with FinLLaMA, pre-trained on a 52 billion token financial corpus, incorporating text, tables, and time-series data to embed comprehensive financial knowledge. FinLLaMA is then instruction fine-tuned with 573K financial instructions, resulting in FinLLaMA-instruct, which enhances task performance. Finally, we present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types. Extensive evaluations demonstrate FinLLaMA's superior performance over LLaMA3-8B, LLaMA3.1-8B, and BloombergGPT in both zero-shot and few-shot settings across 19 and 4 datasets, respectively. FinLLaMA-instruct outperforms GPT-4 and other Financial LLMs on 15 datasets. FinLLaVA excels in understanding tables and charts across 4 multimodal tasks. Additionally, FinLLaMA achieves impressive Sharpe Ratios in trading simulations, highlighting its robust financial application capabilities. We will continually maintain and improve our models and benchmarks to support ongoing innovation in academia and industry.
Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Despite the rapid advancement of large language models (LLMs), low-resource languages remain largely excluded from the NLP landscape. We present PunGPT2, the first fully open-source suite of Punjabi large language models, trained from scratch on a 35GB domain-diverse corpus encompassing literature, religious texts, news, and social discourse. Unlike prior multilingual approaches, PunGPT2 captures rich syntactic and morphological features unique to Punjabi through a tokenizer optimised with byte pair encoding and linguistically aligned pretraining objectives. To improve factual grounding and domain recall, we introduce Pun-RAG, a retrieval-augmented generation framework combining PunGPT2 with a dense FAISS retriever over a curated Punjabi knowledge base. We further develop Pun-Instruct, a parameter-efficient, instruction-tuned variant using QLoRA, enabling robust zero-shot and instruction-following performance with significantly reduced compute needs. As a key innovation, we propose Quantum-RAG, a novel hybrid retrieval system that fuses sparse (BM25) and dense methods with quantum-inspired semantic matching. By encoding queries using amplitude-based embeddings and retrieving via quantum kernel similarity, Quantum-RAG achieves improved contextual relevance with minimal memory overhead marking the first practical integration of quantum representations in low-resource language generation. Our models significantly outperform strong multilingual baselines (mBERT, mT5, MuRIL) in perplexity, factuality, and fluency. This work provides a scalable, reproducible blueprint for extending LLM capabilities to underrepresented languages and pioneers quantum-aware retrieval in low-resource NLP
Rapidly Developing High-quality Instruction Data and Evaluation Benchmark for Large Language Models with Minimal Human Effort: A Case Study on Japanese
The creation of instruction data and evaluation benchmarks for serving Large language models often involves enormous human annotation. This issue becomes particularly pronounced when rapidly developing such resources for a non-English language like Japanese. Instead of following the popular practice of directly translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to automatically generate Japanese instruction data. We also construct an evaluation benchmark containing 80 questions across 8 categories, using GPT-4 to automatically assess the response quality of LLMs without human references. The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outperformed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37\% win-rate. The human evaluation exhibits the consistency between GPT-4's assessments and human preference. Our high-quality instruction data and evaluation benchmark have been released here.
Mixtral of Experts
We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license.
SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling
We introduce depth up-scaling (DUS), a novel technique to up-scale base LLMs efficiently and effectively in a simple manner. In contrast to mixture-of-experts (MoE), DUS does not require complex changes to train and inference. Using DUS, we build SOLAR 10.7B, a large language model (LLM) with 10.7 billion parameters, demonstrating superior performance in various natural language processing (NLP) tasks. Comparative evaluations show that SOLAR 10.7B outperforms existing open-source pretrained LLMs, such as Llama 2 and Mistral 7B. We additionally present SOLAR 10.7B-Instruct, a variant fine-tuned for instruction-following capabilities, surpassing Mixtral-8x7B. SOLAR 10.7B is publicly available under the Apache 2.0 license, promoting broad access and application in the LLM field.
Mistral 7B
We introduce Mistral 7B v0.1, a 7-billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms Llama 2 13B across all evaluated benchmarks, and Llama 1 34B in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B -- Instruct, that surpasses the Llama 2 13B -- Chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license.
Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation
We introduce Bonito, an open-source model for conditional task generation: the task of converting unannotated text into task-specific training datasets for instruction tuning. Our goal is to enable zero-shot task adaptation of large language models on users' specialized, private data. We train Bonito on a new large-scale dataset with 1.65M examples created by remixing existing instruction tuning datasets into meta-templates. The meta-templates for a dataset produce training examples where the input is the unannotated text and the task attribute and the output consists of the instruction and the response. We use Bonito to generate synthetic tasks for seven datasets from specialized domains across three task types -- yes-no question answering, extractive question answering, and natural language inference -- and adapt language models. We show that Bonito significantly improves the average performance of pretrained and instruction tuned models over the de facto self supervised baseline. For example, adapting Mistral-Instruct-v2 and instruction tuned variants of Mistral and Llama2 with Bonito improves the strong zero-shot performance by 22.1 F1 points whereas the next word prediction objective undoes some of the benefits of instruction tuning and reduces the average performance by 0.8 F1 points. We conduct additional experiments with Bonito to understand the effects of the domain, the size of the training set, and the choice of alternative synthetic task generators. Overall, we show that learning with synthetic instruction tuning datasets is an effective way to adapt language models to new domains. The model, dataset, and code are available at https://github.com/BatsResearch/bonito.
How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied by limited evaluation, making it difficult to compare models across the board and determine the utility of various resources. We provide a large set of instruction-tuned models from 6.7B to 65B parameters in size, trained on 12 instruction datasets ranging from manually curated (e.g., OpenAssistant) to synthetic and distilled (e.g., Alpaca) and systematically evaluate them on their factual knowledge, reasoning, multilinguality, coding, and open-ended instruction following abilities through a collection of automatic, model-based, and human-based metrics. We further introduce T\"ulu, our best performing instruction-tuned model suite finetuned on a combination of high-quality open resources. Our experiments show that different instruction-tuning datasets can uncover or enhance specific skills, while no single dataset (or combination) provides the best performance across all evaluations. Interestingly, we find that model and human preference-based evaluations fail to reflect differences in model capabilities exposed by benchmark-based evaluations, suggesting the need for the type of systemic evaluation performed in this work. Our evaluations show that the best model in any given evaluation reaches on average 83% of ChatGPT performance, and 68% of GPT-4 performance, suggesting that further investment in building better base models and instruction-tuning data is required to close the gap. We release our instruction-tuned models, including a fully finetuned 65B T\"ulu, along with our code, data, and evaluation framework at https://github.com/allenai/open-instruct to facilitate future research.
SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs
We present SmolTulu-1.7b-Instruct, referenced in this report as SmolTulu-DPO-1130, an instruction-tuned language model that adapts AllenAI's Tulu 3 post-training pipeline to enhance Huggingface's SmolLM2-1.7B base model. Through comprehensive empirical analysis using a 135M parameter model, we demonstrate that the relationship between learning rate and batch size significantly impacts model performance in a task-dependent manner. Our findings reveal a clear split: reasoning tasks like ARC and GSM8K benefit from higher learning rate to batch size ratios, while pattern recognition tasks such as HellaSwag and IFEval show optimal performance with lower ratios. These insights informed the development of SmolTulu, which achieves state-of-the-art performance among sub-2B parameter models on instruction following, scoring 67.7% on IFEval (Delta11%), and mathematical reasoning with 51.6% on GSM8K (Delta3.4%), with an alternate version achieving scoring 57.1% on ARC (Delta5.4%). We release our model, training recipes, and ablation studies to facilitate further research in efficient model alignment, demonstrating that careful adaptation of optimization dynamics can help bridge the capability gap between small and large language models.
Stable Code Technical Report
We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.
Taxonomy-Adaptive Moderation Model with Robust Guardrails for Large Language Models
Large Language Models (LLMs) are typically aligned for safety during the post-training phase; however, they may still generate inappropriate outputs that could potentially pose risks to users. This challenge underscores the need for robust safeguards that operate across both model inputs and outputs. In this work, we introduce Roblox Guard 1.0, a state-of-the-art instruction fine-tuned LLM designed to enhance the safety of LLM systems through comprehensive input-output moderation, using a pipeline of LLMs to enhance moderation capability. Built on the Llama-3.1-8B-Instruct backbone, our model is instruction fine-tuned to generalize across previously unseen safety taxonomies and demonstrates strong performance on out-of-domain safety benchmarks. The instruction fine-tuning process uses a mix of synthetic and open-source safety datasets, augmented with chain-of-thought (CoT) rationales and input inversion to enhance contextual understanding and decision making. To support systematic evaluation, we also release RobloxGuard-Eval, a new benchmark featuring an extensible safety taxonomy to assess the effectiveness of LLM guardrails and moderation frameworks.
BgGPT 1.0: Extending English-centric LLMs to other languages
We present BgGPT-Gemma-2-27B-Instruct and BgGPT-Gemma-2-9B-Instruct: continually pretrained and fine-tuned versions of Google's Gemma-2 models, specifically optimized for Bulgarian language understanding and generation. Leveraging Gemma-2's multilingual capabilities and over 100 billion tokens of Bulgarian and English text data, our models demonstrate strong performance in Bulgarian language tasks, setting a new standard for language-specific AI models. Our approach maintains the robust capabilities of the original Gemma-2 models, ensuring that the English language performance remains intact. To preserve the base model capabilities, we incorporate continual learning strategies based on recent Branch-and-Merge techniques as well as thorough curation and selection of training data. We provide detailed insights into our methodology, including the release of model weights with a commercial-friendly license, enabling broader adoption by researchers, companies, and hobbyists. Further, we establish a comprehensive set of benchmarks based on non-public educational data sources to evaluate models on Bulgarian language tasks as well as safety and chat capabilities. Our findings demonstrate the effectiveness of fine-tuning state-of-the-art models like Gemma 2 to enhance language-specific AI applications while maintaining cross-lingual capabilities.
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.
Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen-2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3.
TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction
Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.
HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.
UrduLLaMA 1.0: Dataset Curation, Preprocessing, and Evaluation in Low-Resource Settings
Multilingual Large Language Models (LLMs) often provide suboptimal performance on low-resource languages like Urdu. This paper introduces UrduLLaMA 1.0, a model derived from the open-source Llama-3.1-8B-Instruct architecture and continually pre-trained on 128 million Urdu tokens, capturing the rich diversity of the language. To enhance instruction-following and translation capabilities, we leverage Low-Rank Adaptation (LoRA) to fine tune the model on 41,000 Urdu instructions and approximately 50,000 English-Urdu translation pairs. Evaluation across three machine translation datasets demonstrates significant performance improvements compared to state-of-the-art (SOTA) models, establishing a new benchmark for Urdu LLMs. These findings underscore the potential of targeted adaptation strategies with limited data and computational resources to address the unique challenges of low-resource languages.
LocAgent: Graph-Guided LLM Agents for Code Localization
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
How do you know that? Teaching Generative Language Models to Reference Answers to Biomedical Questions
Large language models (LLMs) have recently become the leading source of answers for users' questions online. Despite their ability to offer eloquent answers, their accuracy and reliability can pose a significant challenge. This is especially true for sensitive domains such as biomedicine, where there is a higher need for factually correct answers. This paper introduces a biomedical retrieval-augmented generation (RAG) system designed to enhance the reliability of generated responses. The system is based on a fine-tuned LLM for the referenced question-answering, where retrieved relevant abstracts from PubMed are passed to LLM's context as input through a prompt. Its output is an answer based on PubMed abstracts, where each statement is referenced accordingly, allowing the users to verify the answer. Our retrieval system achieves an absolute improvement of 23% compared to the PubMed search engine. Based on the manual evaluation on a small sample, our fine-tuned LLM component achieves comparable results to GPT-4 Turbo in referencing relevant abstracts. We make the dataset used to fine-tune the models and the fine-tuned models based on Mistral-7B-instruct-v0.1 and v0.2 publicly available.
The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best instruction-tuned linear RNN model.
InstructVLA: Vision-Language-Action Instruction Tuning from Understanding to Manipulation
To operate effectively in the real world, robots must integrate multimodal reasoning with precise action generation. However, existing vision-language-action (VLA) models often sacrifice one for the other, narrow their abilities to task-specific manipulation data, and suffer catastrophic forgetting of pre-trained vision-language capabilities. To bridge this gap, we introduce InstructVLA, an end-to-end VLA model that preserves the flexible reasoning of large vision-language models (VLMs) while delivering leading manipulation performance. InstructVLA introduces a novel training paradigm, Vision-Language-Action Instruction Tuning (VLA-IT), which employs multimodal training with mixture-of-experts adaptation to jointly optimize textual reasoning and action generation on both standard VLM corpora and a curated 650K-sample VLA-IT dataset. On in-domain SimplerEnv tasks, InstructVLA achieves 30.5% improvement over SpatialVLA. To evaluate generalization, we introduce SimplerEnv-Instruct, an 80-task benchmark requiring closed-loop control and high-level instruction understanding, where it outperforms a fine-tuned OpenVLA by 92% and an action expert aided by GPT-4o by 29%. Additionally, InstructVLA surpasses baseline VLMs on multimodal tasks and exhibits inference-time scaling by leveraging textual reasoning to boost manipulation performance in both simulated and real-world settings. These results demonstrate InstructVLA's potential for bridging intuitive and steerable human-robot interaction with efficient policy learning.
Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM Mantra-14B with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers
While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.
CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base) and instruction-tuned (Dream-7B-Instruct) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
Datarus-R1: An Adaptive Multi-Step Reasoning LLM for Automated Data Analysis
We present Datarus-R1-14B, a 14 B-parameter open-weights language model fine-tuned from Qwen 2.5-14B-Instruct to act as a virtual data analyst and graduate-level problem solver. Datarus is trained not on isolated question-answer pairs but on full analytical trajectories including reasoning steps, code execution, error traces, self-corrections, and final conclusions, all captured in a ReAct-style notebook format spanning finance, medicine, numerical analysis, and other quantitative domains. Our training pipeline combines (i) a trajectory-centric synthetic data generator that yielded 144 000 tagged notebook episodes, (ii) a dual-reward framework blending a lightweight tag-based structural signal with a Hierarchical Reward Model (HRM) that scores both single-step soundness and end-to-end coherence, and (iii) a memory-optimized implementation of Group Relative Policy Optimization (GRPO) featuring KV-cache reuse, sequential generation, and reference-model sharding. A cosine curriculum smoothly shifts emphasis from structural fidelity to semantic depth, reducing the format collapse and verbosity that often plague RL-aligned LLMs. A central design choice in Datarus is it dual reasoning interface. In agentic mode the model produces ReAct-tagged steps that invoke Python tools to execute real code; in reflection mode it outputs compact Chain-of-Thought (CoT) traces delimited by <think> and <answer> tags. On demanding postgraduate-level problems, Datarus exhibits an "AHA-moment" pattern: it sketches hypotheses, revises them once or twice, and converges avoiding the circular, token-inflating loops common to contemporary systems. Across standard public benchmarks Datarus surpasses similar size models and even reaches the level of larger reasoning models such as QwQ-32B achieving up to 30% higher accuracy on AIME 2024/2025 and LiveCodeBench while emitting 18-49% fewer tokens per solution.
RakutenAI-7B: Extending Large Language Models for Japanese
We introduce RakutenAI-7B, a suite of Japanese-oriented large language models that achieve the best performance on the Japanese LM Harness benchmarks among the open 7B models. Along with the foundation model, we release instruction- and chat-tuned models, RakutenAI-7B-instruct and RakutenAI-7B-chat respectively, under the Apache 2.0 license.
OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.
EICAP: Deep Dive in Assessment and Enhancement of Large Language Models in Emotional Intelligence through Multi-Turn Conversations
Emotional Intelligence (EI) is a critical yet underexplored dimension in the development of human-aligned LLMs. To address this gap, we introduce a unified, psychologically grounded four-layer taxonomy of EI tailored for large language models (LLMs), encompassing emotional tracking, cause inference, appraisal, and emotionally appropriate response generation. Building on this framework, we present EICAP-Bench, a novel MCQ style multi-turn benchmark designed to evaluate EI capabilities in open-source LLMs across diverse linguistic and cultural contexts. We evaluate six LLMs: LLaMA3 (8B), LLaMA3-Instruct, Gemma (9B), Gemma-Instruct, Qwen2.5 (7B), and Qwen2.5-Instruct on EmoCap-Bench, identifying Qwen2.5-Instruct as the strongest baseline. To assess the potential for enhancing EI capabilities, we fine-tune both Qwen2.5-Base and Qwen2.5-Instruct using LoRA adapters on UltraChat (UC), a large-scale, instruction-tuned dialogue dataset, in both English and Arabic. Our statistical analysis reveals that among the five EI layers, only the Appraisal layer shows significant improvement through UC-based fine-tuning. These findings highlight the limitations of existing pretraining and instruction-tuning paradigms in equipping LLMs with deeper emotional reasoning and underscore the need for targeted data and modeling strategies for comprehensive EI alignment.
From Drafts to Answers: Unlocking LLM Potential via Aggregation Fine-Tuning
Scaling data and model size has been proven effective for boosting the performance of large language models. In addition to training-time scaling, recent studies have revealed that increasing test-time computational resources can further improve performance. In this work, we introduce Aggregation Fine-Tuning (AFT), a supervised finetuning paradigm where the model learns to synthesize multiple draft responses, referred to as proposals, into a single, refined answer, termed aggregation. At inference time, a propose-and-aggregate strategy further boosts performance by iteratively generating proposals and aggregating them. Empirical evaluations on benchmark datasets show that AFT-trained models substantially outperform standard SFT. Notably, an AFT model, fine-tuned from Llama3.1-8B-Base with only 64k data, achieves a 41.3% LC win rate on AlpacaEval 2, surpassing significantly larger LLMs such as Llama3.1-405B-Instruct and GPT4. By combining sequential refinement and parallel sampling, the propose-and-aggregate framework scales inference-time computation in a flexible manner. Overall, These findings position AFT as a promising approach to unlocking additional capabilities of LLMs without resorting to increasing data volume or model size.
KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
We introduce KodCode, a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data across diverse difficulties and domains for training Large Language Models for coding. Existing code-focused resources typically fail to ensure either the breadth of coverage (e.g., spanning simple coding tasks to advanced algorithmic problems) or verifiable correctness (e.g., unit tests). In contrast, KodCode comprises question-solution-test triplets that are systematically validated via a self-verification procedure. Our pipeline begins by synthesizing a broad range of coding questions, then generates solutions and test cases with additional attempts allocated to challenging problems. Finally, post-training data synthesis is done by rewriting questions into diverse formats and generating responses under a test-based reject sampling procedure from a reasoning model (DeepSeek R1). This pipeline yields a large-scale, robust and diverse coding dataset. KodCode is suitable for supervised fine-tuning and the paired unit tests also provide great potential for RL tuning. Fine-tuning experiments on coding benchmarks (HumanEval(+), MBPP(+), BigCodeBench, and LiveCodeBench) demonstrate that KodCode-tuned models achieve state-of-the-art performance, surpassing models like Qwen2.5-Coder-32B-Instruct and DeepSeek-R1-Distill-Llama-70B.
DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.
Mars-PO: Multi-Agent Reasoning System Preference Optimization
Mathematical reasoning is a fundamental capability for large language models (LLMs), yet achieving high performance in this domain remains a significant challenge. The auto-regressive generation process often makes LLMs susceptible to errors, hallucinations, and inconsistencies, particularly during multi-step reasoning. In this paper, we propose Mars-PO, a novel framework to improve the mathematical reasoning capabilities of LLMs through a multi-agent system. It combines high-quality outputs from multiple agents into a hybrid positive sample set and pairs them with agent-specific negative samples to construct robust preference pairs for training. By aligning agents with shared positive samples while addressing individual weaknesses, Mars-PO achieves substantial performance improvements on mathematical reasoning benchmarks. For example, it increases the accuracy on the MATH benchmark of the state-of-the-art instruction-tuned LLM, Llama3.1-8B-Instruct, from 50.38% to 57.82%. Experimental results further demonstrate that our method consistently outperforms other baselines, such as supervised fine-tuning, vanilla DPO, and its enhanced versions, highlighting the effectiveness of our approach.
Efficient Training of Robust Traditional Chinese LLaMA-1B on a Single Consumer GPU: Continual Pre-training, SFT, and DPO
Small Language Models (SLMs) enable cost-effective, on-device and latency-sensitive AI applications, yet their deployment in Traditional Chinese (TC) remains hindered by token-level instability - models unpredictably emit non-TC characters or code-switch into other languages. We address this practical reliability gap by creating PureTC-1B, a three-stage stabilization pipeline for Llama-3.2-1B-Instruct (an open-weight, instruction-tuned model released by Meta) using parameter-efficient LoRA adapters. Our method combines Continual Pre-Training (CPT) on TC-centric corpora, Supervised Fine-Tuning (SFT) with instruction data, and Direct Preference Optimization (DPO) using TC-adherence preferences to improve monolingual robustness without full-model retraining. On a benchmark designed to simulate real-world usage, PureTC-1B achieves a 51.3% relative reduction (micro-average) in non-TC output tokens versus the base model. On a Named Entity Translation (NET) task, PureTC-1B further reduces incorrect-language tokens by 77.2% relative to Llama-3B and 57.2% relative to Qwen-1.5B, indicating that robust TC adherence is attainable even at the 1B scale. The pipeline is reproducible, adapter-only, and hardware-friendly, offering practitioners a practical recipe to enhance language stability for TC and potentially other non-English languages.
Rethinking Table Instruction Tuning
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices and lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and reveal significant declines in both out-of-domain table understanding and general capabilities compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the existing table instruction-tuning works, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection.
LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning serves as a robust prior for text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models. Code is available at https://github.com/hustvl/LENS.
AIDE: Task-Specific Fine Tuning with Attribute Guided Multi-Hop Data Expansion
Fine-tuning large language models (LLMs) for specific tasks requires high-quality, diverse training data relevant to the task. Recent research has leveraged LLMs to synthesize training data, but existing approaches either depend on large seed datasets or struggle to ensure both task relevance and data diversity in the generated outputs. To address these challenges, we propose AIDE, a novel data synthesis framework that uses a multi-hop process to expand 10 seed data points while ensuring diversity and task relevance. AIDE extracts the main topic and key knowledge attributes from the seed data to guide the synthesis process. In each subsequent hop, it extracts the topic and attributes from the newly generated data and continues guided synthesis. This process repeats for a total of K hops. To prevent irrelevant data generation as the hop depth increases, AIDE incorporates a residual connection mechanism and uses self-reflection to improve data quality. Our empirical results demonstrate that fine-tuning Mistral-7B, Llama-3.1-8B and Llama-3.2-3B with AIDE achieves more than 10% accuracy improvements over the base models across 13 tasks from 5 different benchmarks, while outperforming the models fine-tuned with state-of-the-art data synthesis methods like Evol-Instruct, DataTune and Prompt2Model.
BigTrans: Augmenting Large Language Models with Multilingual Translation Capability over 100 Languages
Large language models (LLMs) demonstrate promising translation performance among various natural languages. However, many LLMs especially the open-sourced ones, such as BLOOM and LLaMA, are English-dominant and support only dozens of natural languages, making the potential of LLMs on language translation less explored. In this work, we present BigTrans which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languages. BigTrans is built upon LLaMA-13B and it is optimized in three steps. First, we continue training LLaMA with massive Chinese monolingual data. Second, we continue training the model with a large-scale parallel dataset that covers 102 natural languages. Third, we instruct-tune the foundation model with multilingual translation instructions, leading to our BigTrans model. The preliminary experiments on multilingual translation show that BigTrans performs comparably with ChatGPT and Google Translate in many languages and even outperforms ChatGPT in 8 language pairs. We release the BigTrans model and hope it can advance the research progress.
MAVIS: Mathematical Visual Instruction Tuning
Multi-modal Large Language Models (MLLMs) have recently emerged as a significant focus in academia and industry. Despite their proficiency in general multi-modal scenarios, the mathematical problem-solving capabilities in visual contexts remain insufficiently explored. We identify three key areas within MLLMs that need to be improved: visual encoding of math diagrams, diagram-language alignment, and mathematical reasoning skills. This draws forth an urgent demand for large-scale, high-quality data and training pipelines in visual mathematics. In this paper, we propose MAVIS, the first MAthematical VISual instruction tuning paradigm for MLLMs, involving a series of mathematical visual datasets and specialized MLLMs. Targeting the three issues, MAVIS contains three progressive training stages from scratch. First, we curate MAVIS-Caption, consisting of 558K diagram-caption pairs, to fine-tune a math-specific vision encoder (CLIP-Math) through contrastive learning, tailored for improved diagram visual encoding. Second, we utilize MAVIS-Caption to align the CLIP-Math with a large language model (LLM) by a projection layer, enhancing vision-language alignment in mathematical domains. Third, we introduce MAVIS-Instruct, including 900K meticulously collected and annotated visual math problems, which is adopted to finally instruct-tune the MLLM for robust mathematical reasoning skills. In MAVIS-Instruct, we incorporate complete chain-of-thought (CoT) rationales for each problem, and minimize textual redundancy, thereby concentrating the model towards the visual elements. Data and Models are released at https://github.com/ZrrSkywalker/MAVIS
GIRT-Model: Automated Generation of Issue Report Templates
Platforms such as GitHub and GitLab introduce Issue Report Templates (IRTs) to enable more effective issue management and better alignment with developer expectations. However, these templates are not widely adopted in most repositories, and there is currently no tool available to aid developers in generating them. In this work, we introduce GIRT-Model, an assistant language model that automatically generates IRTs based on the developer's instructions regarding the structure and necessary fields. We create GIRT-Instruct, a dataset comprising pairs of instructions and IRTs, with the IRTs sourced from GitHub repositories. We use GIRT-Instruct to instruction-tune a T5-base model to create the GIRT-Model. In our experiments, GIRT-Model outperforms general language models (T5 and Flan-T5 with different parameter sizes) in IRT generation by achieving significantly higher scores in ROUGE, BLEU, METEOR, and human evaluation. Additionally, we analyze the effectiveness of GIRT-Model in a user study in which participants wrote short IRTs with GIRT-Model. Our results show that the participants find GIRT-Model useful in the automated generation of templates. We hope that through the use of GIRT-Model, we can encourage more developers to adopt IRTs in their repositories. We publicly release our code, dataset, and model at https://github.com/ISE-Research/girt-model.
Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation
Instruct LLM provide a paradigm used in large scale language model to align LLM to human preference. The paradigm contains supervised fine tuning and reinforce learning from human feedback. This paradigm is also used in downstream scenarios to adapt LLM to specific corpora and applications. Comparing to SFT, there are many efforts focused on RLHF and several algorithms being proposed, such as PPO, DPO, IPO, KTO, MinorDPO and etc. Meanwhile most efforts for SFT are focused on how to collect, filter and mix high quality data. In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness, and reduce the discrepancy between the optimized LLM and original LLM.
Instruct-Imagen: Image Generation with Multi-modal Instruction
This paper presents instruct-imagen, a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks. We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision. It uses natural language to amalgamate disparate modalities (e.g., text, edge, style, subject, etc.), such that abundant generation intents can be standardized in a uniform format. We then build instruct-imagen by fine-tuning a pre-trained text-to-image diffusion model with a two-stage framework. First, we adapt the model using the retrieval-augmented training, to enhance model's capabilities to ground its generation on external multimodal context. Subsequently, we fine-tune the adapted model on diverse image generation tasks that requires vision-language understanding (e.g., subject-driven generation, etc.), each paired with a multi-modal instruction encapsulating the task's essence. Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain and demonstrates promising generalization to unseen and more complex tasks.
Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning
Although natural language instructions offer an intuitive way to guide automated image editing, deep-learning models often struggle to achieve high-quality results, largely due to challenges in creating large, high-quality training datasets. Previous work has typically relied on text-toimage (T2I) generative models to produce pairs of original and edited images that simulate the input/output of an instruction-guided image-editing model. However, these image pairs often fail to align with the specified edit instructions due to the limitations of T2I models, which negatively impacts models trained on such datasets. To address this, we present Instruct-CLIP, a self-supervised method that learns the semantic changes between original and edited images to refine and better align the instructions in existing datasets. Furthermore, we adapt Instruct-CLIP to handle noisy latent images and diffusion timesteps so that it can be used to train latent diffusion models (LDMs) [19] and efficiently enforce alignment between the edit instruction and the image changes in latent space at any step of the diffusion pipeline. We use Instruct-CLIP to correct the InstructPix2Pix dataset and get over 120K refined samples we then use to fine-tune their model, guided by our novel Instruct-CLIP-based loss function. The resulting model can produce edits that are more aligned with the given instructions. Our code and dataset are available at https://github.com/SherryXTChen/Instruct-CLIP.git.
Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model
Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: https://github.com/zwq2018/Multi-modal-Self-instruct.
VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation
Large language models (LLMs) often struggle with visualization tasks like plotting diagrams, charts, where success depends on both code correctness and visual semantics. Existing instruction-tuning datasets lack execution-grounded supervision and offer limited support for iterative code correction, resulting in fragile and unreliable plot generation. We present VisCode-200K, a large-scale instruction tuning dataset for Python-based visualization and self-correction. It contains over 200K examples from two sources: (1) validated plotting code from open-source repositories, paired with natural language instructions and rendered plots; and (2) 45K multi-turn correction dialogues from Code-Feedback, enabling models to revise faulty code using runtime feedback. We fine-tune Qwen2.5-Coder-Instruct on VisCode-200K to create VisCoder, and evaluate it on PandasPlotBench. VisCoder significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4o-mini. We further adopt a self-debug evaluation protocol to assess iterative repair, demonstrating the benefits of feedback-driven learning for executable, visually accurate code generation.
An Embarrassingly Simple Defense Against LLM Abliteration Attacks
Large language models (LLMs) are typically aligned to comply with safety guidelines by refusing harmful instructions. A recent attack, termed abliteration, isolates and suppresses the single latent direction most responsible for refusal behavior, enabling the model to generate unethical content. We propose a defense that modifies how models generate refusals. We construct an extended-refusal dataset that contains harmful prompts with a full response that justifies the reason for refusal. We then fine-tune Llama-2-7B-Chat and Qwen2.5-Instruct (1.5B and 3B parameters) on our extended-refusal dataset, and evaluate the resulting systems on a set of harmful prompts. In our experiments, extended-refusal models maintain high refusal rates, dropping at most by 10%, whereas baseline models' refusal rates drop by 70-80% after abliteration. A broad evaluation of safety and utility shows that extended-refusal fine-tuning neutralizes the abliteration attack while preserving general performance.
Learning to Verify Summary Facts with Fine-Grained LLM Feedback
Training automatic summary fact verifiers often faces the challenge of a lack of human-labeled data. In this paper, we explore alternative way of leveraging Large Language Model (LLM) generated feedback to address the inherent limitation of using human-labeled data. We introduce FineSumFact, a large-scale dataset containing fine-grained factual feedback on summaries. We employ 10 distinct LLMs for diverse summary generation and Llama-3-70B-Instruct for feedback. We utilize this dataset to fine-tune the lightweight open-source model Llama-3-8B-Instruct, optimizing resource efficiency while maintaining high performance. Our experimental results reveal that the model trained on extensive LLM-generated datasets surpasses that trained on smaller human-annotated datasets when evaluated using human-generated test sets. Fine-tuning fact verification models with LLM feedback can be more effective and cost-efficient than using human feedback. The dataset is available at https://github.com/DISL-Lab/FineSumFact.
Veritas: Deterministic Verilog Code Synthesis from LLM-Generated Conjunctive Normal Form
Automated Verilog code synthesis poses significant challenges and typically demands expert oversight. Traditional high-level synthesis (HLS) methods often fail to scale for real-world designs. While large language models (LLMs) have enhanced scalability, they often introduce syntactical and logical errors requiring extensive post-generation verification. Here, we introduce a novel conjunctive normal form (CNF)-guided synthesis methodology. The idea is to have an LLM generate CNF clauses, a format widely used for formal verification and synthesis validation in hardware design, but here it is used to formally describe the desired circuit functionality. These CNF specifications are then deterministically converted into Verilog, ensuring correctness by construction. Our approach fine-tunes an open-source and lightweight LLM, namely the CPU-deployable LLama-3.2-3B-Instruct model (parameters < 4B), on a dataset of standard RTL components. Experimental results demonstrate that our approach reliably produces functionally correct Verilog code on the first attempt, compared to other lightweight open-source SoTA works such as Verigen (2B parameters) and RTLCoder (4-bit quantized with around 7B parameters). We will release our method and data in full post peer-review.
Facilitating Long Context Understanding via Supervised Chain-of-Thought Reasoning
Recent advances in Large Language Models (LLMs) have enabled them to process increasingly longer sequences, ranging from 2K to 2M tokens and even beyond. However, simply extending the input sequence length does not necessarily lead to effective long-context understanding. In this study, we integrate Chain-of-Thought (CoT) reasoning into LLMs in a supervised manner to facilitate effective long-context understanding. To achieve this, we introduce LongFinanceQA, a synthetic dataset in the financial domain designed to improve long-context reasoning. Unlike existing long-context synthetic data, LongFinanceQA includes intermediate CoT reasoning before the final conclusion, which encourages LLMs to perform explicit reasoning, improving accuracy and interpretability in long-context understanding. To generate synthetic CoT reasoning, we propose Property-driven Agentic Inference (PAI), an agentic framework that simulates human-like reasoning steps, including property extraction, retrieval, and summarization. We evaluate PAI's reasoning capabilities by assessing GPT-4o-mini w/ PAI on the Loong benchmark, outperforming standard GPT-4o-mini by 20.0%. Furthermore, we fine-tune LLaMA-3.1-8B-Instruct on LongFinanceQA, achieving a 24.6% gain on Loong's financial subset.
In-context Autoencoder for Context Compression in a Large Language Model
We propose the In-context Autoencoder (ICAE) for context compression in a large language model (LLM). The ICAE has two modules: a learnable encoder adapted with LoRA from an LLM for compressing a long context into a limited number of memory slots, and a fixed decoder which is the target LLM that can condition on the memory slots for various purposes. We first pretrain the ICAE using both autoencoding and language modeling objectives on massive text data, enabling it to generate memory slots that accurately and comprehensively represent the original context. Then, we fine-tune the pretrained ICAE on a small amount of instruct data to enhance its interaction with various prompts for producing desirable responses. Our experimental results demonstrate that the ICAE learned with our proposed pretraining and fine-tuning paradigm can effectively produce memory slots with 4times context compression, which can be well conditioned on by the target LLM to respond to various prompts. The promising results demonstrate significant implications of the ICAE for its novel approach to the long context problem and its potential to reduce computation and memory overheads for LLM inference in practice, suggesting further research effort in context management for an LLM. Our code and data will be released shortly.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
MathCanvas: Intrinsic Visual Chain-of-Thought for Multimodal Mathematical Reasoning
While Large Language Models (LLMs) have excelled in textual reasoning, they struggle with mathematical domains like geometry that intrinsically rely on visual aids. Existing approaches to Visual Chain-of-Thought (VCoT) are often limited by rigid external tools or fail to generate the high-fidelity, strategically-timed diagrams necessary for complex problem-solving. To bridge this gap, we introduce MathCanvas, a comprehensive framework designed to endow unified Large Multimodal Models (LMMs) with intrinsic VCoT capabilities for mathematics. Our approach consists of two phases. First, a Visual Manipulation stage pre-trains the model on a novel 15.2M-pair corpus, comprising 10M caption-to-diagram pairs (MathCanvas-Imagen) and 5.2M step-by-step editing trajectories (MathCanvas-Edit), to master diagram generation and editing. Second, a Strategic Visual-Aided Reasoning stage fine-tunes the model on MathCanvas-Instruct, a new 219K-example dataset of interleaved visual-textual reasoning paths, teaching it when and how to leverage visual aids. To facilitate rigorous evaluation, we introduce MathCanvas-Bench, a challenging benchmark with 3K problems that require models to produce interleaved visual-textual solutions. Our model, BAGEL-Canvas, trained under this framework, achieves an 86% relative improvement over strong LMM baselines on MathCanvas-Bench, demonstrating excellent generalization to other public math benchmarks. Our work provides a complete toolkit-framework, datasets, and benchmark-to unlock complex, human-like visual-aided reasoning in LMMs. Project Page: https://mathcanvas.github.io/
Data-Efficient Alignment of Large Language Models with Human Feedback Through Natural Language
Learning from human feedback is a prominent technique to align the output of large language models (LLMs) with human expectations. Reinforcement learning from human feedback (RLHF) leverages human preference signals that are in the form of ranking of response pairs to perform this alignment. However, human preference on LLM outputs can come in much richer forms including natural language, which may provide detailed feedback on strengths and weaknesses of a given response. In this work we investigate data efficiency of modeling human feedback that is in natural language. Specifically, we fine-tune an open-source LLM, e.g., Falcon-40B-Instruct, on a relatively small amount (1000 records or even less) of human feedback in natural language in the form of critiques and revisions of responses. We show that this model is able to improve the quality of responses from even some of the strongest LLMs such as ChatGPT, BARD, and Vicuna, through critique and revision of those responses. For instance, through one iteration of revision of ChatGPT responses, the revised responses have 56.6% win rate over the original ones, and this win rate can be further improved to 65.9% after applying the revision for five iterations.
OR-Toolformer: Modeling and Solving Operations Research Problems with Tool Augmented Large Language Models
Large language models (LLMs) demonstrate strong mathematical reasoning, but reliance on closed-source APIs for OR tasks raises privacy concerns, and training open-source models from scratch incurs high compute costs. We introduce OR-Toolformer, which fine-tunes Llama-3.1-8B-Instruct with a semi-automatic data synthesis pipeline that generates diverse OR problem-answer pairs and augments the model with external solvers to produce API calls. On three of four standard benchmarks, OR-Toolformer achieves up to 80.1% execution accuracy, exceeding size-matched baselines by over 4.3%. In zero-shot evaluation on two unseen OR problem types, it attains 54% average accuracy, a 21 percentage-point improvement over the strongest baseline. These findings validate the efficacy of tool-augmented fine-tuning LLMs for accurate and generalizable OR problem modeling and solving.
Two-Stage Reasoning-Infused Learning: Improving Classification with LLM-Generated Reasoning
Standard classification models often map inputs directly to labels without explicit reasoning, potentially limiting their performance, robustness, and interpretability. This paper introduces a novel two-stage approach to enhance text classification by leveraging Large Language Model (LLM)-generated reasonings. In the first stage, we fine-tune a Llama-3.2-1B-Instruct model (henceforth Llama-R-Gen) on a general-purpose reasoning dataset (syvai/reasoning-gen) to generate textual reasoning (R) given a question and its answer. In the second stage, this generally trained Llama-R-Gen is used offline to create an augmented training dataset for a downstream generative model. This downstream model, based on Llama-3.2-1B-Instruct, takes only the input text (Q) and is trained to output the generated reasoning (R) immediately followed by the predicted emotion (A). We demonstrate this methodology on the dair-ai/emotion dataset for emotion classification. Our experiments show that the generative model trained to output reasoning and the emotion (Classifier Q->RA) achieves a significant improvement of 8.7 percentage points in accuracy (for emotion prediction) compared to a baseline generative model trained solely to output the emotion (Classifier Q->A), highlighting the strong generalization capabilities of the reasoning generation and the benefit of explicit reasoning training. This work underscores the potential of LLM-generated reasonings for creating richer training datasets, thereby improving the performance of diverse downstream NLP tasks and providing explicit explanations.
CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation
Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) win rate on ArenaHard and a 40.7% (+17.8%) win rate on Length-Controlled AlpacaEval 2.0, along with a score of 8.0 on MT-Bench.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
CodeUltraFeedback: An LLM-as-a-Judge Dataset for Aligning Large Language Models to Coding Preferences
Evaluating the alignment of large language models (LLMs) with user-defined coding preferences is a challenging endeavour that requires a deep assessment of LLMs' outputs. Existing methods and benchmarks rely primarily on automated metrics and static analysis tools, which often fail to capture the nuances of user instructions and LLM outputs. To address this gap, we propose using the LLM-as-a-Judge methodology to evaluate the alignment of LLMs with coding preferences. Based on this approach, we present CodeUltraFeedback, a comprehensive dataset designed to facilitate the evaluation and improvement of LLM alignment. CodeUltraFeedback consists of 10,000 coding instructions, each annotated with four responses generated from a diverse pool of 14 LLMs. These responses are ranked based on five distinct coding preferences using GPT-3.5 as a judge, providing both numerical scores and detailed textual feedback. Our analysis of CodeUltraFeedback reveals that responses from GPT-3.5 and GPT-4 are generally preferred over those from open-weight LLMs, highlighting significant differences in alignment between closed and open-weight models. In turn, we explore the usage of CodeUltraFeedback as feedback data to fine-tune and align CodeLlama-7B-Instruct using supervised fine-tuning (SFT) and reinforcement learning from AI feedback (RLAIF) with direct preference optimization (DPO). The resulting aligned CodeLlama-7B-Instruct model outperforms larger LLMs in terms of alignment with coding preferences and shows improved functional correctness on the HumanEval+ benchmark compared to the original instruct model. Therefore, our contributions bridge the gap in preference tuning of LLMs for code and set the stage for further advancements in model alignment and RLAIF in automated software engineering.
CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
Recent advancements in instruction-tuning datasets have predominantly focused on specific tasks like mathematical or logical reasoning. There has been a notable gap in data designed for aligning language models to maintain topic relevance in conversations - a critical aspect for deploying chatbots to production. We introduce the CantTalkAboutThis dataset to help language models remain focused on the subject at hand during task-oriented interactions. It consists of synthetic dialogues on a wide range of conversation topics from different domains. These dialogues are interspersed with distractor turns that intentionally divert the chatbot from the predefined topic. Fine-tuning language models on this dataset helps make them resilient to deviating from the role assigned and improves their ability to maintain topical coherence compared to general-purpose instruction-tuned LLMs like GPT-4-turbo and Mixtral-Instruct. Additionally, preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks.
LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day
Conversational generative AI has demonstrated remarkable promise for empowering biomedical practitioners, but current investigations focus on unimodal text. Multimodal conversational AI has seen rapid progress by leveraging billions of image-text pairs from the public web, but such general-domain vision-language models still lack sophistication in understanding and conversing about biomedical images. In this paper, we propose a cost-efficient approach for training a vision-language conversational assistant that can answer open-ended research questions of biomedical images. The key idea is to leverage a large-scale, broad-coverage biomedical figure-caption dataset extracted from PubMed Central, use GPT-4 to self-instruct open-ended instruction-following data from the captions, and then fine-tune a large general-domain vision-language model using a novel curriculum learning method. Specifically, the model first learns to align biomedical vocabulary using the figure-caption pairs as is, then learns to master open-ended conversational semantics using GPT-4 generated instruction-following data, broadly mimicking how a layperson gradually acquires biomedical knowledge. This enables us to train a Large Language and Vision Assistant for BioMedicine (LLaVA-Med) in less than 15 hours (with eight A100s). LLaVA-Med exhibits excellent multimodal conversational capability and can follow open-ended instruction to assist with inquiries about a biomedical image. On three standard biomedical visual question answering datasets, LLaVA-Med outperforms previous supervised state-of-the-art on certain metrics. To facilitate biomedical multimodal research, we will release our instruction-following data and the LLaVA-Med model.
InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis
In this paper, we present InstructABSA, Aspect-Based Sentiment Analysis (ABSA) using instruction learning paradigm for all ABSA subtasks: Aspect Term Extraction (ATE), Aspect Term Sentiment Classification (ATSC), and Joint Task modeling. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tunes the model (Tk-Instruct Base) for each ABSA subtask, yielding significant performance improvements. Experimental results on the Sem Eval 2014 dataset demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on all three ABSA subtasks (ATE, ATSC, and Joint Task) by a significant margin, outperforming 7x larger models. In particular, InstructABSA surpasses the SOTA on the restaurant ATE subtask by 7.31% points and on the Laptop Joint Task by 8.63% points. Our results also suggest a strong generalization ability to unseen tasks across all three subtasks.
Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation
Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification.
Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning
Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks that single-agent systems often struggle to manage. While recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks, how to effectively scale collaboration and reasoning in MAS remains an open question. In this work, we introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination. We construct M500, a high-quality dataset containing 500 multi-agent collaborative reasoning traces, and fine-tune Qwen2.5-32B-Instruct on this dataset to produce M1-32B, a model optimized for multi-agent collaboration. To further enable adaptive reasoning, we propose a novel CEO agent that dynamically manages the discussion process, guiding agent collaboration and adjusting reasoning depth for more effective problem-solving. Evaluated in an open-source MAS across a range of tasks-including general understanding, mathematical reasoning, and coding-our system significantly outperforms strong baselines. For instance, M1-32B achieves 12% improvement on GPQA-Diamond, 41% on AIME2024, and 10% on MBPP-Sanitized, matching the performance of state-of-the-art models like DeepSeek-R1 on some tasks. These results highlight the importance of both learned collaboration and adaptive coordination in scaling multi-agent reasoning. Code is available at https://github.com/jincan333/MAS-TTS
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
