new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models

In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.

  • 11 authors
·
Jun 19 2

Hi-End-MAE: Hierarchical encoder-driven masked autoencoders are stronger vision learners for medical image segmentation

Medical image segmentation remains a formidable challenge due to the label scarcity. Pre-training Vision Transformer (ViT) through masked image modeling (MIM) on large-scale unlabeled medical datasets presents a promising solution, providing both computational efficiency and model generalization for various downstream tasks. However, current ViT-based MIM pre-training frameworks predominantly emphasize local aggregation representations in output layers and fail to exploit the rich representations across different ViT layers that better capture fine-grained semantic information needed for more precise medical downstream tasks. To fill the above gap, we hereby present Hierarchical Encoder-driven MAE (Hi-End-MAE), a simple yet effective ViT-based pre-training solution, which centers on two key innovations: (1) Encoder-driven reconstruction, which encourages the encoder to learn more informative features to guide the reconstruction of masked patches; and (2) Hierarchical dense decoding, which implements a hierarchical decoding structure to capture rich representations across different layers. We pre-train Hi-End-MAE on a large-scale dataset of 10K CT scans and evaluated its performance across seven public medical image segmentation benchmarks. Extensive experiments demonstrate that Hi-End-MAE achieves superior transfer learning capabilities across various downstream tasks, revealing the potential of ViT in medical imaging applications. The code is available at: https://github.com/FengheTan9/Hi-End-MAE

  • 6 authors
·
Feb 12

MAFormer: A Transformer Network with Multi-scale Attention Fusion for Visual Recognition

Vision Transformer and its variants have demonstrated great potential in various computer vision tasks. But conventional vision transformers often focus on global dependency at a coarse level, which suffer from a learning challenge on global relationships and fine-grained representation at a token level. In this paper, we introduce Multi-scale Attention Fusion into transformer (MAFormer), which explores local aggregation and global feature extraction in a dual-stream framework for visual recognition. We develop a simple but effective module to explore the full potential of transformers for visual representation by learning fine-grained and coarse-grained features at a token level and dynamically fusing them. Our Multi-scale Attention Fusion (MAF) block consists of: i) a local window attention branch that learns short-range interactions within windows, aggregating fine-grained local features; ii) global feature extraction through a novel Global Learning with Down-sampling (GLD) operation to efficiently capture long-range context information within the whole image; iii) a fusion module that self-explores the integration of both features via attention. Our MAFormer achieves state-of-the-art performance on common vision tasks. In particular, MAFormer-L achieves 85.9% Top-1 accuracy on ImageNet, surpassing CSWin-B and LV-ViT-L by 1.7% and 0.6% respectively. On MSCOCO, MAFormer outperforms the prior art CSWin by 1.7% mAPs on object detection and 1.4% on instance segmentation with similar-sized parameters, demonstrating the potential to be a general backbone network.

  • 9 authors
·
Aug 31, 2022

Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization

Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.

  • 3 authors
·
Jun 15, 2023

MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images

This paper studies zero-shot anomaly classification (AC) and segmentation (AS) in industrial vision. We reveal that the abundant normal and abnormal cues implicit in unlabeled test images can be exploited for anomaly determination, which is ignored by prior methods. Our key observation is that for the industrial product images, the normal image patches could find a relatively large number of similar patches in other unlabeled images, while the abnormal ones only have a few similar patches. We leverage such a discriminative characteristic to design a novel zero-shot AC/AS method by Mutual Scoring (MuSc) of the unlabeled images, which does not need any training or prompts. Specifically, we perform Local Neighborhood Aggregation with Multiple Degrees (LNAMD) to obtain the patch features that are capable of representing anomalies in varying sizes. Then we propose the Mutual Scoring Mechanism (MSM) to leverage the unlabeled test images to assign the anomaly score to each other. Furthermore, we present an optimization approach named Re-scoring with Constrained Image-level Neighborhood (RsCIN) for image-level anomaly classification to suppress the false positives caused by noises in normal images. The superior performance on the challenging MVTec AD and VisA datasets demonstrates the effectiveness of our approach. Compared with the state-of-the-art zero-shot approaches, MuSc achieves a 21.1% PRO absolute gain (from 72.7% to 93.8%) on MVTec AD, a 19.4% pixel-AP gain and a 14.7% pixel-AUROC gain on VisA. In addition, our zero-shot approach outperforms most of the few-shot approaches and is comparable to some one-class methods. Code is available at https://github.com/xrli-U/MuSc.

  • 4 authors
·
Jan 30, 2024

Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding

Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.

  • 11 authors
·
Apr 11, 2024

Large Spatial Model: End-to-end Unposed Images to Semantic 3D

Reconstructing and understanding 3D structures from a limited number of images is a well-established problem in computer vision. Traditional methods usually break this task into multiple subtasks, each requiring complex transformations between different data representations. For instance, dense reconstruction through Structure-from-Motion (SfM) involves converting images into key points, optimizing camera parameters, and estimating structures. Afterward, accurate sparse reconstructions are required for further dense modeling, which is subsequently fed into task-specific neural networks. This multi-step process results in considerable processing time and increased engineering complexity. In this work, we present the Large Spatial Model (LSM), which processes unposed RGB images directly into semantic radiance fields. LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation, and it can generate versatile label maps by interacting with language at novel viewpoints. Leveraging a Transformer-based architecture, LSM integrates global geometry through pixel-aligned point maps. To enhance spatial attribute regression, we incorporate local context aggregation with multi-scale fusion, improving the accuracy of fine local details. To tackle the scarcity of labeled 3D semantic data and enable natural language-driven scene manipulation, we incorporate a pre-trained 2D language-based segmentation model into a 3D-consistent semantic feature field. An efficient decoder then parameterizes a set of semantic anisotropic Gaussians, facilitating supervised end-to-end learning. Extensive experiments across various tasks show that LSM unifies multiple 3D vision tasks directly from unposed images, achieving real-time semantic 3D reconstruction for the first time.

  • 13 authors
·
Oct 24, 2024

YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception

The YOLO series models reign supreme in real-time object detection due to their superior accuracy and computational efficiency. However, both the convolutional architectures of YOLO11 and earlier versions and the area-based self-attention mechanism introduced in YOLOv12 are limited to local information aggregation and pairwise correlation modeling, lacking the capability to capture global multi-to-multi high-order correlations, which limits detection performance in complex scenarios. In this paper, we propose YOLOv13, an accurate and lightweight object detector. To address the above-mentioned challenges, we propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism that adaptively exploits latent high-order correlations and overcomes the limitation of previous methods that are restricted to pairwise correlation modeling based on hypergraph computation, achieving efficient global cross-location and cross-scale feature fusion and enhancement. Subsequently, we propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm based on HyperACE, which effectively achieves fine-grained information flow and representation synergy within the entire network by distributing correlation-enhanced features to the full pipeline. Finally, we propose to leverage depthwise separable convolutions to replace vanilla large-kernel convolutions, and design a series of blocks that significantly reduce parameters and computational complexity without sacrificing performance. We conduct extensive experiments on the widely used MS COCO benchmark, and the experimental results demonstrate that our method achieves state-of-the-art performance with fewer parameters and FLOPs. Specifically, our YOLOv13-N improves mAP by 3.0\% over YOLO11-N and by 1.5\% over YOLOv12-N. The code and models of our YOLOv13 model are available at: https://github.com/iMoonLab/yolov13.

  • 10 authors
·
Jun 21

Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach

Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. Especially for transformer-based methods, the self-attention mechanism in such models brings great breakthroughs while incurring substantial computational costs. To tackle this issue, we introduce the Convolutional Transformer layer (ConvFormer) and the ConvFormer-based Super-Resolution network (CFSR), which offer an effective and efficient solution for lightweight image super-resolution tasks. In detail, CFSR leverages the large kernel convolution as the feature mixer to replace the self-attention module, efficiently modeling long-range dependencies and extensive receptive fields with a slight computational cost. Furthermore, we propose an edge-preserving feed-forward network, simplified as EFN, to obtain local feature aggregation and simultaneously preserve more high-frequency information. Extensive experiments demonstrate that CFSR can achieve an advanced trade-off between computational cost and performance when compared to existing lightweight SR methods. Compared to state-of-the-art methods, e.g. ShuffleMixer, the proposed CFSR achieves 0.39 dB gains on Urban100 dataset for x2 SR task while containing 26% and 31% fewer parameters and FLOPs, respectively. Code and pre-trained models are available at https://github.com/Aitical/CFSR.

  • 4 authors
·
Jan 10, 2024

Token Coordinated Prompt Attention is Needed for Visual Prompting

Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.

  • 4 authors
·
May 5

GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation

Recent advances in learning multi-modal representation have witnessed the success in biomedical domains. While established techniques enable handling multi-modal information, the challenges are posed when extended to various clinical modalities and practical modalitymissing setting due to the inherent modality gaps. To tackle these, we propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o), which embeds the numerous disparate clinical modalities into a unified representation, completes the deficient embedding of missing modality and reformulates the cross-modal learning with a graph-based aggregation. Specially, we establish a heterogeneous graph embedding to explicitly capture the diverse semantic properties on both the modality-specific features (nodes) and the cross-modal relations (edges). Then, we design a modality-prompted completion that enables completing the inadequate graph representation of missing modality through a graph prompting mechanism, which generates hallucination graphic topologies to steer the missing embedding towards the intact representation. Through the completed graph, we meticulously develop a knowledge-guided hierarchical cross-modal aggregation consisting of a global meta-path neighbouring to uncover the potential heterogeneous neighbors along the pathways driven by domain knowledge, and a local multi-relation aggregation module for the comprehensive cross-modal interaction across various heterogeneous relations. We assess the efficacy of our methodology on rigorous benchmarking experiments against prior state-of-the-arts. In a nutshell, GTP-4o presents an initial foray into the intriguing realm of embedding, relating and perceiving the heterogeneous patterns from various clinical modalities holistically via a graph theory. Project page: https://gtp-4-o.github.io/.

  • 7 authors
·
Jul 7, 2024

MixVPR: Feature Mixing for Visual Place Recognition

Visual Place Recognition (VPR) is a crucial part of mobile robotics and autonomous driving as well as other computer vision tasks. It refers to the process of identifying a place depicted in a query image using only computer vision. At large scale, repetitive structures, weather and illumination changes pose a real challenge, as appearances can drastically change over time. Along with tackling these challenges, an efficient VPR technique must also be practical in real-world scenarios where latency matters. To address this, we introduce MixVPR, a new holistic feature aggregation technique that takes feature maps from pre-trained backbones as a set of global features. Then, it incorporates a global relationship between elements in each feature map in a cascade of feature mixing, eliminating the need for local or pyramidal aggregation as done in NetVLAD or TransVPR. We demonstrate the effectiveness of our technique through extensive experiments on multiple large-scale benchmarks. Our method outperforms all existing techniques by a large margin while having less than half the number of parameters compared to CosPlace and NetVLAD. We achieve a new all-time high recall@1 score of 94.6% on Pitts250k-test, 88.0% on MapillarySLS, and more importantly, 58.4% on Nordland. Finally, our method outperforms two-stage retrieval techniques such as Patch-NetVLAD, TransVPR and SuperGLUE all while being orders of magnitude faster. Our code and trained models are available at https://github.com/amaralibey/MixVPR.

  • 3 authors
·
Mar 3, 2023

Recipe for a General, Powerful, Scalable Graph Transformer

We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being local, global or relative. The prior GTs are constrained to small graphs with a few hundred nodes, here we propose the first architecture with a complexity linear in the number of nodes and edges O(N+E) by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator on graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We provide a modular framework GraphGPS that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 16 benchmarks and show highly competitive results in all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.

  • 6 authors
·
May 24, 2022

Improving the Model Consistency of Decentralized Federated Learning

To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topology. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates small Obig(1{KT}+1{T}+1{K^{1/2}T^{3/2}(1-lambda)^2}big) and small Obig(1{KT}+1{T}+lambda^Q+1{K^{1/2}T^{3/2}(1-lambda^Q)^2}big) in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where 1-lambda is the spectral gap of gossip matrix and Q is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.

  • 7 authors
·
Feb 8, 2023

Dual-Context Aggregation for Universal Image Matting

Natural image matting aims to estimate the alpha matte of the foreground from a given image. Various approaches have been explored to address this problem, such as interactive matting methods that use guidance such as click or trimap, and automatic matting methods tailored to specific objects. However, existing matting methods are designed for specific objects or guidance, neglecting the common requirement of aggregating global and local contexts in image matting. As a result, these methods often encounter challenges in accurately identifying the foreground and generating precise boundaries, which limits their effectiveness in unforeseen scenarios. In this paper, we propose a simple and universal matting framework, named Dual-Context Aggregation Matting (DCAM), which enables robust image matting with arbitrary guidance or without guidance. Specifically, DCAM first adopts a semantic backbone network to extract low-level features and context features from the input image and guidance. Then, we introduce a dual-context aggregation network that incorporates global object aggregators and local appearance aggregators to iteratively refine the extracted context features. By performing both global contour segmentation and local boundary refinement, DCAM exhibits robustness to diverse types of guidance and objects. Finally, we adopt a matting decoder network to fuse the low-level features and the refined context features for alpha matte estimation. Experimental results on five matting datasets demonstrate that the proposed DCAM outperforms state-of-the-art matting methods in both automatic matting and interactive matting tasks, which highlights the strong universality and high performance of DCAM. The source code is available at https://github.com/Windaway/DCAM.

  • 5 authors
·
Feb 28, 2024

Identity-Consistent Aggregation for Video Object Detection

In Video Object Detection (VID), a common practice is to leverage the rich temporal contexts from the video to enhance the object representations in each frame. Existing methods treat the temporal contexts obtained from different objects indiscriminately and ignore their different identities. While intuitively, aggregating local views of the same object in different frames may facilitate a better understanding of the object. Thus, in this paper, we aim to enable the model to focus on the identity-consistent temporal contexts of each object to obtain more comprehensive object representations and handle the rapid object appearance variations such as occlusion, motion blur, etc. However, realizing this goal on top of existing VID models faces low-efficiency problems due to their redundant region proposals and nonparallel frame-wise prediction manner. To aid this, we propose ClipVID, a VID model equipped with Identity-Consistent Aggregation (ICA) layers specifically designed for mining fine-grained and identity-consistent temporal contexts. It effectively reduces the redundancies through the set prediction strategy, making the ICA layers very efficient and further allowing us to design an architecture that makes parallel clip-wise predictions for the whole video clip. Extensive experimental results demonstrate the superiority of our method: a state-of-the-art (SOTA) performance (84.7% mAP) on the ImageNet VID dataset while running at a speed about 7x faster (39.3 fps) than previous SOTAs.

  • 3 authors
·
Aug 15, 2023

LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion

LiDAR-camera fusion methods have shown impressive performance in 3D object detection. Recent advanced multi-modal methods mainly perform global fusion, where image features and point cloud features are fused across the whole scene. Such practice lacks fine-grained region-level information, yielding suboptimal fusion performance. In this paper, we present the novel Local-to-Global fusion network (LoGoNet), which performs LiDAR-camera fusion at both local and global levels. Concretely, the Global Fusion (GoF) of LoGoNet is built upon previous literature, while we exclusively use point centroids to more precisely represent the position of voxel features, thus achieving better cross-modal alignment. As to the Local Fusion (LoF), we first divide each proposal into uniform grids and then project these grid centers to the images. The image features around the projected grid points are sampled to be fused with position-decorated point cloud features, maximally utilizing the rich contextual information around the proposals. The Feature Dynamic Aggregation (FDA) module is further proposed to achieve information interaction between these locally and globally fused features, thus producing more informative multi-modal features. Extensive experiments on both Waymo Open Dataset (WOD) and KITTI datasets show that LoGoNet outperforms all state-of-the-art 3D detection methods. Notably, LoGoNet ranks 1st on Waymo 3D object detection leaderboard and obtains 81.02 mAPH (L2) detection performance. It is noteworthy that, for the first time, the detection performance on three classes surpasses 80 APH (L2) simultaneously. Code will be available at https://github.com/sankin97/LoGoNet.

  • 11 authors
·
Mar 6, 2023

CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution

Transformer-based methods have demonstrated impressive performance in low-level visual tasks such as Image Super-Resolution (SR). However, its computational complexity grows quadratically with the spatial resolution. A series of works attempt to alleviate this problem by dividing Low-Resolution images into local windows, axial stripes, or dilated windows. SR typically leverages the redundancy of images for reconstruction, and this redundancy appears not only in local regions but also in long-range regions. However, these methods limit attention computation to content-agnostic local regions, limiting directly the ability of attention to capture long-range dependency. To address these issues, we propose a lightweight Content-Aware Token Aggregation Network (CATANet). Specifically, we propose an efficient Content-Aware Token Aggregation module for aggregating long-range content-similar tokens, which shares token centers across all image tokens and updates them only during the training phase. Then we utilize intra-group self-attention to enable long-range information interaction. Moreover, we design an inter-group cross-attention to further enhance global information interaction. The experimental results show that, compared with the state-of-the-art cluster-based method SPIN, our method achieves superior performance, with a maximum PSNR improvement of 0.33dB and nearly double the inference speed.

  • 4 authors
·
Mar 10 1

Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition

Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL

  • 14 authors
·
Apr 14

Video-Based Human Pose Regression via Decoupled Space-Time Aggregation

By leveraging temporal dependency in video sequences, multi-frame human pose estimation algorithms have demonstrated remarkable results in complicated situations, such as occlusion, motion blur, and video defocus. These algorithms are predominantly based on heatmaps, resulting in high computation and storage requirements per frame, which limits their flexibility and real-time application in video scenarios, particularly on edge devices. In this paper, we develop an efficient and effective video-based human pose regression method, which bypasses intermediate representations such as heatmaps and instead directly maps the input to the output joint coordinates. Despite the inherent spatial correlation among adjacent joints of the human pose, the temporal trajectory of each individual joint exhibits relative independence. In light of this, we propose a novel Decoupled Space-Time Aggregation network (DSTA) to separately capture the spatial contexts between adjacent joints and the temporal cues of each individual joint, thereby avoiding the conflation of spatiotemporal dimensions. Concretely, DSTA learns a dedicated feature token for each joint to facilitate the modeling of their spatiotemporal dependencies. With the proposed joint-wise local-awareness attention mechanism, our method is capable of efficiently and flexibly utilizing the spatial dependency of adjacent joints and the temporal dependency of each joint itself. Extensive experiments demonstrate the superiority of our method. Compared to previous regression-based single-frame human pose estimation methods, DSTA significantly enhances performance, achieving an 8.9 mAP improvement on PoseTrack2017. Furthermore, our approach either surpasses or is on par with the state-of-the-art heatmap-based multi-frame human pose estimation methods. Project page: https://github.com/zgspose/DSTA.

  • 2 authors
·
Mar 28, 2024

VLAD-BuFF: Burst-aware Fast Feature Aggregation for Visual Place Recognition

Visual Place Recognition (VPR) is a crucial component of many visual localization pipelines for embodied agents. VPR is often formulated as an image retrieval task aimed at jointly learning local features and an aggregation method. The current state-of-the-art VPR methods rely on VLAD aggregation, which can be trained to learn a weighted contribution of features through their soft assignment to cluster centers. However, this process has two key limitations. Firstly, the feature-to-cluster weighting does not account for over-represented repetitive structures within a cluster, e.g., shadows or window panes; this phenomenon is also referred to as the `burstiness' problem, classically solved by discounting repetitive features before aggregation. Secondly, feature to cluster comparisons are compute-intensive for state-of-the-art image encoders with high-dimensional local features. This paper addresses these limitations by introducing VLAD-BuFF with two novel contributions: i) a self-similarity based feature discounting mechanism to learn Burst-aware features within end-to-end VPR training, and ii) Fast Feature aggregation by reducing local feature dimensions specifically through PCA-initialized learnable pre-projection. We benchmark our method on 9 public datasets, where VLAD-BuFF sets a new state of the art. Our method is able to maintain its high recall even for 12x reduced local feature dimensions, thus enabling fast feature aggregation without compromising on recall. Through additional qualitative studies, we show how our proposed weighting method effectively downweights the non-distinctive features. Source code: https://github.com/Ahmedest61/VLAD-BuFF/.

  • 5 authors
·
Sep 28, 2024

Hybrid-grained Feature Aggregation with Coarse-to-fine Language Guidance for Self-supervised Monocular Depth Estimation

Current self-supervised monocular depth estimation (MDE) approaches encounter performance limitations due to insufficient semantic-spatial knowledge extraction. To address this challenge, we propose Hybrid-depth, a novel framework that systematically integrates foundation models (e.g., CLIP and DINO) to extract visual priors and acquire sufficient contextual information for MDE. Our approach introduces a coarse-to-fine progressive learning framework: 1) Firstly, we aggregate multi-grained features from CLIP (global semantics) and DINO (local spatial details) under contrastive language guidance. A proxy task comparing close-distant image patches is designed to enforce depth-aware feature alignment using text prompts; 2) Next, building on the coarse features, we integrate camera pose information and pixel-wise language alignment to refine depth predictions. This module seamlessly integrates with existing self-supervised MDE pipelines (e.g., Monodepth2, ManyDepth) as a plug-and-play depth encoder, enhancing continuous depth estimation. By aggregating CLIP's semantic context and DINO's spatial details through language guidance, our method effectively addresses feature granularity mismatches. Extensive experiments on the KITTI benchmark demonstrate that our method significantly outperforms SOTA methods across all metrics, which also indeed benefits downstream tasks like BEV perception. Code is available at https://github.com/Zhangwenyao1/Hybrid-depth.

DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks for Image Super-Resolution

We propose an effective lightweight dynamic local and global self-attention network (DLGSANet) to solve image super-resolution. Our method explores the properties of Transformers while having low computational costs. Motivated by the network designs of Transformers, we develop a simple yet effective multi-head dynamic local self-attention (MHDLSA) module to extract local features efficiently. In addition, we note that existing Transformers usually explore all similarities of the tokens between the queries and keys for the feature aggregation. However, not all the tokens from the queries are relevant to those in keys, using all the similarities does not effectively facilitate the high-resolution image reconstruction. To overcome this problem, we develop a sparse global self-attention (SparseGSA) module to select the most useful similarity values so that the most useful global features can be better utilized for the high-resolution image reconstruction. We develop a hybrid dynamic-Transformer block(HDTB) that integrates the MHDLSA and SparseGSA for both local and global feature exploration. To ease the network training, we formulate the HDTBs into a residual hybrid dynamic-Transformer group (RHDTG). By embedding the RHDTGs into an end-to-end trainable network, we show that our proposed method has fewer network parameters and lower computational costs while achieving competitive performance against state-of-the-art ones in terms of accuracy. More information is available at https://neonleexiang.github.io/DLGSANet/

  • 4 authors
·
Jan 5, 2023

DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features

Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candidates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.

  • 8 authors
·
Aug 5, 2021

FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning

Automatic font generation is an imitation task, which aims to create a font library that mimics the style of reference images while preserving the content from source images. Although existing font generation methods have achieved satisfactory performance, they still struggle with complex characters and large style variations. To address these issues, we propose FontDiffuser, a diffusion-based image-to-image one-shot font generation method, which innovatively models the font imitation task as a noise-to-denoise paradigm. In our method, we introduce a Multi-scale Content Aggregation (MCA) block, which effectively combines global and local content cues across different scales, leading to enhanced preservation of intricate strokes of complex characters. Moreover, to better manage the large variations in style transfer, we propose a Style Contrastive Refinement (SCR) module, which is a novel structure for style representation learning. It utilizes a style extractor to disentangle styles from images, subsequently supervising the diffusion model via a meticulously designed style contrastive loss. Extensive experiments demonstrate FontDiffuser's state-of-the-art performance in generating diverse characters and styles. It consistently excels on complex characters and large style changes compared to previous methods. The code is available at https://github.com/yeungchenwa/FontDiffuser.

  • 6 authors
·
Dec 19, 2023

Patch Matters: Training-free Fine-grained Image Caption Enhancement via Local Perception

High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a divide-then-aggregate strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters

  • 5 authors
·
Apr 9

Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning

Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR

  • 4 authors
·
Mar 9

Distill to Delete: Unlearning in Graph Networks with Knowledge Distillation

Graph unlearning has emerged as a pivotal method to delete information from a pre-trained graph neural network (GNN). One may delete nodes, a class of nodes, edges, or a class of edges. An unlearning method enables the GNN model to comply with data protection regulations (i.e., the right to be forgotten), adapt to evolving data distributions, and reduce the GPU-hours carbon footprint by avoiding repetitive retraining. Existing partitioning and aggregation-based methods have limitations due to their poor handling of local graph dependencies and additional overhead costs. More recently, GNNDelete offered a model-agnostic approach that alleviates some of these issues. Our work takes a novel approach to address these challenges in graph unlearning through knowledge distillation, as it distills to delete in GNN (D2DGN). It is a model-agnostic distillation framework where the complete graph knowledge is divided and marked for retention and deletion. It performs distillation with response-based soft targets and feature-based node embedding while minimizing KL divergence. The unlearned model effectively removes the influence of deleted graph elements while preserving knowledge about the retained graph elements. D2DGN surpasses the performance of existing methods when evaluated on various real-world graph datasets by up to 43.1% (AUC) in edge and node unlearning tasks. Other notable advantages include better efficiency, better performance in removing target elements, preservation of performance for the retained elements, and zero overhead costs. Notably, our D2DGN surpasses the state-of-the-art GNNDelete in AUC by 2.4%, improves membership inference ratio by +1.3, requires 10.2times10^6 fewer FLOPs per forward pass and up to 3.2times faster.

  • 3 authors
·
Sep 28, 2023

Federated Adversarial Learning: A Framework with Convergence Analysis

Federated learning (FL) is a trending training paradigm to utilize decentralized training data. FL allows clients to update model parameters locally for several epochs, then share them to a global model for aggregation. This training paradigm with multi-local step updating before aggregation exposes unique vulnerabilities to adversarial attacks. Adversarial training is a popular and effective method to improve the robustness of networks against adversaries. In this work, we formulate a general form of federated adversarial learning (FAL) that is adapted from adversarial learning in the centralized setting. On the client side of FL training, FAL has an inner loop to generate adversarial samples for adversarial training and an outer loop to update local model parameters. On the server side, FAL aggregates local model updates and broadcast the aggregated model. We design a global robust training loss and formulate FAL training as a min-max optimization problem. Unlike the convergence analysis in classical centralized training that relies on the gradient direction, it is significantly harder to analyze the convergence in FAL for three reasons: 1) the complexity of min-max optimization, 2) model not updating in the gradient direction due to the multi-local updates on the client-side before aggregation and 3) inter-client heterogeneity. We address these challenges by using appropriate gradient approximation and coupling techniques and present the convergence analysis in the over-parameterized regime. Our main result theoretically shows that the minimum loss under our algorithm can converge to epsilon small with chosen learning rate and communication rounds. It is noteworthy that our analysis is feasible for non-IID clients.

  • 3 authors
·
Aug 7, 2022

No Pixel Left Behind: A Detail-Preserving Architecture for Robust High-Resolution AI-Generated Image Detection

The rapid growth of high-resolution, meticulously crafted AI-generated images poses a significant challenge to existing detection methods, which are often trained and evaluated on low-resolution, automatically generated datasets that do not align with the complexities of high-resolution scenarios. A common practice is to resize or center-crop high-resolution images to fit standard network inputs. However, without full coverage of all pixels, such strategies risk either obscuring subtle, high-frequency artifacts or discarding information from uncovered regions, leading to input information loss. In this paper, we introduce the High-Resolution Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses features from multiple full-resolution local tiles with a down-sampled global view of the image. These local features are aggregated and fused with global representations for final prediction, ensuring that native-resolution details are preserved and utilized for detection. To enhance robustness against challenges such as localized AI manipulations and compression, we introduce Token-wise Forgery Localization (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor Estimation (QFE) module to disentangle generative artifacts from compression noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-50K, a new challenging benchmark consisting of 50,568 images with up to 64 megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-art, increasing accuracy by over 13% on the challenging Chameleon dataset and 10% on our HiRes-50K.

  • 10 authors
·
Aug 24

Graph Neural Networks for Jamming Source Localization

Graph-based learning has emerged as a transformative approach for modeling complex relationships across diverse domains, yet its potential in wireless security remains largely unexplored. In this work, we introduce the first application of graph-based learning for jamming source localization, addressing the imminent threat of jamming attacks in wireless networks. Unlike geometric optimization techniques that struggle under environmental uncertainties and dense interference, we reformulate localization as an inductive graph regression task. Our approach integrates structured node representations that encode local and global signal aggregation, ensuring spatial coherence and adaptive signal fusion. To enhance robustness, we incorporate an attention-based graph neural network that adaptively refines neighborhood influence and introduces a confidence-guided estimation mechanism that dynamically balances learned predictions with domain-informed priors. We evaluate our approach under complex radio frequency environments with varying sampling densities and signal propagation conditions, conducting comprehensive ablation studies on graph construction, feature selection, and pooling strategies. Results demonstrate that our novel graph-based learning framework significantly outperforms established localization baselines, particularly in challenging scenarios with sparse and obfuscated signal information. Code is available at [https://github.com/daniaherzalla/gnn-jamming-source-localization](https://github.com/daniaherzalla/gnn-jamming-source-localization).

  • 3 authors
·
Jun 1

HTNet for micro-expression recognition

Facial expression is related to facial muscle contractions and different muscle movements correspond to different emotional states. For micro-expression recognition, the muscle movements are usually subtle, which has a negative impact on the performance of current facial emotion recognition algorithms. Most existing methods use self-attention mechanisms to capture relationships between tokens in a sequence, but they do not take into account the inherent spatial relationships between facial landmarks. This can result in sub-optimal performance on micro-expression recognition tasks.Therefore, learning to recognize facial muscle movements is a key challenge in the area of micro-expression recognition. In this paper, we propose a Hierarchical Transformer Network (HTNet) to identify critical areas of facial muscle movement. HTNet includes two major components: a transformer layer that leverages the local temporal features and an aggregation layer that extracts local and global semantical facial features. Specifically, HTNet divides the face into four different facial areas: left lip area, left eye area, right eye area and right lip area. The transformer layer is used to focus on representing local minor muscle movement with local self-attention in each area. The aggregation layer is used to learn the interactions between eye areas and lip areas. The experiments on four publicly available micro-expression datasets show that the proposed approach outperforms previous methods by a large margin. The codes and models are available at: https://github.com/wangzhifengharrison/HTNet

  • 4 authors
·
Jul 27, 2023

BEVPlace: Learning LiDAR-based Place Recognition using Bird's Eye View Images

Place recognition is a key module for long-term SLAM systems. Current LiDAR-based place recognition methods usually use representations of point clouds such as unordered points or range images. These methods achieve high recall rates of retrieval, but their performance may degrade in the case of view variation or scene changes. In this work, we explore the potential of a different representation in place recognition, i.e. bird's eye view (BEV) images. We observe that the structural contents of BEV images are less influenced by rotations and translations of point clouds. We validate that, without any delicate design, a simple VGGNet trained on BEV images achieves comparable performance with the state-of-the-art place recognition methods in scenes of slight viewpoint changes. For more robust place recognition, we design a rotation-invariant network called BEVPlace. We use group convolution to extract rotation-equivariant local features from the images and NetVLAD for global feature aggregation. In addition, we observe that the distance between BEV features is correlated with the geometry distance of point clouds. Based on the observation, we develop a method to estimate the position of the query cloud, extending the usage of place recognition. The experiments conducted on large-scale public datasets show that our method 1) achieves state-of-the-art performance in terms of recall rates, 2) is robust to view changes, 3) shows strong generalization ability, and 4) can estimate the positions of query point clouds. Source codes are publicly available at https://github.com/zjuluolun/BEVPlace.

  • 7 authors
·
Feb 28, 2023

Mining Fine-Grained Image-Text Alignment for Zero-Shot Captioning via Text-Only Training

Image captioning aims at generating descriptive and meaningful textual descriptions of images, enabling a broad range of vision-language applications. Prior works have demonstrated that harnessing the power of Contrastive Image Language Pre-training (CLIP) offers a promising approach to achieving zero-shot captioning, eliminating the need for expensive caption annotations. However, the widely observed modality gap in the latent space of CLIP harms the performance of zero-shot captioning by breaking the alignment between paired image-text features. To address this issue, we conduct an analysis on the CLIP latent space which leads to two findings. Firstly, we observe that the CLIP's visual feature of image subregions can achieve closer proximity to the paired caption due to the inherent information loss in text descriptions. In addition, we show that the modality gap between a paired image-text can be empirically modeled as a zero-mean Gaussian distribution. Motivated by the findings, we propose a novel zero-shot image captioning framework with text-only training to reduce the modality gap. In particular, we introduce a subregion feature aggregation to leverage local region information, which produces a compact visual representation for matching text representation. Moreover, we incorporate a noise injection and CLIP reranking strategy to boost captioning performance. We also extend our framework to build a zero-shot VQA pipeline, demonstrating its generality. Through extensive experiments on common captioning and VQA datasets such as MSCOCO, Flickr30k and VQAV2, we show that our method achieves remarkable performance improvements. Code is available at https://github.com/Artanic30/MacCap.

  • 3 authors
·
Jan 4, 2024

Tackling Data Heterogeneity in Federated Learning via Loss Decomposition

Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD.

  • 6 authors
·
Aug 22, 2024

DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum

Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively while keeping their datasets local and only exchanging the gradient or model updates with a coordinating server. Existing FL protocols are vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we focus on simultaneously achieving differential privacy (DP) and Byzantine robustness for cross-silo FL, based on the idea of learning from history. The robustness is achieved via client momentum, which averages the updates of each client over time, thus reducing the variance of the honest clients and exposing the small malicious perturbations of Byzantine clients that are undetectable in a single round but accumulate over time. In our initial solution DP-BREM, DP is achieved by adding noise to the aggregated momentum, and we account for the privacy cost from the momentum, which is different from the conventional DP-SGD that accounts for the privacy cost from the gradient. Since DP-BREM assumes a trusted server (who can obtain clients' local models or updates), we further develop the final solution called DP-BREM+, which achieves the same DP and robustness properties as DP-BREM without a trusted server by utilizing secure aggregation techniques, where DP noise is securely and jointly generated by the clients. Both theoretical analysis and experimental results demonstrate that our proposed protocols achieve better privacy-utility tradeoff and stronger Byzantine robustness than several baseline methods, under different DP budgets and attack settings.

  • 3 authors
·
Jun 21, 2023

Weakly Supervised Semantic Segmentation via Progressive Patch Learning

Most of the existing semantic segmentation approaches with image-level class labels as supervision, highly rely on the initial class activation map (CAM) generated from the standard classification network. In this paper, a novel "Progressive Patch Learning" approach is proposed to improve the local details extraction of the classification, producing the CAM better covering the whole object rather than only the most discriminative regions as in CAMs obtained in conventional classification models. "Patch Learning" destructs the feature maps into patches and independently processes each local patch in parallel before the final aggregation. Such a mechanism enforces the network to find weak information from the scattered discriminative local parts, achieving enhanced local details sensitivity. "Progressive Patch Learning" further extends the feature destruction and patch learning to multi-level granularities in a progressive manner. Cooperating with a multi-stage optimization strategy, such a "Progressive Patch Learning" mechanism implicitly provides the model with the feature extraction ability across different locality-granularities. As an alternative to the implicit multi-granularity progressive fusion approach, we additionally propose an explicit method to simultaneously fuse features from different granularities in a single model, further enhancing the CAM quality on the full object coverage. Our proposed method achieves outstanding performance on the PASCAL VOC 2012 dataset e.g., with 69.6$% mIoU on the test set), which surpasses most existing weakly supervised semantic segmentation methods. Code will be made publicly available here https://github.com/TyroneLi/PPL_WSSS.

  • 6 authors
·
Sep 16, 2022

GhostNetV2: Enhance Cheap Operation with Long-Range Attention

Light-weight convolutional neural networks (CNNs) are specially designed for applications on mobile devices with faster inference speed. The convolutional operation can only capture local information in a window region, which prevents performance from being further improved. Introducing self-attention into convolution can capture global information well, but it will largely encumber the actual speed. In this paper, we propose a hardware-friendly attention mechanism (dubbed DFC attention) and then present a new GhostNetV2 architecture for mobile applications. The proposed DFC attention is constructed based on fully-connected layers, which can not only execute fast on common hardware but also capture the dependence between long-range pixels. We further revisit the expressiveness bottleneck in previous GhostNet and propose to enhance expanded features produced by cheap operations with DFC attention, so that a GhostNetV2 block can aggregate local and long-range information simultaneously. Extensive experiments demonstrate the superiority of GhostNetV2 over existing architectures. For example, it achieves 75.3% top-1 accuracy on ImageNet with 167M FLOPs, significantly suppressing GhostNetV1 (74.5%) with a similar computational cost. The source code will be available at https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch and https://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2.

  • 6 authors
·
Nov 23, 2022

TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection

Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.

  • 2 authors
·
Mar 18

FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler

Cross-silo federated learning offers a promising solution to collaboratively train robust and generalized AI models without compromising the privacy of local datasets, e.g., healthcare, financial, as well as scientific projects that lack a centralized data facility. Nonetheless, because of the disparity of computing resources among different clients (i.e., device heterogeneity), synchronous federated learning algorithms suffer from degraded efficiency when waiting for straggler clients. Similarly, asynchronous federated learning algorithms experience degradation in the convergence rate and final model accuracy on non-identically and independently distributed (non-IID) heterogeneous datasets due to stale local models and client drift. To address these limitations in cross-silo federated learning with heterogeneous clients and data, we propose FedCompass, an innovative semi-asynchronous federated learning algorithm with a computing power-aware scheduler on the server side, which adaptively assigns varying amounts of training tasks to different clients using the knowledge of the computing power of individual clients. FedCompass ensures that multiple locally trained models from clients are received almost simultaneously as a group for aggregation, effectively reducing the staleness of local models. At the same time, the overall training process remains asynchronous, eliminating prolonged waiting periods from straggler clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate that FedCompass achieves faster convergence and higher accuracy than other asynchronous algorithms while remaining more efficient than synchronous algorithms when performing federated learning on heterogeneous clients. The source code for FedCompass is available at https://github.com/APPFL/FedCompass.

  • 9 authors
·
Sep 26, 2023

No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

A central challenge in training classification models in the real-world federated system is learning with non-IID data. To cope with this, most of the existing works involve enforcing regularization in local optimization or improving the model aggregation scheme at the server. Other works also share public datasets or synthesized samples to supplement the training of under-represented classes or introduce a certain level of personalization. Though effective, they lack a deep understanding of how the data heterogeneity affects each layer of a deep classification model. In this paper, we bridge this gap by performing an experimental analysis of the representations learned by different layers. Our observations are surprising: (1) there exists a greater bias in the classifier than other layers, and (2) the classification performance can be significantly improved by post-calibrating the classifier after federated training. Motivated by the above findings, we propose a novel and simple algorithm called Classifier Calibration with Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated gaussian mixture model. Experimental results demonstrate that CCVR achieves state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10. We hope that our simple yet effective method can shed some light on the future research of federated learning with non-IID data.

  • 6 authors
·
Jun 9, 2021

LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora

Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.

  • 8 authors
·
Oct 11

SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass

3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.

  • 4 authors
·
Aug 21 2

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.

  • 5 authors
·
Sep 10, 2024 2

TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning

In the field of deep learning, Graph Neural Networks (GNNs) and Graph Transformer models, with their outstanding performance and flexible architectural designs, have become leading technologies for processing structured data, especially graph data. Traditional GNNs often face challenges in capturing information from distant vertices effectively. In contrast, Graph Transformer models are particularly adept at managing long-distance node relationships. Despite these advantages, Graph Transformer models still encounter issues with computational and storage efficiency when scaled to large graph datasets. To address these challenges, we propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component, effectively enhancing the model's ability to aggregate relevant information from both local and extended neighborhoods at each layer. This method not only improves computational efficiency but also enriches the node features, facilitating a deeper analysis of complex graph structures. Additionally, to assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field. Accordingly, we constructed a dedicated citation network, ArXivNet. In this dataset, we specifically annotated the sentiment polarity of the citations (positive, neutral, negative) to enable in-depth sentiment analysis. Our approach has shown superior performance across a variety of tasks including vertex classification, link prediction, sentiment prediction, graph regression, and visualization. It outperforms existing methods in terms of effectiveness, as demonstrated by experimental results on multiple datasets.

  • 4 authors
·
Nov 23, 2024

KnFu: Effective Knowledge Fusion

Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.

  • 4 authors
·
Mar 18, 2024

LGViT: Dynamic Early Exiting for Accelerating Vision Transformer

Recently, the efficient deployment and acceleration of powerful vision transformers (ViTs) on resource-limited edge devices for providing multimedia services have become attractive tasks. Although early exiting is a feasible solution for accelerating inference, most works focus on convolutional neural networks (CNNs) and transformer models in natural language processing (NLP).Moreover, the direct application of early exiting methods to ViTs may result in substantial performance degradation. To tackle this challenge, we systematically investigate the efficacy of early exiting in ViTs and point out that the insufficient feature representations in shallow internal classifiers and the limited ability to capture target semantic information in deep internal classifiers restrict the performance of these methods. We then propose an early exiting framework for general ViTs termed LGViT, which incorporates heterogeneous exiting heads, namely, local perception head and global aggregation head, to achieve an efficiency-accuracy trade-off. In particular, we develop a novel two-stage training scheme, including end-to-end training and self-distillation with the backbone frozen to generate early exiting ViTs, which facilitates the fusion of global and local information extracted by the two types of heads. We conduct extensive experiments using three popular ViT backbones on three vision datasets. Results demonstrate that our LGViT can achieve competitive performance with approximately 1.8 times speed-up.

  • 7 authors
·
Jul 31, 2023

A New Federated Learning Framework Against Gradient Inversion Attacks

Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.

  • 7 authors
·
Dec 9, 2024 2

PFDepth: Heterogeneous Pinhole-Fisheye Joint Depth Estimation via Distortion-aware Gaussian-Splatted Volumetric Fusion

In this paper, we present the first pinhole-fisheye framework for heterogeneous multi-view depth estimation, PFDepth. Our key insight is to exploit the complementary characteristics of pinhole and fisheye imagery (undistorted vs. distorted, small vs. large FOV, far vs. near field) for joint optimization. PFDepth employs a unified architecture capable of processing arbitrary combinations of pinhole and fisheye cameras with varied intrinsics and extrinsics. Within PFDepth, we first explicitly lift 2D features from each heterogeneous view into a canonical 3D volumetric space. Then, a core module termed Heterogeneous Spatial Fusion is designed to process and fuse distortion-aware volumetric features across overlapping and non-overlapping regions. Additionally, we subtly reformulate the conventional voxel fusion into a novel 3D Gaussian representation, in which learnable latent Gaussian spheres dynamically adapt to local image textures for finer 3D aggregation. Finally, fused volume features are rendered into multi-view depth maps. Through extensive experiments, we demonstrate that PFDepth sets a state-of-the-art performance on KITTI-360 and RealHet datasets over current mainstream depth networks. To the best of our knowledge, this is the first systematic study of heterogeneous pinhole-fisheye depth estimation, offering both technical novelty and valuable empirical insights.

  • 8 authors
·
Sep 30

Personalized Subgraph Federated Learning

Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at https://github.com/JinheonBaek/FED-PUB.

  • 5 authors
·
Jun 21, 2022

HRVMamba: High-Resolution Visual State Space Model for Dense Prediction

Recently, State Space Models (SSMs) with efficient hardware-aware designs, i.e., Mamba, have demonstrated significant potential in computer vision tasks due to their linear computational complexity with respect to token length and their global receptive field. However, Mamba's performance on dense prediction tasks, including human pose estimation and semantic segmentation, has been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation. To address these challenges, we introduce the Dynamic Visual State Space (DVSS) block, which utilizes multi-scale convolutional kernels to extract local features across different scales and enhance inductive bias, and employs deformable convolution to mitigate the long-range forgetting problem while enabling adaptive spatial aggregation based on input and task-specific information. By leveraging the multi-resolution parallel design proposed in HRNet, we introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process while promoting effective multi-scale feature learning. Extensive experiments highlight HRVMamba's impressive performance on dense prediction tasks, achieving competitive results against existing benchmark models without bells and whistles. Code is available at https://github.com/zhanghao5201/HRVMamba.

  • 6 authors
·
Oct 4, 2024

Primal-Dual Mesh Convolutional Neural Networks

Recent works in geometric deep learning have introduced neural networks that allow performing inference tasks on three-dimensional geometric data by defining convolution, and sometimes pooling, operations on triangle meshes. These methods, however, either consider the input mesh as a graph, and do not exploit specific geometric properties of meshes for feature aggregation and downsampling, or are specialized for meshes, but rely on a rigid definition of convolution that does not properly capture the local topology of the mesh. We propose a method that combines the advantages of both types of approaches, while addressing their limitations: we extend a primal-dual framework drawn from the graph-neural-network literature to triangle meshes, and define convolutions on two types of graphs constructed from an input mesh. Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them using an attention mechanism. At the same time, we introduce a pooling operation with a precise geometric interpretation, that allows handling variations in the mesh connectivity by clustering mesh faces in a task-driven fashion. We provide theoretical insights of our approach using tools from the mesh-simplification literature. In addition, we validate experimentally our method in the tasks of shape classification and shape segmentation, where we obtain comparable or superior performance to the state of the art.

  • 5 authors
·
Oct 23, 2020

GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models

Current studies on adversarial robustness mainly focus on aggregating local robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true global robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called GREAT Score , for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench (Croce,et. al. 2021). (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness evaluation and the quality of GANs. (3) GREAT Score can be used for remote auditing of privacy-sensitive black-box models, as demonstrated by our robustness evaluation on several online facial recognition services.

  • 3 authors
·
Apr 19, 2023

Towards Instance-adaptive Inference for Federated Learning

Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training. However, the performance of the global model is often hampered by non-i.i.d. distribution among the clients, requiring extensive efforts to mitigate inter-client data heterogeneity. Going beyond inter-client data heterogeneity, we note that intra-client heterogeneity can also be observed on complex real-world data and seriously deteriorate FL performance. In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework. Instead of huge instance-adaptive models, we resort to a parameter-efficient fine-tuning method, i.e., scale and shift deep features (SSF), upon a pre-trained model. Specifically, we first train an SSF pool for each client, and aggregate these SSF pools on the server side, thus still maintaining a low communication cost. To enable instance-adaptive inference, for a given instance, we dynamically find the best-matched SSF subsets from the pool and aggregate them to generate an adaptive SSF specified for the instance, thereby reducing the intra-client as well as the inter-client heterogeneity. Extensive experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64\% improvement against the top-performing method with less than 15\% communication cost on Tiny-ImageNet. Our code and models will be publicly released.

  • 6 authors
·
Aug 11, 2023