new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Spike-driven Transformer V2: Meta Spiking Neural Network Architecture Inspiring the Design of Next-generation Neuromorphic Chips

Neuromorphic computing, which exploits Spiking Neural Networks (SNNs) on neuromorphic chips, is a promising energy-efficient alternative to traditional AI. CNN-based SNNs are the current mainstream of neuromorphic computing. By contrast, no neuromorphic chips are designed especially for Transformer-based SNNs, which have just emerged, and their performance is only on par with CNN-based SNNs, offering no distinct advantage. In this work, we propose a general Transformer-based SNN architecture, termed as ``Meta-SpikeFormer", whose goals are: 1) Lower-power, supports the spike-driven paradigm that there is only sparse addition in the network; 2) Versatility, handles various vision tasks; 3) High-performance, shows overwhelming performance advantages over CNN-based SNNs; 4) Meta-architecture, provides inspiration for future next-generation Transformer-based neuromorphic chip designs. Specifically, we extend the Spike-driven Transformer in yao2023spike into a meta architecture, and explore the impact of structure, spike-driven self-attention, and skip connection on its performance. On ImageNet-1K, Meta-SpikeFormer achieves 80.0\% top-1 accuracy (55M), surpassing the current state-of-the-art (SOTA) SNN baselines (66M) by 3.7\%. This is the first direct training SNN backbone that can simultaneously supports classification, detection, and segmentation, obtaining SOTA results in SNNs. Finally, we discuss the inspiration of the meta SNN architecture for neuromorphic chip design. Source code and models are available at https://github.com/BICLab/Spike-Driven-Transformer-V2.

  • 8 authors
·
Feb 15, 2024

Efficient 3D Recognition with Event-driven Spike Sparse Convolution

Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. Point clouds are sparse 3D spatial data, which suggests that SNNs should be well-suited for processing them. However, when applying SNNs to point clouds, they often exhibit limited performance and fewer application scenarios. We attribute this to inappropriate preprocessing and feature extraction methods. To address this issue, we first introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space, reducing the storage requirements and saving time on point cloud preprocessing. Then, we propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features. Combining SVC and SSC, we design an efficient 3D SNN backbone (E-3DSNN), which is friendly with neuromorphic hardware. For instance, SSC can be implemented on neuromorphic chips with only minor modifications to the addressing function of vanilla spike convolution. Experiments on ModelNet40, KITTI, and Semantic KITTI datasets demonstrate that E-3DSNN achieves state-of-the-art (SOTA) results with remarkable efficiency. Notably, our E-3DSNN (1.87M) obtained 91.7\% top-1 accuracy on ModelNet40, surpassing the current best SNN baselines (14.3M) by 3.0\%. To our best knowledge, it is the first direct training 3D SNN backbone that can simultaneously handle various 3D computer vision tasks (e.g., classification, detection, and segmentation) with an event-driven nature. Code is available: https://github.com/bollossom/E-3DSNN/.

  • 8 authors
·
Dec 10, 2024

Dilated Convolution with Learnable Spacings

This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method. Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques. The research is organized into several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. DCLS is shown to be particularly effective in tasks such as classification, semantic segmentation, and object detection. Initially using bilinear interpolation, the study also explores other interpolation methods, finding that Gaussian interpolation slightly improves performance. The DCLS method is further applied to spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results.

  • 1 authors
·
Aug 10, 2024

Learning heterogeneous delays in a layer of spiking neurons for fast motion detection

The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.

  • 2 authors
·
Jul 26, 2023

Natively neuromorphic LMU architecture for encoding-free SNN-based HAR on commercial edge devices

Neuromorphic models take inspiration from the human brain by adopting bio-plausible neuron models to build alternatives to traditional Machine Learning (ML) and Deep Learning (DL) solutions. The scarce availability of dedicated hardware able to actualize the emulation of brain-inspired computation, which is otherwise only simulated, yet still hinders the wide adoption of neuromorphic computing for edge devices and embedded systems. With this premise, we adopt the perspective of neuromorphic computing for conventional hardware and we present the L2MU, a natively neuromorphic Legendre Memory Unit (LMU) which entirely relies on Leaky Integrate-and-Fire (LIF) neurons. Specifically, the original recurrent architecture of LMU has been redesigned by modelling every constituent element with neural populations made of LIF or Current-Based (CuBa) LIF neurons. To couple neuromorphic computing and off-the-shelf edge devices, we equipped the L2MU with an input module for the conversion of real values into spikes, which makes it an encoding-free implementation of a Recurrent Spiking Neural Network (RSNN) able to directly work with raw sensor signals on non-dedicated hardware. As a use case to validate our network, we selected the task of Human Activity Recognition (HAR). We benchmarked our L2MU on smartwatch signals from hand-oriented activities, deploying it on three different commercial edge devices in compressed versions too. The reported results remark the possibility of considering neuromorphic models not only in an exclusive relationship with dedicated hardware but also as a suitable choice to work with common sensors and devices.

  • 5 authors
·
Jul 4, 2024

Resistive memory-based zero-shot liquid state machine for multimodal event data learning

The human brain is a complex spiking neural network (SNN) that learns multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, the brain achieves this with minimal power consumption, using event-based signals that propagate within its structure. However, mimicking the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and the von Neumann bottleneck, hinder the efficiency of digital computers. On the software side, SNNs are known for their difficult training, especially when learning multimodal signals. To overcome these challenges, we propose a hardware-software co-design that combines a fixed and random liquid state machine (LSM) SNN encoder with trainable artificial neural network (ANN) projections. The LSM is physically implemented using analogue resistive memory, leveraging the inherent stochasticity of resistive switching to generate random weights. This highly efficient and nanoscale in-memory computing approach effectively addresses the von Neumann bottleneck and the slowdown of Moore's law. The ANN projections are implemented digitally, allowing for easy optimization using contrastive loss, which helps to overcome the difficulties associated with SNN training. We experimentally implement this co-design on a 40nm 256Kb in-memory computing macro. We first demonstrate LSM-based event encoding through supervised classification and linear probing on the N-MNIST and N-TIDIGITS datasets.

  • 19 authors
·
Jul 3, 2023

Language Modeling on a SpiNNaker 2 Neuromorphic Chip

As large language models continue to scale in size rapidly, so too does the computational power required to run them. Event-based networks on neuromorphic devices offer a potential way to reduce energy consumption for inference significantly. However, to date, most event-based networks that can run on neuromorphic hardware, including spiking neural networks (SNNs), have not achieved task performance even on par with LSTM models for language modeling. As a result, language modeling on neuromorphic devices has seemed a distant prospect. In this work, we demonstrate the first-ever implementation of a language model on a neuromorphic device - specifically the SpiNNaker 2 chip - based on a recently published event-based architecture called the EGRU. SpiNNaker 2 is a many-core neuromorphic chip designed for large-scale asynchronous processing, while the EGRU is architected to leverage such hardware efficiently while maintaining competitive task performance. This implementation marks the first time a neuromorphic language model matches LSTMs, setting the stage for taking task performance to the level of large language models. We also demonstrate results on a gesture recognition task based on inputs from a DVS camera. Overall, our results showcase the feasibility of this neuro-inspired neural network in hardware, highlighting significant gains versus conventional hardware in energy efficiency for the common use case of single batch inference.

  • 7 authors
·
Dec 14, 2023

Deep Neuromorphic Networks with Superconducting Single Flux Quanta

Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.

  • 4 authors
·
Sep 21, 2023

Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory

The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.

  • 5 authors
·
Oct 9, 2023

Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks

Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.

  • 5 authors
·
Feb 19, 2024

Unlocking the potential of two-point cells for energy-efficient and resilient training of deep nets

Context-sensitive two-point layer 5 pyramidal cells (L5PCs) were discovered as long ago as 1999. However, the potential of this discovery to provide useful neural computation has yet to be demonstrated. Here we show for the first time how a transformative L5PCs-driven deep neural network (DNN), termed the multisensory cooperative computing (MCC) architecture, can effectively process large amounts of heterogeneous real-world audio-visual (AV) data, using far less energy compared to best available 'point' neuron-driven DNNs. A novel highly-distributed parallel implementation on a Xilinx UltraScale+ MPSoC device estimates energy savings up to 245759 times 50000 muJ (i.e., 62% less than the baseline model in a semi-supervised learning setup) where a single synapse consumes 8e^{-5}muJ. In a supervised learning setup, the energy-saving can potentially reach up to 1250x less (per feedforward transmission) than the baseline model. The significantly reduced neural activity in MCC leads to inherently fast learning and resilience against sudden neural damage. This remarkable performance in pilot experiments demonstrates the embodied neuromorphic intelligence of our proposed cooperative L5PC that receives input from diverse neighbouring neurons as context to amplify the transmission of most salient and relevant information for onward transmission, from overwhelmingly large multimodal information utilised at the early stages of on-chip training. Our proposed approach opens new cross-disciplinary avenues for future on-chip DNN training implementations and posits a radical shift in current neuromorphic computing paradigms.

  • 6 authors
·
Oct 24, 2022

Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity

The liquid state machine (LSM) combines low training complexity and biological plausibility, which has made it an attractive machine learning framework for edge and neuromorphic computing paradigms. Originally proposed as a model of brain computation, the LSM tunes its internal weights without backpropagation of gradients, which results in lower performance compared to multi-layer neural networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning brain networks to the vicinity of the computationally optimal critical phase transition between order and chaos. Inspired by this disruptive understanding of how brain networks self-tune, we propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics. Similar to its biological counterpart, the astrocyte model integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity (STDP), which self-organizes NALSM dynamics around a critical branching factor that is associated with the edge-of-chaos. We demonstrate that NALSM achieves state-of-the-art accuracy versus comparable LSM methods, without the need for data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51% on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable performance to current fully-connected multi-layer spiking neural networks trained via backpropagation. Our findings suggest that the further development of brain-inspired machine learning methods has the potential to reach the performance of deep learning, with the added benefits of supporting robust and energy-efficient neuromorphic computing on the edge.

  • 2 authors
·
Oct 26, 2021

Event-based Feature Extraction Using Adaptive Selection Thresholds

Unsupervised feature extraction algorithms form one of the most important building blocks in machine learning systems. These algorithms are often adapted to the event-based domain to perform online learning in neuromorphic hardware. However, not designed for the purpose, such algorithms typically require significant simplification during implementation to meet hardware constraints, creating trade offs with performance. Furthermore, conventional feature extraction algorithms are not designed to generate useful intermediary signals which are valuable only in the context of neuromorphic hardware limitations. In this work a novel event-based feature extraction method is proposed that focuses on these issues. The algorithm operates via simple adaptive selection thresholds which allow a simpler implementation of network homeostasis than previous works by trading off a small amount of information loss in the form of missed events that fall outside the selection thresholds. The behavior of the selection thresholds and the output of the network as a whole are shown to provide uniquely useful signals indicating network weight convergence without the need to access network weights. A novel heuristic method for network size selection is proposed which makes use of noise events and their feature representations. The use of selection thresholds is shown to produce network activation patterns that predict classification accuracy allowing rapid evaluation and optimization of system parameters without the need to run back-end classifiers. The feature extraction method is tested on both the N-MNIST benchmarking dataset and a dataset of airplanes passing through the field of view. Multiple configurations with different classifiers are tested with the results quantifying the resultant performance gains at each processing stage.

  • 5 authors
·
Jul 17, 2019

Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks

Neural Architecture Search (NAS) has demonstrated its power on various AI accelerating platforms such as Field Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). However, it remains an open problem, how to integrate NAS with Application-Specific Integrated Circuits (ASICs), despite them being the most powerful AI accelerating platforms. The major bottleneck comes from the large design freedom associated with ASIC designs. Moreover, with the consideration that multiple DNNs will run in parallel for different workloads with diverse layer operations and sizes, integrating heterogeneous ASIC sub-accelerators for distinct DNNs in one design can significantly boost performance, and at the same time further complicate the design space. To address these challenges, in this paper we build ASIC template set based on existing successful designs, described by their unique dataflows, so that the design space is significantly reduced. Based on the templates, we further propose a framework, namely NASAIC, which can simultaneously identify multiple DNN architectures and the associated heterogeneous ASIC accelerator design, such that the design specifications (specs) can be satisfied, while the accuracy can be maximized. Experimental results show that compared with successive NAS and ASIC design optimizations which lead to design spec violations, NASAIC can guarantee the results to meet the design specs with 17.77%, 2.49x, and 2.32x reductions on latency, energy, and area and with 0.76% accuracy loss. To the best of the authors' knowledge, this is the first work on neural architecture and ASIC accelerator design co-exploration.

  • 9 authors
·
Feb 10, 2020

Towards Memory- and Time-Efficient Backpropagation for Training Spiking Neural Networks

Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing. For training the non-differentiable SNN models, the backpropagation through time (BPTT) with surrogate gradients (SG) method has achieved high performance. However, this method suffers from considerable memory cost and training time during training. In this paper, we propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency compared with BPTT. First, we show that the backpropagation of SNNs through the temporal domain contributes just a little to the final calculated gradients. Thus, we propose to ignore the unimportant routes in the computational graph during backpropagation. The proposed method reduces the number of scalar multiplications and achieves a small memory occupation that is independent of the total time steps. Furthermore, we propose a variant of SLTT, called SLTT-K, that allows backpropagation only at K time steps, then the required number of scalar multiplications is further reduced and is independent of the total time steps. Experiments on both static and neuromorphic datasets demonstrate superior training efficiency and performance of our SLTT. In particular, our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.

  • 6 authors
·
Feb 28, 2023

Intelligent Sensing-to-Action for Robust Autonomy at the Edge: Opportunities and Challenges

Autonomous edge computing in robotics, smart cities, and autonomous vehicles relies on the seamless integration of sensing, processing, and actuation for real-time decision-making in dynamic environments. At its core is the sensing-to-action loop, which iteratively aligns sensor inputs with computational models to drive adaptive control strategies. These loops can adapt to hyper-local conditions, enhancing resource efficiency and responsiveness, but also face challenges such as resource constraints, synchronization delays in multi-modal data fusion, and the risk of cascading errors in feedback loops. This article explores how proactive, context-aware sensing-to-action and action-to-sensing adaptations can enhance efficiency by dynamically adjusting sensing and computation based on task demands, such as sensing a very limited part of the environment and predicting the rest. By guiding sensing through control actions, action-to-sensing pathways can improve task relevance and resource use, but they also require robust monitoring to prevent cascading errors and maintain reliability. Multi-agent sensing-action loops further extend these capabilities through coordinated sensing and actions across distributed agents, optimizing resource use via collaboration. Additionally, neuromorphic computing, inspired by biological systems, provides an efficient framework for spike-based, event-driven processing that conserves energy, reduces latency, and supports hierarchical control--making it ideal for multi-agent optimization. This article highlights the importance of end-to-end co-design strategies that align algorithmic models with hardware and environmental dynamics and improve cross-layer interdependencies to improve throughput, precision, and adaptability for energy-efficient edge autonomy in complex environments.

Kernel Heterogeneity Improves Sparseness of Natural Images Representations

Both biological and artificial neural networks inherently balance their performance with their operational cost, which balances their computational abilities. Typically, an efficient neuromorphic neural network is one that learns representations that reduce the redundancies and dimensionality of its input. This is for instance achieved in sparse coding, and sparse representations derived from natural images yield representations that are heterogeneous, both in their sampling of input features and in the variance of those features. Here, we investigated the connection between natural images' structure, particularly oriented features, and their corresponding sparse codes. We showed that representations of input features scattered across multiple levels of variance substantially improve the sparseness and resilience of sparse codes, at the cost of reconstruction performance. This echoes the structure of the model's input, allowing to account for the heterogeneously aleatoric structures of natural images. We demonstrate that learning kernel from natural images produces heterogeneity by balancing between approximate and dense representations, which improves all reconstruction metrics. Using a parametrized control of the kernels' heterogeneity used by a convolutional sparse coding algorithm, we show that heterogeneity emphasizes sparseness, while homogeneity improves representation granularity. In a broader context, these encoding strategy can serve as inputs to deep convolutional neural networks. We prove that such variance-encoded sparse image datasets enhance computational efficiency, emphasizing the benefits of kernel heterogeneity to leverage naturalistic and variant input structures and possible applications to improve the throughput of neuromorphic hardware.

  • 3 authors
·
Dec 22, 2023

Neuromorphic Camera Denoising using Graph Neural Network-driven Transformers

Neuromorphic vision is a bio-inspired technology that has triggered a paradigm shift in the computer-vision community and is serving as a key-enabler for a multitude of applications. This technology has offered significant advantages including reduced power consumption, reduced processing needs, and communication speed-ups. However, neuromorphic cameras suffer from significant amounts of measurement noise. This noise deteriorates the performance of neuromorphic event-based perception and navigation algorithms. In this paper, we propose a novel noise filtration algorithm to eliminate events which do not represent real log-intensity variations in the observed scene. We employ a Graph Neural Network (GNN)-driven transformer algorithm, called GNN-Transformer, to classify every active event pixel in the raw stream into real-log intensity variation or noise. Within the GNN, a message-passing framework, called EventConv, is carried out to reflect the spatiotemporal correlation among the events, while preserving their asynchronous nature. We also introduce the Known-object Ground-Truth Labeling (KoGTL) approach for generating approximate ground truth labels of event streams under various illumination conditions. KoGTL is used to generate labeled datasets, from experiments recorded in chalenging lighting conditions. These datasets are used to train and extensively test our proposed algorithm. When tested on unseen datasets, the proposed algorithm outperforms existing methods by 8.8% in terms of filtration accuracy. Additional tests are also conducted on publicly available datasets to demonstrate the generalization capabilities of the proposed algorithm in the presence of illumination variations and different motion dynamics. Compared to existing solutions, qualitative results verified the superior capability of the proposed algorithm to eliminate noise while preserving meaningful scene events.

  • 6 authors
·
Dec 17, 2021

Spiking Diffusion Models

Recent years have witnessed Spiking Neural Networks (SNNs) gaining attention for their ultra-low energy consumption and high biological plausibility compared with traditional Artificial Neural Networks (ANNs). Despite their distinguished properties, the application of SNNs in the computationally intensive field of image generation is still under exploration. In this paper, we propose the Spiking Diffusion Models (SDMs), an innovative family of SNN-based generative models that excel in producing high-quality samples with significantly reduced energy consumption. In particular, we propose a Temporal-wise Spiking Mechanism (TSM) that allows SNNs to capture more temporal features from a bio-plasticity perspective. In addition, we propose a threshold-guided strategy that can further improve the performances by up to 16.7% without any additional training. We also make the first attempt to use the ANN-SNN approach for SNN-based generation tasks. Extensive experimental results reveal that our approach not only exhibits comparable performance to its ANN counterpart with few spiking time steps, but also outperforms previous SNN-based generative models by a large margin. Moreover, we also demonstrate the high-quality generation ability of SDM on large-scale datasets, e.g., LSUN bedroom. This development marks a pivotal advancement in the capabilities of SNN-based generation, paving the way for future research avenues to realize low-energy and low-latency generative applications. Our code is available at https://github.com/AndyCao1125/SDM.

  • 7 authors
·
Aug 29, 2024

SpikingBrain Technical Report: Spiking Brain-inspired Large Models

Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models significantly improve long-sequence training efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Training remains stable for weeks on hundreds of MetaX C550 GPUs, with the 7B model reaching a Model FLOPs Utilization of 23.4 percent. The proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.

Rethinking Pretraining as a Bridge from ANNs to SNNs

Spiking neural networks (SNNs) are known as a typical kind of brain-inspired models with their unique features of rich neuronal dynamics, diverse coding schemes and low power consumption properties. How to obtain a high-accuracy model has always been the main challenge in the field of SNN. Currently, there are two mainstream methods, i.e., obtaining a converted SNN through converting a well-trained Artificial Neural Network (ANN) to its SNN counterpart or training an SNN directly. However, the inference time of a converted SNN is too long, while SNN training is generally very costly and inefficient. In this work, a new SNN training paradigm is proposed by combining the concepts of the two different training methods with the help of the pretrain technique and BP-based deep SNN training mechanism. We believe that the proposed paradigm is a more efficient pipeline for training SNNs. The pipeline includes pipeS for static data transfer tasks and pipeD for dynamic data transfer tasks. SOTA results are obtained in a large-scale event-driven dataset ES-ImageNet. For training acceleration, we achieve the same (or higher) best accuracy as similar LIF-SNNs using 1/10 training time on ImageNet-1K and 2/5 training time on ES-ImageNet and also provide a time-accuracy benchmark for a new dataset ES-UCF101. These experimental results reveal the similarity of the functions of parameters between ANNs and SNNs and also demonstrate the various potential applications of this SNN training pipeline.

  • 5 authors
·
Mar 2, 2022

SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks

As the size of large language models continue to scale, so does the computational resources required to run it. Spiking Neural Networks (SNNs) have emerged as an energy-efficient approach to deep learning that leverage sparse and event-driven activations to reduce the computational overhead associated with model inference. While they have become competitive with non-spiking models on many computer vision tasks, SNNs have also proven to be more challenging to train. As a result, their performance lags behind modern deep learning, and we are yet to see the effectiveness of SNNs in language generation. In this paper, inspired by the Receptance Weighted Key Value (RWKV) language model, we successfully implement `SpikeGPT', a generative language model with binary, event-driven spiking activation units. We train the proposed model on two model variants: 45M and 216M parameters. To the best of our knowledge, SpikeGPT is the largest backpropagation-trained SNN model to date, rendering it suitable for both the generation and comprehension of natural language. We achieve this by modifying the transformer block to replace multi-head self attention to reduce quadratic computational complexity O(N^2) to linear complexity O(N) with increasing sequence length. Input tokens are instead streamed in sequentially to our attention mechanism (as with typical SNNs). Our preliminary experiments show that SpikeGPT remains competitive with non-spiking models on tested benchmarks, while maintaining 20x fewer operations when processed on neuromorphic hardware that can leverage sparse, event-driven activations. Our code implementation is available at https://github.com/ridgerchu/SpikeGPT.

  • 4 authors
·
Feb 27, 2023

Hardwired-Neurons Language Processing Units as General-Purpose Cognitive Substrates

The rapid advancement of Large Language Models (LLMs) has established language as a core general-purpose cognitive substrate, driving the demand for specialized Language Processing Units (LPUs) tailored for LLM inference. To overcome the growing energy consumption of LLM inference systems, this paper proposes a Hardwired-Neurons Language Processing Unit (HNLPU), which physically hardwires LLM weight parameters into the computational fabric, achieving several orders of magnitude computational efficiency improvement by extreme specialization. However, a significant challenge still lies in the scale of modern LLMs. An ideal estimation on hardwiring gpt-oss 120 B requires fabricating at least 6 billion dollars of photomask sets, rendering the straightforward solution economically impractical. Addressing this challenge, we propose the novel Metal-Embedding methodology. Instead of embedding weights in a 2D grid of silicon device cells, Metal-Embedding embeds weight parameters into the 3D topology of metal wires. This brings two benefits: (1) a 15x increase in density, and (2) 60 out of 70 layers of photomasks are made homogeneous across chips, including all EUV photomasks. In total, Metal-Embedding reduced the photomask cost by 112x, bringing the Non-Recurring Engineering (NRE) cost of HNLPU into an economically viable range. Experimental results show that HNLPU achieved 249,960 tokens/s (5,555x/85x of GPU/WSE), 36 tokens/J (1,047x/283x of GPU/WSE), 13,232 mm2 total die area (29% inscribed rectangular area in a 300 mm wafer), \$184M estimated NRE at 5 nm technology. Analysis shows that HNLPU achieved 8.57x cost-effectiveness and 230x carbon footprint reduction compared to H100 clusters, under an annual weight updating assumption.

  • 27 authors
·
Aug 22

Neural Brain: A Neuroscience-inspired Framework for Embodied Agents

The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.

Modeling Performance of Data Collection Systems for High-Energy Physics

Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.

  • 3 authors
·
Jun 27, 2024

DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition

Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.

  • 9 authors
·
Jul 6, 2024

Efficient Nonlinear Function Approximation in Analog Resistive Crossbars for Recurrent Neural Networks

Analog In-memory Computing (IMC) has demonstrated energy-efficient and low latency implementation of convolution and fully-connected layers in deep neural networks (DNN) by using physics for computing in parallel resistive memory arrays. However, recurrent neural networks (RNN) that are widely used for speech-recognition and natural language processing have tasted limited success with this approach. This can be attributed to the significant time and energy penalties incurred in implementing nonlinear activation functions that are abundant in such models. In this work, we experimentally demonstrate the implementation of a non-linear activation function integrated with a ramp analog-to-digital conversion (ADC) at the periphery of the memory to improve in-memory implementation of RNNs. Our approach uses an extra column of memristors to produce an appropriately pre-distorted ramp voltage such that the comparator output directly approximates the desired nonlinear function. We experimentally demonstrate programming different nonlinear functions using a memristive array and simulate its incorporation in RNNs to solve keyword spotting and language modelling tasks. Compared to other approaches, we demonstrate manifold increase in area-efficiency, energy-efficiency and throughput due to the in-memory, programmable ramp generator that removes digital processing overhead.

  • 12 authors
·
Nov 27, 2024

AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies

The massive and large-scale design of foundational semiconductor integrated circuits (ICs) is crucial to sustaining the advancement of many emerging and future technologies, such as generative AI, 5G/6G, and quantum computing. Excitingly, recent studies have shown the great capabilities of foundational models in expediting the design of digital ICs. Yet, applying generative AI techniques to accelerate the design of analog ICs remains a significant challenge due to critical domain-specific issues, such as the lack of a comprehensive dataset and effective representation methods for analog circuits. This paper proposes, AnalogGenie, a textbf{Gen}erattextbf{i}ve textbf{e}ngine for automatic design/discovery of textbf{Analog} circuit topologies--the most challenging and creative task in the conventional manual design flow of analog ICs. AnalogGenie addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits. Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts. Our work paves the way to transform the longstanding time-consuming manual design flow of analog ICs to an automatic and massive manner powered by generative AI. Our source code is available at https://github.com/xz-group/AnalogGenie.

  • 4 authors
·
Feb 28

PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals

Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.

  • 6 authors
·
Sep 2, 2022

Spikformer V2: Join the High Accuracy Club on ImageNet with an SNN Ticket

Spiking Neural Networks (SNNs), known for their biologically plausible architecture, face the challenge of limited performance. The self-attention mechanism, which is the cornerstone of the high-performance Transformer and also a biologically inspired structure, is absent in existing SNNs. To this end, we explore the potential of leveraging both self-attention capability and biological properties of SNNs, and propose a novel Spiking Self-Attention (SSA) and Spiking Transformer (Spikformer). The SSA mechanism eliminates the need for softmax and captures the sparse visual feature employing spike-based Query, Key, and Value. This sparse computation without multiplication makes SSA efficient and energy-saving. Further, we develop a Spiking Convolutional Stem (SCS) with supplementary convolutional layers to enhance the architecture of Spikformer. The Spikformer enhanced with the SCS is referred to as Spikformer V2. To train larger and deeper Spikformer V2, we introduce a pioneering exploration of Self-Supervised Learning (SSL) within the SNN. Specifically, we pre-train Spikformer V2 with masking and reconstruction style inspired by the mainstream self-supervised Transformer, and then finetune the Spikformer V2 on the image classification on ImageNet. Extensive experiments show that Spikformer V2 outperforms other previous surrogate training and ANN2SNN methods. An 8-layer Spikformer V2 achieves an accuracy of 80.38% using 4 time steps, and after SSL, a 172M 16-layer Spikformer V2 reaches an accuracy of 81.10% with just 1 time step. To the best of our knowledge, this is the first time that the SNN achieves 80+% accuracy on ImageNet. The code will be available at Spikformer V2.

  • 8 authors
·
Jan 3, 2024

Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data

State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis. Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive spatiotemporal generation problem. Neuroformer is a multimodal, multitask generative pretrained transformer (GPT) model that is specifically designed to handle the intricacies of data in systems neuroscience. It scales linearly with feature size, can process an arbitrary number of modalities, and is adaptable to downstream tasks, such as predicting behavior. We first trained Neuroformer on simulated datasets, and found that it both accurately predicted simulated neuronal circuit activity, and also intrinsically inferred the underlying neural circuit connectivity, including direction. When pretrained to decode neural responses, the model predicted the behavior of a mouse with only few-shot fine-tuning, suggesting that the model begins learning how to do so directly from the neural representations themselves, without any explicit supervision. We used an ablation study to show that joint training on neuronal responses and behavior boosted performance, highlighting the model's ability to associate behavioral and neural representations in an unsupervised manner. These findings show that Neuroformer can analyze neural datasets and their emergent properties, informing the development of models and hypotheses associated with the brain.

  • 5 authors
·
Oct 31, 2023

Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures

Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.

  • 1 authors
·
Feb 8, 2024 1

STEP: A Unified Spiking Transformer Evaluation Platform for Fair and Reproducible Benchmarking

Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce STEP, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP

  • 8 authors
·
May 16

Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers

Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.

  • 4 authors
·
Nov 10, 2020

Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings

Spiking Neural Networks (SNNs) are a promising research direction for building power-efficient information processing systems, especially for temporal tasks such as speech recognition. In SNNs, delays refer to the time needed for one spike to travel from one neuron to another. These delays matter because they influence the spike arrival times, and it is well-known that spiking neurons respond more strongly to coincident input spikes. More formally, it has been shown theoretically that plastic delays greatly increase the expressivity in SNNs. Yet, efficient algorithms to learn these delays have been lacking. Here, we propose a new discrete-time algorithm that addresses this issue in deep feedforward SNNs using backpropagation, in an offline manner. To simulate delays between consecutive layers, we use 1D convolutions across time. The kernels contain only a few non-zero weights - one per synapse - whose positions correspond to the delays. These positions are learned together with the weights using the recently proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC) and its non-spiking version Google Speech Commands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We used feedforward SNNs with two or three hidden fully connected layers, and vanilla leaky integrate-and-fire neurons. We showed that fixed random delays help and that learning them helps even more. Furthermore, our method outperformed the state-of-the-art in the three datasets without using recurrent connections and with substantially fewer parameters. Our work demonstrates the potential of delay learning in developing accurate and precise models for temporal data processing. Our code is based on PyTorch / SpikingJelly and available at: https://github.com/Thvnvtos/SNN-delays

  • 3 authors
·
Jun 30, 2023

Quantized Spike-driven Transformer

Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage.For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0times and 8.1times in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.

  • 10 authors
·
Jan 23

Training for temporal sparsity in deep neural networks, application in video processing

Activation sparsity improves compute efficiency and resource utilization in sparsity-aware neural network accelerators. As the predominant operation in DNNs is multiply-accumulate (MAC) of activations with weights to compute inner products, skipping operations where (at least) one of the two operands is zero can make inference more efficient in terms of latency and power. Spatial sparsification of activations is a popular topic in DNN literature and several methods have already been established to bias a DNN for it. On the other hand, temporal sparsity is an inherent feature of bio-inspired spiking neural networks (SNNs), which neuromorphic processing exploits for hardware efficiency. Introducing and exploiting spatio-temporal sparsity, is a topic much less explored in DNN literature, but in perfect resonance with the trend in DNN, to shift from static signal processing to more streaming signal processing. Towards this goal, in this paper we introduce a new DNN layer (called Delta Activation Layer), whose sole purpose is to promote temporal sparsity of activations during training. A Delta Activation Layer casts temporal sparsity into spatial activation sparsity to be exploited when performing sparse tensor multiplications in hardware. By employing delta inference and ``the usual'' spatial sparsification heuristics during training, the resulting model learns to exploit not only spatial but also temporal activation sparsity (for a given input data distribution). One may use the Delta Activation Layer either during vanilla training or during a refinement phase. We have implemented Delta Activation Layer as an extension of the standard Tensoflow-Keras library, and applied it to train deep neural networks on the Human Action Recognition (UCF101) dataset. We report an almost 3x improvement of activation sparsity, with recoverable loss of model accuracy after longer training.

  • 2 authors
·
Jul 15, 2021

wa-hls4ml: A Benchmark and Surrogate Models for hls4ml Resource and Latency Estimation

As machine learning (ML) is increasingly implemented in hardware to address real-time challenges in scientific applications, the development of advanced toolchains has significantly reduced the time required to iterate on various designs. These advancements have solved major obstacles, but also exposed new challenges. For example, processes that were not previously considered bottlenecks, such as hardware synthesis, are becoming limiting factors in the rapid iteration of designs. To mitigate these emerging constraints, multiple efforts have been undertaken to develop an ML-based surrogate model that estimates resource usage of ML accelerator architectures. We introduce wa-hls4ml, a benchmark for ML accelerator resource and latency estimation, and its corresponding initial dataset of over 680,000 fully connected and convolutional neural networks, all synthesized using hls4ml and targeting Xilinx FPGAs. The benchmark evaluates the performance of resource and latency predictors against several common ML model architectures, primarily originating from scientific domains, as exemplar models, and the average performance across a subset of the dataset. Additionally, we introduce GNN- and transformer-based surrogate models that predict latency and resources for ML accelerators. We present the architecture and performance of the models and find that the models generally predict latency and resources for the 75% percentile within several percent of the synthesized resources on the synthetic test dataset.

  • 16 authors
·
Nov 6

Spiking Neural Networks Need High Frequency Information

Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06\% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.

  • 8 authors
·
May 24

Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence

This paper presents a new methodology to alleviate the fundamental trade-off between accuracy and latency in spiking neural networks (SNNs). The approach involves decoding confidence information over time from the SNN outputs and using it to develop a decision-making agent that can dynamically determine when to terminate each inference. The proposed method, Dynamic Confidence, provides several significant benefits to SNNs. 1. It can effectively optimize latency dynamically at runtime, setting it apart from many existing low-latency SNN algorithms. Our experiments on CIFAR-10 and ImageNet datasets have demonstrated an average 40% speedup across eight different settings after applying Dynamic Confidence. 2. The decision-making agent in Dynamic Confidence is straightforward to construct and highly robust in parameter space, making it extremely easy to implement. 3. The proposed method enables visualizing the potential of any given SNN, which sets a target for current SNNs to approach. For instance, if an SNN can terminate at the most appropriate time point for each input sample, a ResNet-50 SNN can achieve an accuracy as high as 82.47% on ImageNet within just 4.71 time steps on average. Unlocking the potential of SNNs needs a highly-reliable decision-making agent to be constructed and fed with a high-quality estimation of ground truth. In this regard, Dynamic Confidence represents a meaningful step toward realizing the potential of SNNs.

  • 3 authors
·
Mar 17, 2023

A Survey of Techniques for Optimizing Transformer Inference

Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.

  • 5 authors
·
Jul 16, 2023

The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks

Biological cortical neurons are remarkably sophisticated computational devices, temporally integrating their vast synaptic input over an intricate dendritic tree, subject to complex, nonlinearly interacting internal biological processes. A recent study proposed to characterize this complexity by fitting accurate surrogate models to replicate the input-output relationship of a detailed biophysical cortical pyramidal neuron model and discovered it needed temporal convolutional networks (TCN) with millions of parameters. Requiring these many parameters, however, could stem from a misalignment between the inductive biases of the TCN and cortical neuron's computations. In light of this, and to explore the computational implications of leaky memory units and nonlinear dendritic processing, we introduce the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron. Remarkably, by exploiting such slowly decaying memory-like hidden states and two-layered nonlinear integration of synaptic input, our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters. To further assess the computational ramifications of our neuron design, we evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets, as well as a novel neuromorphic dataset based on the Spiking Heidelberg Digits dataset (SHD-Adding). Leveraging a larger number of memory units with sufficiently long timescales, and correspondingly sophisticated synaptic integration, the ELM neuron displays substantial long-range processing capabilities, reliably outperforming the classic Transformer or Chrono-LSTM architectures on LRA, and even solving the Pathfinder-X task with over 70% accuracy (16k context length).

  • 5 authors
·
Jun 14, 2023

Ensembles of Compact, Region-specific & Regularized Spiking Neural Networks for Scalable Place Recognition

Spiking neural networks have significant potential utility in robotics due to their high energy efficiency on specialized hardware, but proof-of-concept implementations have not yet typically achieved competitive performance or capability with conventional approaches. In this paper, we tackle one of the key practical challenges of scalability by introducing a novel modular ensemble network approach, where compact, localized spiking networks each learn and are solely responsible for recognizing places in a local region of the environment only. This modular approach creates a highly scalable system. However, it comes with a high-performance cost where a lack of global regularization at deployment time leads to hyperactive neurons that erroneously respond to places outside their learned region. Our second contribution introduces a regularization approach that detects and removes these problematic hyperactive neurons during the initial environmental learning phase. We evaluate this new scalable modular system on benchmark localization datasets Nordland and Oxford RobotCar, with comparisons to standard techniques NetVLAD, DenseVLAD, and SAD, and a previous spiking neural network system. Our system substantially outperforms the previous SNN system on its small dataset, but also maintains performance on 27 times larger benchmark datasets where the operation of the previous system is computationally infeasible, and performs competitively with the conventional localization systems.

  • 3 authors
·
Sep 18, 2022

Combined Scheduling, Memory Allocation and Tensor Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators

Specialized hardware accelerators have been extensively used for Deep Neural Networks (DNNs) to provide power/performance benefits. These accelerators contain specialized hardware that supports DNN operators, and scratchpad memory for storing the tensor operands. Often, the size of the scratchpad is insufficient to store all the tensors needed for the computation, and additional data accesses are needed to move tensors back and forth from host memory during the computation with significant power/performance overhead. The volume of these additional data accesses depends on the operator schedule, and memory allocation (specific locations selected for the tensors in the scratchpad). We propose an optimization framework, named COSMA, for mapping DNNs to an accelerator that finds the optimal operator schedule, memory allocation and tensor replacement that minimizes the additional data accesses. COSMA provides an Integer Linear Programming (ILP) formulation to generate the optimal solution for mapping a DNN to the accelerator for a given scratchpad size. We demonstrate that, using an off-the-shelf ILP solver, COSMA obtains the optimal solution in seconds for a wide-range of state-of-the-art DNNs for different applications. Further, it out-performs existing methods by reducing on average 84% of the non-compulsory data accesses. We further propose a divide-and-conquer heuristic to scale up to certain complex DNNs generated by Neural Architecture Search, and this heuristic solution reduces on average 85% data accesses compared with other works.

  • 3 authors
·
Nov 29, 2023

Hopfield Networks is All You Need

We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug design datasets. The implementation is available at: https://github.com/ml-jku/hopfield-layers

  • 16 authors
·
Jul 16, 2020

AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene

Compared to frame-based methods, computational neuromorphic imaging using event cameras offers significant advantages, such as minimal motion blur, enhanced temporal resolution, and high dynamic range. The multi-view consistency of Neural Radiance Fields combined with the unique benefits of event cameras, has spurred recent research into reconstructing NeRF from data captured by moving event cameras. While showing impressive performance, existing methods rely on ideal conditions with the availability of uniform and high-quality event sequences and accurate camera poses, and mainly focus on the object level reconstruction, thus limiting their practical applications. In this work, we propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions, including non-uniform event sequences, noisy poses, and various scales of scenes. Our method exploits the density of event streams and jointly learn a pose correction module with an event-based NeRF (e-NeRF) framework for robust 3D reconstruction from inaccurate camera poses. To generalize to larger scenes, we propose hierarchical event distillation with a proposal e-NeRF network and a vanilla e-NeRF network to resample and refine the reconstruction process. We further propose an event reconstruction loss and a temporal loss to improve the view consistency of the reconstructed scene. We established a comprehensive benchmark that includes large-scale scenes to simulate practical non-ideal conditions, incorporating both synthetic and challenging real-world event datasets. The experimental results show that our method achieves a new state-of-the-art in event-based 3D reconstruction.

  • 7 authors
·
Jan 6

Learning Internal Biological Neuron Parameters and Complexity-Based Encoding for Improved Spiking Neural Networks Performance

This study introduces a novel approach by replacing the traditional perceptron neuron model with a biologically inspired probabilistic meta neuron, where the internal neuron parameters are jointly learned, leading to improved classification accuracy of spiking neural networks (SNNs). To validate this innovation, we implement and compare two SNN architectures: one based on standard leaky integrate-and-fire (LIF) neurons and another utilizing the proposed probabilistic meta neuron model. As a second key contribution, we present a new biologically inspired classification framework that uniquely integrates SNNs with Lempel-Ziv complexity (LZC) a measure closely related to entropy rate. By combining the temporal precision and biological plausibility of SNNs with the capacity of LZC to capture structural regularity, the proposed approach enables efficient and interpretable classification of spatiotemporal neural data, an aspect not addressed in existing works. We consider learning algorithms such as backpropagation, spike-timing-dependent plasticity (STDP), and the Tempotron learning rule. To explore neural dynamics, we use Poisson processes to model neuronal spike trains, a well-established method for simulating the stochastic firing behavior of biological neurons. Our results reveal that depending on the training method, the classifier's efficiency can improve by up to 11.00%, highlighting the advantage of learning additional neuron parameters beyond the traditional focus on weighted inputs alone.

  • 3 authors
·
Aug 8

One Timestep is All You Need: Training Spiking Neural Networks with Ultra Low Latency

Spiking Neural Networks (SNNs) are energy efficient alternatives to commonly used deep neural networks (DNNs). Through event-driven information processing, SNNs can reduce the expensive compute requirements of DNNs considerably, while achieving comparable performance. However, high inference latency is a significant hindrance to the edge deployment of deep SNNs. Computation over multiple timesteps not only increases latency as well as overall energy budget due to higher number of operations, but also incurs memory access overhead of fetching membrane potentials, both of which lessen the energy benefits of SNNs. To overcome this bottleneck and leverage the full potential of SNNs, we propose an Iterative Initialization and Retraining method for SNNs (IIR-SNN) to perform single shot inference in the temporal axis. The method starts with an SNN trained with T timesteps (T>1). Then at each stage of latency reduction, the network trained at previous stage with higher timestep is utilized as initialization for subsequent training with lower timestep. This acts as a compression method, as the network is gradually shrunk in the temporal domain. In this paper, we use direct input encoding and choose T=5, since as per literature, it is the minimum required latency to achieve satisfactory performance on ImageNet. The proposed scheme allows us to obtain SNNs with up to unit latency, requiring a single forward pass during inference. We achieve top-1 accuracy of 93.05%, 70.15% and 67.71% on CIFAR-10, CIFAR-100 and ImageNet, respectively using VGG16, with just 1 timestep. In addition, IIR-SNNs perform inference with 5-2500X reduced latency compared to other state-of-the-art SNNs, maintaining comparable or even better accuracy. Furthermore, in comparison with standard DNNs, the proposed IIR-SNNs provide25-33X higher energy efficiency, while being comparable to them in classification performance.

  • 3 authors
·
Oct 1, 2021

Astrocyte-Enabled Advancements in Spiking Neural Networks for Large Language Modeling

Within the complex neuroarchitecture of the brain, astrocytes play crucial roles in development, structure, and metabolism. These cells regulate neural activity through tripartite synapses, directly impacting cognitive processes such as learning and memory. Despite the growing recognition of astrocytes' significance, traditional Spiking Neural Network (SNN) models remain predominantly neuron-centric, overlooking the profound influence of astrocytes on neural dynamics. Inspired by these biological insights, we have developed an Astrocyte-Modulated Spiking Unit (AM-SU), an innovative framework that integrates neuron-astrocyte interactions into the computational paradigm, demonstrating wide applicability across various hardware platforms. Our Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional performance in tasks involving memory retention and natural language generation, particularly in handling long-term dependencies and complex linguistic structures. The design of AstroSNN not only enhances its biological authenticity but also introduces novel computational dynamics, enabling more effective processing of complex temporal dependencies. Furthermore, AstroSNN shows low latency, high throughput, and reduced memory usage in practical applications, making it highly suitable for resource-constrained environments. By successfully integrating astrocytic dynamics into intelligent neural networks, our work narrows the gap between biological plausibility and neural modeling, laying the groundwork for future biologically-inspired neural computing research that includes both neurons and astrocytes.

  • 7 authors
·
Dec 12, 2023

SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition

Event cameras are bio-inspired sensors that respond to local changes in light intensity and feature low latency, high energy efficiency, and high dynamic range. Meanwhile, Spiking Neural Networks (SNNs) have gained significant attention due to their remarkable efficiency and fault tolerance. By synergistically harnessing the energy efficiency inherent in event cameras and the spike-based processing capabilities of SNNs, their integration could enable ultra-low-power application scenarios, such as action recognition tasks. However, existing approaches often entail converting asynchronous events into conventional frames, leading to additional data mapping efforts and a loss of sparsity, contradicting the design concept of SNNs and event cameras. To address this challenge, we propose SpikePoint, a novel end-to-end point-based SNN architecture. SpikePoint excels at processing sparse event cloud data, effectively extracting both global and local features through a singular-stage structure. Leveraging the surrogate training method, SpikePoint achieves high accuracy with few parameters and maintains low power consumption, specifically employing the identity mapping feature extractor on diverse datasets. SpikePoint achieves state-of-the-art (SOTA) performance on four event-based action recognition datasets using only 16 timesteps, surpassing other SNN methods. Moreover, it also achieves SOTA performance across all methods on three datasets, utilizing approximately 0.3\% of the parameters and 0.5\% of power consumption employed by artificial neural networks (ANNs). These results emphasize the significance of Point Cloud and pave the way for many ultra-low-power event-based data processing applications.

  • 7 authors
·
Oct 11, 2023

An Efficient Knowledge Transfer Strategy for Spiking Neural Networks from Static to Event Domain

Spiking neural networks (SNNs) are rich in spatio-temporal dynamics and are suitable for processing event-based neuromorphic data. However, event-based datasets are usually less annotated than static datasets. This small data scale makes SNNs prone to overfitting and limits their performance. In order to improve the generalization ability of SNNs on event-based datasets, we use static images to assist SNN training on event data. In this paper, we first discuss the domain mismatch problem encountered when directly transferring networks trained on static datasets to event data. We argue that the inconsistency of feature distributions becomes a major factor hindering the effective transfer of knowledge from static images to event data. To address this problem, we propose solutions in terms of two aspects: feature distribution and training strategy. Firstly, we propose a knowledge transfer loss, which consists of domain alignment loss and spatio-temporal regularization. The domain alignment loss learns domain-invariant spatial features by reducing the marginal distribution distance between the static image and the event data. Spatio-temporal regularization provides dynamically learnable coefficients for domain alignment loss by using the output features of the event data at each time step as a regularization term. In addition, we propose a sliding training strategy, which gradually replaces static image inputs probabilistically with event data, resulting in a smoother and more stable training for the network. We validate our method on neuromorphic datasets, including N-Caltech101, CEP-DVS, and N-Omniglot. The experimental results show that our proposed method achieves better performance on all datasets compared to the current state-of-the-art methods. Code is available at https://github.com/Brain-Cog-Lab/Transfer-for-DVS.

  • 6 authors
·
Mar 23, 2023

A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models

Advancements in high-computing devices increase the necessity for improved and new understanding and development of smart manufacturing factories. Discrete-event models with simulators have been shown to be critical to architect, designing, building, and operating the manufacturing of semiconductor chips. The diffusion, implantation, and lithography machines have intricate processes due to their feedforward and feedback connectivity. The dataset collected from simulations of the factory models holds the promise of generating valuable machine-learning models. As surrogate data-based models, their executions are highly efficient compared to the physics-based counterpart models. For the development of surrogate models, it is beneficial to have publicly available benchmark simulation models that are grounded in factory models that have concise structures and accurate behaviors. Hence, in this research, a dataset is devised and constructed based on a benchmark model of an Intel semiconductor fabrication factory. The model is formalized using the Parallel Discrete-Event System Specification and executed using the DEVS-Suite simulator. The time series dataset is constructed using discrete-event time trajectories. This dataset is further analyzed and used to develop baseline univariate and multivariate machine learning models. The dataset can also be utilized in the machine learning community for behavioral analysis based on formalized and scalable component-based discrete-event models and simulations.

  • 4 authors
·
Aug 17, 2024

Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models

In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.

  • 2 authors
·
Apr 21