new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15, 2025 2

Writing-Zero: Bridge the Gap Between Non-verifiable Problems and Verifiable Rewards

Reinforcement learning with verifiable rewards (RLVR) has enabled large language models (LLMs) to achieve remarkable breakthroughs in reasoning tasks with objective ground-truth answers, such as mathematics and code generation. However, a significant gap remains for non-verifiable tasks, like creative writing and open-ended dialogue, where quality assessment is inherently subjective and lacks definitive references. Existing approaches for these domains often rely on scalar reward models trained with human preferences, which suffer from limited generalization and are prone to reward hacking, such as over-explanation and length bias. In this work, we propose a unified RLVR-based training paradigm that bridges the gap between non-verifiable tasks and verifiable rewards. We introduce a writing-principle-based pairwise Generative Reward Model (GenRM) and a novel Bootstrapped Relative Policy Optimization (BRPO) algorithm. The pairwise writing GenRM leverages self-principled critique to transform subjective assessments into reliable, verifiable rewards, while BRPO enables dynamic, reference-free pairwise comparison by leveraging a bootstrapped response as temporary reference from within group rollouts during RL training. Our approach empowers LLMs to develop robust writing capabilities without supervised fine-tuning, as demonstrated by Writing-Zero, which shows consistent improvement and strong resistance to reward hacking compared to scalar reward baselines. Furthermore, our method achieves competitive results on both in-house and open-source writing benchmarks. Our findings suggest the potential to unify rule-based, reference-based, and reference-free reward modeling under the RLVR framework, thus paving the way for a comprehensive and scalable RL training paradigm applicable across all language tasks.

  • 1 authors
·
May 30, 2025 1

Pre-Trained Policy Discriminators are General Reward Models

We offer a novel perspective on reward modeling by formulating it as a policy discriminator, which quantifies the difference between two policies to generate a reward signal, guiding the training policy towards a target policy with desired behaviors. Based on this conceptual insight, we propose a scalable pre-training method named Policy Discriminative Learning (POLAR), which trains a reward model (RM) to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between one policy and an arbitrary target policy, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships. Leveraging the POLAR pre-training paradigm, we present a series of RMs with parameter scales from 1.8B to 7B. Empirical results show that POLAR substantially outperforms traditional non-pre-trained methods, significantly enhancing RM performance. For instance, POLAR-7B could improve preference accuracy from 54.8% to 81.0% on STEM tasks and from 57.9% to 85.5% on creative writing tasks compared to SOTA baselines. POLAR also shows robust generalization capabilities in RLHF using Reinforcement Fine-tuning (RFT), providing reliable reward signals and markedly enhancing policy performance--improving LLaMa3.1-8B from an average of 47.36% to 56.33% and Qwen2.5-32B from 64.49% to 70.47% on 20 benchmarks. Moreover, scaling experiments reveal a clear power-law relationship between computation and performance, supported by linear correlation coefficients approaching 0.99. The impressive performance, strong generalization, and scaling properties suggest that POLAR is a promising direction for developing general and strong reward models.

  • 22 authors
·
Jul 7, 2025 1

Code as Policies: Language Model Programs for Embodied Control

Large language models (LLMs) trained on code completion have been shown to be capable of synthesizing simple Python programs from docstrings [1]. We find that these code-writing LLMs can be re-purposed to write robot policy code, given natural language commands. Specifically, policy code can express functions or feedback loops that process perception outputs (e.g.,from object detectors [2], [3]) and parameterize control primitive APIs. When provided as input several example language commands (formatted as comments) followed by corresponding policy code (via few-shot prompting), LLMs can take in new commands and autonomously re-compose API calls to generate new policy code respectively. By chaining classic logic structures and referencing third-party libraries (e.g., NumPy, Shapely) to perform arithmetic, LLMs used in this way can write robot policies that (i) exhibit spatial-geometric reasoning, (ii) generalize to new instructions, and (iii) prescribe precise values (e.g., velocities) to ambiguous descriptions ("faster") depending on context (i.e., behavioral commonsense). This paper presents code as policies: a robot-centric formulation of language model generated programs (LMPs) that can represent reactive policies (e.g., impedance controllers), as well as waypoint-based policies (vision-based pick and place, trajectory-based control), demonstrated across multiple real robot platforms. Central to our approach is prompting hierarchical code-gen (recursively defining undefined functions), which can write more complex code and also improves state-of-the-art to solve 39.8% of problems on the HumanEval [1] benchmark. Code and videos are available at https://code-as-policies.github.io

  • 8 authors
·
Sep 16, 2022

Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports

Newspaper reports provide a rich source of information on the unfolding of public debate on specific policy fields that can serve as basis for inquiry in political science. Such debates are often triggered by critical events, which attract public attention and incite the reactions of political actors: crisis sparks the debate. However, due to the challenges of reliable annotation and modeling, few large-scale datasets with high-quality annotation are available. This paper introduces DebateNet2.0, which traces the political discourse on the European refugee crisis in the German quality newspaper taz during the year 2015. The core units of our annotation are political claims (requests for specific actions to be taken within the policy field) and the actors who make them (politicians, parties, etc.). The contribution of this paper is twofold. First, we document and release DebateNet2.0 along with its companion R package, mardyR, guiding the reader through the practical and conceptual issues related to the annotation of policy debates in newspapers. Second, we outline and apply a Discourse Network Analysis (DNA) to DebateNet2.0, comparing two crucial moments of the policy debate on the 'refugee crisis': the migration flux through the Mediterranean in April/May and the one along the Balkan route in September/October. Besides the released resources and the case-study, our contribution is also methodological: we talk the reader through the steps from a newspaper article to a discourse network, demonstrating that there is not just one discourse network for the German migration debate, but multiple ones, depending on the topic of interest (political actors, policy fields, time spans).

  • 6 authors
·
Nov 19, 2021

Exploring Large Language Models for Access Control Policy Synthesis and Summarization

Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.

  • 3 authors
·
Oct 23, 2025

EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form Narrative Text Generation

Plan-and-Write is a common hierarchical approach in long-form narrative text generation, which first creates a plan to guide the narrative writing. Following this approach, several studies rely on simply prompting large language models for planning, which often yields suboptimal results. In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner. EIPE-text has three stages: plan extraction, learning, and inference. In the plan extraction stage, it iteratively extracts and improves plans from the narrative corpus and constructs a plan corpus. We propose a question answer (QA) based evaluation mechanism to automatically evaluate the plans and generate detailed plan refinement instructions to guide the iterative improvement. In the learning stage, we build a better planner by fine-tuning with the plan corpus or in-context learning with examples in the plan corpus. Finally, we leverage a hierarchical approach to generate long-form narratives. We evaluate the effectiveness of EIPE-text in the domains of novels and storytelling. Both GPT-4-based evaluations and human evaluations demonstrate that our method can generate more coherent and relevant long-form narratives. Our code will be released in the future.

  • 11 authors
·
Oct 12, 2023 1

Analyzing and Internalizing Complex Policy Documents for LLM Agents

Large Language Model (LLM)-based agentic systems rely on in-context policy documents encoding diverse business rules. As requirements grow, these documents expand rapidly, causing high computational overhead. This motivates developing internalization methods that embed policy documents into model priors while preserving performance. Prior prompt compression work targets generic prompts, but agentic policy documents span multiple complexity levels and require deeper reasoning, making internalization harder. We introduce CC-Gen, an agentic benchmark generator with Controllable Complexity across four levels, enabling systematic evaluation of agents' ability to handle complexity and offering a unified framework for assessing policy internalization. Our analysis shows that complex policy specifications governing workflows pose major reasoning challenges. Supporting internalization with gold user agent interaction trajectories containing chain-of-thought (CoT) annotations via supervised fine-tuning (SFT) is data-intensive and degrades sharply as policy complexity increases. To mitigate data and reasoning burdens, we propose Category-Aware Policy Continued Pretraining (CAP-CPT). Our automated pipeline parses policy documents to extract key specifications, grouping them into factual, behavioral, and conditional categories, and isolating complex conditions that drive workflow complexity. This guides targeted data synthesis and enables agents to internalize policy information through an autoregressive pretraining loss. Experiments show CAP-CPT improves SFT baselines in all settings, with up to 41% and 22% gains on Qwen-3-32B, achieving 97.3% prompt length reduction on CC-Gen and further enhancing tau-Bench with minimal SFT data.

  • 9 authors
·
Oct 13, 2025

LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback

Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.

  • 4 authors
·
Jun 5, 2024

Identifying Climate Targets in National Laws and Policies using Machine Learning

Quantified policy targets are a fundamental element of climate policy, typically characterised by domain-specific and technical language. Current methods for curating comprehensive views of global climate policy targets entail significant manual effort. At present there are few scalable methods for extracting climate targets from national laws or policies, which limits policymakers' and researchers' ability to (1) assess private and public sector alignment with global goals and (2) inform policy decisions. In this paper we present an approach for extracting mentions of climate targets from national laws and policies. We create an expert-annotated dataset identifying three categories of target ('Net Zero', 'Reduction' and 'Other' (e.g. renewable energy targets)) and train a classifier to reliably identify them in text. We investigate bias and equity impacts related to our model and identify specific years and country names as problematic features. Finally, we investigate the characteristics of the dataset produced by running this classifier on the Climate Policy Radar (CPR) dataset of global national climate laws and policies and UNFCCC submissions, highlighting the potential of automated and scalable data collection for existing climate policy databases and supporting further research. Our work represents a significant upgrade in the accessibility of these key climate policy elements for policymakers and researchers. We publish our model at https://huggingface.co/ClimatePolicyRadar/national-climate-targets and related dataset at https://huggingface.co/datasets/ClimatePolicyRadar/national-climate-targets.

  • 7 authors
·
Apr 3, 2024

Unraveling Downstream Gender Bias from Large Language Models: A Study on AI Educational Writing Assistance

Large Language Models (LLMs) are increasingly utilized in educational tasks such as providing writing suggestions to students. Despite their potential, LLMs are known to harbor inherent biases which may negatively impact learners. Previous studies have investigated bias in models and data representations separately, neglecting the potential impact of LLM bias on human writing. In this paper, we investigate how bias transfers through an AI writing support pipeline. We conduct a large-scale user study with 231 students writing business case peer reviews in German. Students are divided into five groups with different levels of writing support: one classroom group with feature-based suggestions and four groups recruited from Prolific -- a control group with no assistance, two groups with suggestions from fine-tuned GPT-2 and GPT-3 models, and one group with suggestions from pre-trained GPT-3.5. Using GenBit gender bias analysis, Word Embedding Association Tests (WEAT), and Sentence Embedding Association Test (SEAT) we evaluate the gender bias at various stages of the pipeline: in model embeddings, in suggestions generated by the models, and in reviews written by students. Our results demonstrate that there is no significant difference in gender bias between the resulting peer reviews of groups with and without LLM suggestions. Our research is therefore optimistic about the use of AI writing support in the classroom, showcasing a context where bias in LLMs does not transfer to students' responses.

  • 6 authors
·
Nov 6, 2023

On the Limitations of Compute Thresholds as a Governance Strategy

At face value, this essay is about understanding a fairly esoteric governance tool called compute thresholds. However, in order to grapple with whether these thresholds will achieve anything, we must first understand how they came to be. This requires engaging with a decades-old debate at the heart of computer science progress, namely, is bigger always better? Hence, this essay may be of interest not only to policymakers and the wider public but also to computer scientists interested in understanding the role of compute in unlocking breakthroughs. Does a certain inflection point of compute result in changes to the risk profile of a model? This discussion is increasingly urgent given the wide adoption of governance approaches that suggest greater compute equates with higher propensity for harm. Several leading frontier AI companies have released responsible scaling policies. Both the White House Executive Orders on AI Safety (EO) and the EU AI Act encode the use of FLOP or floating-point operations as a way to identify more powerful systems. What is striking about the choice of compute thresholds to-date is that no models currently deployed in the wild fulfill the current criteria set by the EO. This implies that the emphasis is often not on auditing the risks and harms incurred by currently deployed models - but rather is based upon the belief that future levels of compute will introduce unforeseen new risks. A key conclusion of this essay is that compute thresholds as currently implemented are shortsighted and likely to fail to mitigate risk. Governance that is overly reliant on compute fails to understand that the relationship between compute and risk is highly uncertain and rapidly changing. It also overestimates our ability to predict what abilities emerge at different scales. This essay ends with recommendations for a better way forward.

  • 1 authors
·
Jul 8, 2024

The International Monetary Funds intervention in education systems and its impact on childrens chances of completing school

Enabling children to acquire an education is one of the most effective means to reduce inequality, poverty, and ill-health globally. While in normal times a government controls its educational policies, during times of macroeconomic instability, that control may shift to supporting international organizations, such as the International Monetary Fund (IMF). While much research has focused on which sectors has been affected by IMF policies, scholars have devoted little attention to the policy content of IMF interventions affecting the education sector and childrens education outcomes: denoted IMF education policies. This article evaluates the extent which IMF education policies exist in all programs and how these policies and IMF programs affect childrens likelihood of completing schools. While IMF education policies have a small adverse effect yet statistically insignificant on childrens probability of completing school, these policies moderate effect heterogeneity for IMF programs. The effect of IMF programs (joint set of policies) adversely effect childrens chances of completing school by six percentage points. By analyzing how IMF-education policies but also how IMF programs affect the education sector in low and middle-income countries, scholars will gain a deeper understanding of how such policies will likely affect downstream outcomes.

  • 1 authors
·
Dec 30, 2021

Training AI Co-Scientists Using Rubric Rewards

AI co-scientists are emerging as a tool to assist human researchers in achieving their research goals. A crucial feature of these AI co-scientists is the ability to generate a research plan given a set of aims and constraints. The plan may be used by researchers for brainstorming, or may even be implemented after further refinement. However, language models currently struggle to generate research plans that follow all constraints and implicit requirements. In this work, we study how to leverage the vast corpus of existing research papers to train language models that generate better research plans. We build a scalable, diverse training corpus by automatically extracting research goals and goal-specific grading rubrics from papers across several domains. We then train models for research plan generation via reinforcement learning with self-grading. A frozen copy of the initial policy acts as the grader during training, with the rubrics creating a generator-verifier gap that enables improvements without external human supervision. To validate this approach, we conduct a study with human experts for machine learning research goals, spanning 225 hours. The experts prefer plans generated by our finetuned Qwen3-30B-A3B model over the initial model for 70% of research goals, and approve 84% of the automatically extracted goal-specific grading rubrics. To assess generality, we also extend our approach to research goals from medical papers, and new arXiv preprints, evaluating with a jury of frontier models. Our finetuning yields 12-22% relative improvements and significant cross-domain generalization, proving effective even in problem settings like medical research where execution feedback is infeasible. Together, these findings demonstrate the potential of a scalable, automated training recipe as a step towards improving general AI co-scientists.

facebook AI at Meta
·
Dec 29, 2025 3

Multimodal Policy Internalization for Conversational Agents

Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.

amazon Amazon
·
Oct 10, 2025 2

A Cognitive Writing Perspective for Constrained Long-Form Text Generation

Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: https://github.com/KaiyangWan/CogWriter{CogWriter}.

  • 6 authors
·
Feb 18, 2025

AgentFly: Fine-tuning LLM Agents without Fine-tuning LLMs

In this paper, we introduce a novel learning paradigm for adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely AgentFly, which attains top-1 on GAIA validation (87.88% Pass@3) and 79.40% on the test set. It reaches 66.6% F1 and 80.4% PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds 4.7% to 9.6% absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/AgentFly.

  • 11 authors
·
Aug 22, 2025 12

Forging a Developed India: Growth Imperatives, Fiscal Sustainability, and Multilateral Partnerships for Viksit Bharat 2047

This paper examines the fiscal and macroeconomic strategies essential for transition of India to a high income economy by 2047, aligning with the vision of Viksit Bharat. A sustainable annual GDP growth rate of 7 to 8 percent is projected as necessary to achieve this milestone while maintaining fiscal prudence through a targeted deficit threshold below 3.5 percent of GDP. The study underscores the role of disciplined fiscal management in financing critical public investments in infrastructure, human capital development and technological innovation. Given constraints on domestic resource mobilization, the paper highlights the importance of multilateral financial institutions, including the World Bank, IMF and ADB, in expanding fiscal space in India through concessional financing, technical cooperation, and risk sharing mechanisms. Using econometric modeling and scenario analysis, the research identifies key policy interventions in infrastructure, healthcare, education and sustainable energy that can maximize growth while ensuring fiscal sustainability. Policy recommendations include enhancing tax buoyancy, rationalizing expenditure, optimizing public private partnerships and strengthening fiscal responsibility frameworks. The findings suggest that a calibrated approach to growth, prudent fiscal management and strategic international collaborations are critical to achieving long term economic aspirations of India.

  • 2 authors
·
Dec 1, 2025