new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Utilizing Wavelet Transform in the Analysis of Scaling Dynamics for Milk Quality Evaluation

Food safety and quality are paramount concerns worldwide, especially concerning nutritional quality and its impact on human health. Ensuring the accuracy and efficiency of milk quality assessment is vital for maintaining the quality of dairy farm produce. Milk spectral data, Mid-infrared spectra (MIRS) of milk samples, are frequently employed for milk quality evaluations, encompassing various milk quality parameters. However, conventional milk quality analyses have overlooked the scaling nature, known as stochastic similarity in different scales, inherent in milk spectral data. Wavelet transforms are among the tools used in these analyses, although they are primarily used as data pre-processing techniques without fully realizing their potential in extracting valuable insights. The primary purpose of this study is to demonstrate the importance of accounting for scaling properties in assessing milk quality. A set of 12 descriptors is computed to characterize scaling properties in milk spectral data within the wavelet domain. These descriptors are then assessed for their effectiveness in milk quality assessments utilizing 18 different milk quality parameters. They notably demonstrated comparable performance to existing methods while utilizing fewer features when applied to an MIRS dataset. This innovative approach holds substantial promise for advancing the field of milk quality assessment, offering a means to achieve more accurate and efficient evaluations while shedding light on previously unexplored aspects of milk spectral data.

  • 2 authors
·
Dec 15, 2023

Reactive Transformer (RxT) -- Stateful Real-Time Processing for Event-Driven Reactive Language Models

The Transformer architecture has become the de facto standard for Large Language Models (LLMs), demonstrating remarkable capabilities in language understanding and generation. However, its application in conversational AI is fundamentally constrained by its stateless nature and the quadratic computational complexity (O(L^2)) with respect to sequence length L. Current models emulate memory by reprocessing an ever-expanding conversation history with each turn, leading to prohibitive costs and latency in long dialogues. This paper introduces the Reactive Transformer (RxT), a novel architecture designed to overcome these limitations by shifting from a data-driven to an event-driven paradigm. RxT processes each conversational turn as a discrete event in real-time, maintaining context in an integrated, fixed-size Short-Term Memory (STM) system. The architecture features a distinct operational cycle where a generator-decoder produces a response based on the current query and the previous memory state, after which a memory-encoder and a dedicated Memory Attention network asynchronously update the STM with a representation of the complete interaction. This design fundamentally alters the scaling dynamics, reducing the total user-facing cost of a conversation from quadratic (O(N^2 cdot T)) to linear (O(N cdot T)) with respect to the number of interactions N. By decoupling response generation from memory updates, RxT achieves low latency, enabling truly real-time, stateful, and economically viable long-form conversations. We validated our architecture with a series of proof-of-concept experiments on synthetic data, demonstrating superior performance and constant-time inference latency compared to a baseline stateless model of comparable size.

ReactiveAI Reactive AI
·
Oct 3 2

Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning

Reinforcement Learning (RL) has proven highly effective at enhancing the complex reasoning abilities of Large Language Models (LLMs), yet underlying mechanisms driving this success remain largely opaque. Our analysis reveals that puzzling phenomena like ``aha moments", ``length-scaling'' and entropy dynamics are not disparate occurrences but hallmarks of an emergent reasoning hierarchy, akin to the separation of high-level strategic planning from low-level procedural execution in human cognition. We uncover a compelling two-phase dynamic: initially, a model is constrained by procedural correctness and must improve its low-level skills. The learning bottleneck then decisively shifts, with performance gains being driven by the exploration and mastery of high-level strategic planning. This insight exposes a core inefficiency in prevailing RL algorithms like GRPO, which apply optimization pressure agnostically and dilute the learning signal across all tokens. To address this, we propose HIerarchy-Aware Credit Assignment (HICRA), an algorithm that concentrates optimization efforts on high-impact planning tokens. HICRA significantly outperforms strong baselines, demonstrating that focusing on this strategic bottleneck is key to unlocking advanced reasoning. Furthermore, we validate semantic entropy as a superior compass for measuring strategic exploration over misleading metrics such as token-level entropy.

Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking

While the phenomenon of grokking, i.e., delayed generalization, has been studied extensively, it remains an open problem whether there is a mathematical framework that characterizes what kind of features will emerge, how and in which conditions it happens, and is closely related to the gradient dynamics of the training, for complex structured inputs. We propose a novel framework, named Li_2, that captures three key stages for the grokking behavior of 2-layer nonlinear networks: (I) \textbf{L}azy learning, (II) \textbf{i}ndependent feature learning and (III) \textbf{i}nteractive feature learning. At the lazy learning stage, top layer overfits to random hidden representation and the model appears to memorize. Thanks to lazy learning and weight decay, the backpropagated gradient G_F from the top layer now carries information about the target label, with a specific structure that enables each hidden node to learn their representation independently. Interestingly, the independent dynamics follows exactly the gradient ascent of an energy function E, and its local maxima are precisely the emerging features. We study whether these local-optima induced features are generalizable, their representation power, and how they change on sample size, in group arithmetic tasks. When hidden nodes start to interact in the later stage of learning, we provably show how G_F changes to focus on missing features that need to be learned. Our study sheds lights on roles played by key hyperparameters such as weight decay, learning rate and sample sizes in grokking, leads to provable scaling laws of feature emergence, memorization and generalization, and reveals the underlying cause why recent optimizers such as Muon can be effective, from the first principles of gradient dynamics. Our analysis can be extended to multi-layer architectures.

  • 1 authors
·
Sep 25

Scaling Agent Learning via Experience Synthesis

While reinforcement learning (RL) can empower large language model (LLM) agents by enabling self-improvement through interaction, its practical adoption remains challenging due to costly rollouts, limited task diversity, unreliable reward signals, and infrastructure complexity, all of which obstruct the collection of scalable experience data. To address these challenges, we introduce DreamGym, the first unified framework designed to synthesize diverse experiences with scalability in mind to enable effective online RL training for autonomous agents. Rather than relying on expensive real-environment rollouts, DreamGym distills environment dynamics into a reasoning-based experience model that derives consistent state transitions and feedback signals through step-by-step reasoning, enabling scalable agent rollout collection for RL. To improve the stability and quality of transitions, DreamGym leverages an experience replay buffer initialized with offline real-world data and continuously enriched with fresh interactions to actively support agent training. To improve knowledge acquisition, DreamGym adaptively generates new tasks that challenge the current agent policy, enabling more effective online curriculum learning. Experiments across diverse environments and agent backbones demonstrate that DreamGym substantially improves RL training, both in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready tasks like WebArena, DreamGym outperforms all baselines by over 30%. And in RL-ready but costly settings, it matches GRPO and PPO performance using only synthetic interactions. When transferring a policy trained purely on synthetic experiences to real-environment RL, DreamGym yields significant additional performance gains while requiring far fewer real-world interactions, providing a scalable warm-start strategy for general-purpose RL.

Scaling Law with Learning Rate Annealing

We find that the cross-entropy loss curves of neural language models empirically adhere to a scaling law with learning rate (LR) annealing over training steps (s): $L(s) = L_0 + Acdot S_1^{-alpha} - Ccdot S_2 Where S_1 is forward area and S_2$ is learning rate annealing area. This formulation takes into account two factors: (1) The forward scaling defined as typical scaling law, and (2) the additional loss drop brought by LR annealing. Therefore, this formulation can describe the full loss curve at each step, rather than the single loss point at the end of training. Applying the scaling law with LR annealing and fitting only one or two training curves, we can accurately predict the loss of language model training at any given step and across any learning rate scheduler (LRS). Furthermore, this equation accurately describes the dynamics during training process, and provides a theoretical verification and explanation for numerous experimental findings of previous studies, particularly those focusing on LR schedule and LR annealing. The resulting insights, also serve as a guide for researchers to select critical LRS in advance by prediction using our equation. Most significantly, since all the points in a full training curve follow the equation, we can achieve accurate loss prediction at any given step across any learning rate scheduler, while expending less than 1\% of the computational cost required by the chinchilla scaling law to fit language modeling loss. This approach extremely democratizes scaling law fitting and predicting in developing large language models.

  • 3 authors
·
Aug 20, 2024 1

Variation in Verification: Understanding Verification Dynamics in Large Language Models

Recent advances have shown that scaling test-time computation enables large language models (LLMs) to solve increasingly complex problems across diverse domains. One effective paradigm for test-time scaling (TTS) involves LLM generators producing multiple solution candidates, with LLM verifiers assessing the correctness of these candidates without reference answers. In this paper, we study generative verifiers, which perform verification by generating chain-of-thought (CoT) reasoning followed by a binary verdict. We systematically analyze verification dynamics across three dimensions - problem difficulty, generator capability, and verifier generation capability - with empirical studies on 12 benchmarks across mathematical reasoning, knowledge, and natural language reasoning tasks using 14 open-source models (2B to 72B parameter range) and GPT-4o. Our experiments reveal three key findings about verification effectiveness: (1) Easy problems allow verifiers to more reliably certify correct responses; (2) Weak generators produce errors that are easier to detect than strong generators; (3) Verification ability is generally correlated with the verifier's own problem-solving capability, but this relationship varies with problem difficulty. These findings reveal opportunities to optimize basic verification strategies in TTS applications. First, given the same verifier, some weak generators can nearly match stronger ones in post-verification TTS performance (e.g., the Gemma2-9B to Gemma2-27B performance gap shrinks by 75.5%). Second, we identify cases where strong verifiers offer limited advantage over weak ones, as both fail to provide meaningful verification gains, suggesting that verifier scaling alone cannot overcome fundamental verification challenges.

  • 6 authors
·
Sep 22

Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer's favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Code and checkpoints are available at https://github.com/tung-nd/stormer.

  • 9 authors
·
Dec 6, 2023

A Hitchhiker's Guide to Scaling Law Estimation

Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets. This provides an efficient way for practitioners and researchers alike to compare pretraining decisions involving optimizers, datasets, and model architectures. Despite the widespread use of scaling laws to model the dynamics of language model training, there has been little work on understanding how to best estimate and interpret them. We collect (and release) a large-scale dataset containing losses and downstream evaluations for 485 previously published pretrained models. We use these to estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families. We find that fitting scaling laws to intermediate checkpoints of training runs (and not just their final losses) substantially improves accuracy, and that -- all else equal -- estimates of performance are generally most accurate when derived from other models of similar sizes. However, because there is a significant degree of variability across model seeds, training multiple small models is sometimes more useful than training a single large one. Moreover, while different model families differ scaling behavior, they are often similar enough that a target model's behavior can be predicted from a single model with the same architecture, along with scaling parameter estimates derived from other model families.

  • 3 authors
·
Oct 15, 2024

Scaling physics-informed hard constraints with mixture-of-experts

Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.

  • 3 authors
·
Feb 20, 2024

Dynamics of Instruction Tuning: Each Ability of Large Language Models Has Its Own Growth Pace

Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). However, the creation of instruction data is still largely heuristic, leading to significant variation in quality and distribution across existing datasets. Experimental conclusions drawn from these datasets are also inconsistent, with some studies emphasizing the importance of scaling instruction numbers, while others argue that a limited number of samples suffice. To better understand data construction guidelines, we deepen our focus from the overall model performance to the growth of each underlying ability, such as creative writing, code generation, and logical reasoning. We systematically investigate the effects of data volume, parameter size, and data construction methods on the development of various abilities, using hundreds of model checkpoints (7b to 33b) fully instruction-tuned on a new collection of over 40k human-curated instruction data. This proposed dataset is stringently quality-controlled and categorized into ten distinct LLM abilities. Our study reveals three primary findings: (i) Despite data volume and parameter scale directly impacting models' overall performance, some abilities are more responsive to their increases and can be effectively trained using limited data, while some are highly resistant to these changes. (ii) Human-curated data strongly outperforms synthetic data from GPT-4 in efficiency and can constantly enhance model performance with volume increases, but is unachievable with synthetic data. (iii) Instruction data brings powerful cross-ability generalization, with evaluation results on out-of-domain data mirroring the first two observations. Furthermore, we demonstrate how these findings can guide more efficient data constructions, leading to practical performance improvements on public benchmarks.

  • 6 authors
·
Oct 30, 2023

VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers

In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io

  • 6 authors
·
Jul 1

Why do Learning Rates Transfer? Reconciling Optimization and Scaling Limits for Deep Learning

Recently, there has been growing evidence that if the width and depth of a neural network are scaled toward the so-called rich feature learning limit (muP and its depth extension), then some hyperparameters - such as the learning rate - exhibit transfer from small to very large models, thus reducing the cost of hyperparameter tuning. From an optimization perspective, this phenomenon is puzzling, as it implies that the loss landscape is remarkably consistent across very different model sizes. In this work, we find empirical evidence that learning rate transfer can be attributed to the fact that under muP and its depth extension, the largest eigenvalue of the training loss Hessian (i.e. the sharpness) is largely independent of the width and depth of the network for a sustained period of training time. On the other hand, we show that under the neural tangent kernel (NTK) regime, the sharpness exhibits very different dynamics at different scales, thus preventing learning rate transfer. But what causes these differences in the sharpness dynamics? Through a connection between the spectra of the Hessian and the NTK matrix, we argue that the cause lies in the presence (for muP) or progressive absence (for the NTK regime) of feature learning, which results in a different evolution of the NTK, and thus of the sharpness. We corroborate our claims with a substantial suite of experiments, covering a wide range of datasets and architectures: from ResNets and Vision Transformers trained on benchmark vision datasets to Transformers-based language models trained on WikiText

  • 4 authors
·
Feb 27, 2024

OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling

Different base language model families, such as Llama and Qwen, exhibit divergent behaviors during post-training with reinforcement learning (RL), especially on reasoning-intensive tasks. What makes a base language model suitable for reinforcement learning? Gaining deeper insight into this question is essential for developing RL-scalable foundation models of the next generation. In this work, we investigate how mid-training strategies shape RL dynamics, focusing on two representative model families: Qwen and Llama. Our study reveals that (1) high-quality mathematical corpora, such as MegaMath-Web-Pro, significantly improve both base model and RL performance, while existing alternatives (e.g., FineMath-4plus) fail to do so; (2) further adding QA-style data, particularly long chain-of-thought (CoT) reasoning examples, enhances RL outcomes, and instruction data further unlocks this effect; (3) while long-CoT improves reasoning depth, it can also induce verbosity of model responses and unstability of RL training, underscoring the importance of data formatting; (4) scaling mid-training consistently leads to stronger downstream RL performance. Building on these insights, we introduce a two-stage mid-training strategy, Stable-then-Decay, in which base models are first trained on 200B tokens with a constant learning rate, followed by 20B tokens across three CoT-focused branches with learning rate decay. This yields OctoThinker, a family of models demonstrating strong RL compatibility and closing the performance gap with more RL-friendly model families, i.e., Qwen. We hope our work will help shape pre-training strategies for foundation models in the RL era. To support further research, we release our open-source models along with a curated math reasoning-intensive corpus of over 70 billion tokens (i.e., MegaMath-Web-Pro-Max).

  • 4 authors
·
Jun 25 1

State Tuning: State-based Test-Time Scaling on RWKV-7

Test-time scaling has emerged as a prominent research direction in machine learning, enabling models to enhance their expressive capabilities during inference.Transformers, renowned for striking a delicate balance between efficiency and expressiveness, have benefited from test-time scaling techniques that leverage an expanding key-value (KV) cache to significantly improve performance.In this paper, we introduce a novel state-based approach to test-time scaling, which we term state tuning, tailored to the RNN-based RWKV-7 model.By exploiting the unique strengths of RWKV-7, our method achieves state-of-the-art performance on the target task without altering the model's pre-trained weights. Our approach centers on three key innovations. First, we develop an observer framework that allows a smaller model to replicate and learn the state dynamics of the RWKV-7 model. Second, we employ a kernel method to dynamically upscale the state size, enhancing the model's capacity to capture intricate patterns. Third, we integrate Decorrelated Backpropagation (DBP) to optimize the upscaled state matrix, thereby improving convergence and expressivity. By tuning only the state matrix, we demonstrate that a smaller model can outperform larger models on the given task. This method preserves the efficiency of the original RWKV-7 architecture while harnessing the power of test-time scaling to deliver superior results. Our findings underscore the potential of state tuning as an effective strategy for advancing model performance in resource-constrained settings. Our code is https://github.com/TorchRWKV/flash-linear-attention.

  • 3 authors
·
Apr 7

CLEX: Continuous Length Extrapolation for Large Language Models

Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4x or almost 8x training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.

  • 5 authors
·
Oct 25, 2023 1

Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting

Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.

  • 5 authors
·
Oct 16, 2023

When More is Less: Understanding Chain-of-Thought Length in LLMs

Large Language Models (LLMs) employ Chain-of-Thought (CoT) reasoning to deconstruct complex problems. While longer CoTs are often presumed superior, this paper challenges that notion, arguing that longer is not always better. Drawing on combined evidence from real-world observations, controlled experiments, and theoretical analysis, we demonstrate that task accuracy typically follows an inverted U-shaped curve with CoT length, where performance initially improves but eventually decreases as the number of CoT steps increases. With controlled experiments, we further uncover the scaling behaviors of the optimal CoT length: it increases with task difficulty but decreases with model capability, exposing an inherent simplicity bias where more capable models favor shorter, more efficient CoT reasoning. This bias is also evident in Reinforcement Learning (RL) training, where models gravitate towards shorter CoTs as their accuracy improves. To have a deep understanding of these dynamics, we establish a simple theoretical model that formally proves these phenomena, including the optimal length's scaling laws and the emergence of simplicity bias during RL. Guided by this framework, we demonstrate significant practical benefits from training with optimally-lengthed CoTs and employing length-aware filtering at inference. These findings offer both a principled understanding of the "overthinking" phenomenon and multiple practical guidelines for CoT calibration, enabling LLMs to achieve optimal reasoning performance with adaptive CoTs tailored to task complexity and model capability.

  • 6 authors
·
Feb 11

Multilingual Routing in Mixture-of-Experts

Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.

AlignGuard-LoRA: Alignment-Preserving Fine-Tuning via Fisher-Guided Decomposition and Riemannian-Geodesic Collision Regularization

Low-rank adaptation (LoRA) has become a standard tool for efficiently fine-tuning large language models (LLMs). Yet, even minor LoRA updates can induce alignment drift, weakening safety and behavioral constraints through entangled parameter changes. To address this, we propose AlignGuard-LoRA (AGL), a principled framework for preserving alignment during finetuning. AGL introduces several key components: a primary task loss for supervision, Fisher Information Matrix-based regularization to restrict updates in alignment-sensitive subspaces, and task-specific regularization to stabilize the integration of new knowledge. We further introduce collision-aware regularization, blending Riemannian overlap -- which penalizes coordinate-wise interference -- and geodesic separation -- which encourages disjoint update geometry. We curate DriftCaps, a targeted diagnostic benchmark of safe and unsafe prompts designed to quantify alignment drift and safety degradation. Empirical evaluations show that AGL mitigates alignment drift by up to 50% on safety-critical benchmarks without degrading downstream task performance. Comprehensive ablation confirms that each component contributes distinctly to preserving latent safety behaviors. Finally, we derive and validate a scaling law for catastrophic forgetting, revealing that AGL flattens post-finetuning loss escalation while preserving adaptation dynamics. AGL is a structurally grounded refinement of LoRA, ensuring alignment preservation with minimal trade-offs. To encourage further exploration and development, we open-source our implementation.

  • 4 authors
·
Aug 4 2

Unveiling Intrinsic Dimension of Texts: from Academic Abstract to Creative Story

Intrinsic dimension (ID) is an important tool in modern LLM analysis, informing studies of training dynamics, scaling behavior, and dataset structure, yet its textual determinants remain underexplored. We provide the first comprehensive study grounding ID in interpretable text properties through cross-encoder analysis, linguistic features, and sparse autoencoders (SAEs). In this work, we establish three key findings. First, ID is complementary to entropy-based metrics: after controlling for length, the two are uncorrelated, with ID capturing geometric complexity orthogonal to prediction quality. Second, ID exhibits robust genre stratification: scientific prose shows low ID (~8), encyclopedic content medium ID (~9), and creative/opinion writing high ID (~10.5) across all models tested. This reveals that contemporary LLMs find scientific text "representationally simple" while fiction requires additional degrees of freedom. Third, using SAEs, we identify causal features: scientific signals (formal tone, report templates, statistics) reduce ID; humanized signals (personalization, emotion, narrative) increase it. Steering experiments confirm these effects are causal. Thus, for contemporary models, scientific writing appears comparatively "easy", whereas fiction, opinion, and affect add representational degrees of freedom. Our multi-faceted analysis provides practical guidance for the proper use of ID and the sound interpretation of ID-based results.

  • 8 authors
·
Nov 19 3

Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models

Post-training quantization is the leading method for addressing memory-related bottlenecks in LLM inference, but unfortunately, it suffers from significant performance degradation below 4-bit precision. An alternative approach involves training compressed models directly at a low bitwidth (e.g., binary or ternary models). However, the performance, training dynamics, and scaling trends of such models are not yet well understood. To address this issue, we train and openly release the Spectra LLM suite consisting of 54 language models ranging from 99M to 3.9B parameters, trained on 300B tokens. Spectra includes FloatLMs, post-training quantized QuantLMs (3, 4, 6, and 8 bits), and ternary LLMs (TriLMs) - our improved architecture for ternary language modeling, which significantly outperforms previously proposed ternary models of a given size (in bits), matching half-precision models at scale. For example, TriLM 3.9B is (bit-wise) smaller than the half-precision FloatLM 830M, but matches half-precision FloatLM 3.9B in commonsense reasoning and knowledge benchmarks. However, TriLM 3.9B is also as toxic and stereotyping as FloatLM 3.9B, a model six times larger in size. Additionally, TriLM 3.9B lags behind FloatLM in perplexity on validation splits and web-based corpora but performs better on less noisy datasets like Lambada and PennTreeBank. To enhance understanding of low-bitwidth models, we are releasing 500+ intermediate checkpoints of the Spectra suite at https://github.com/NolanoOrg/SpectraSuite{https://github.com/NolanoOrg/SpectraSuite}.

  • 5 authors
·
Jul 17, 2024 3

One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration

Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

  • 5 authors
·
Oct 13 2