Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeED$^4$: Explicit Data-level Debiasing for Deepfake Detection
Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED^4, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED^4 is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
Time Is MattEr: Temporal Self-supervision for Video Transformers
Understanding temporal dynamics of video is an essential aspect of learning better video representations. Recently, transformer-based architectural designs have been extensively explored for video tasks due to their capability to capture long-term dependency of input sequences. However, we found that these Video Transformers are still biased to learn spatial dynamics rather than temporal ones, and debiasing the spurious correlation is critical for their performance. Based on the observations, we design simple yet effective self-supervised tasks for video models to learn temporal dynamics better. Specifically, for debiasing the spatial bias, our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs. Also, our method learns the temporal flow direction of video tokens among consecutive frames for enhancing the correlation toward temporal dynamics. Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.
Evaluation of Geographical Distortions in Language Models: A Crucial Step Towards Equitable Representations
Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
Toward Spatially Unbiased Generative Models
Recent image generation models show remarkable generation performance. However, they mirror strong location preference in datasets, which we call spatial bias. Therefore, generators render poor samples at unseen locations and scales. We argue that the generators rely on their implicit positional encoding to render spatial content. From our observations, the generator's implicit positional encoding is translation-variant, making the generator spatially biased. To address this issue, we propose injecting explicit positional encoding at each scale of the generator. By learning the spatially unbiased generator, we facilitate the robust use of generators in multiple tasks, such as GAN inversion, multi-scale generation, generation of arbitrary sizes and aspect ratios. Furthermore, we show that our method can also be applied to denoising diffusion probabilistic models.
Uformer: A General U-Shaped Transformer for Image Restoration
In this paper, we present Uformer, an effective and efficient Transformer-based architecture for image restoration, in which we build a hierarchical encoder-decoder network using the Transformer block. In Uformer, there are two core designs. First, we introduce a novel locally-enhanced window (LeWin) Transformer block, which performs nonoverlapping window-based self-attention instead of global self-attention. It significantly reduces the computational complexity on high resolution feature map while capturing local context. Second, we propose a learnable multi-scale restoration modulator in the form of a multi-scale spatial bias to adjust features in multiple layers of the Uformer decoder. Our modulator demonstrates superior capability for restoring details for various image restoration tasks while introducing marginal extra parameters and computational cost. Powered by these two designs, Uformer enjoys a high capability for capturing both local and global dependencies for image restoration. To evaluate our approach, extensive experiments are conducted on several image restoration tasks, including image denoising, motion deblurring, defocus deblurring and deraining. Without bells and whistles, our Uformer achieves superior or comparable performance compared with the state-of-the-art algorithms. The code and models are available at https://github.com/ZhendongWang6/Uformer.
RCI: A Score for Evaluating Global and Local Reasoning in Multimodal Benchmarks
Multimodal Large Language Models (MLLMs) have achieved impressive results on vision-language benchmarks, yet it remains unclear whether these benchmarks assess genuine global reasoning or allow success via localized visual cues. Existing evaluation methods do not explicitly measure this distinction, hindering effective dataset curation and real-world focused model development. We introduce Region Comprehension Index (RCI), the first model-based score to directly quantify a dataset's reliance on global versus local visual information. RCI systematically compares reference-model performance on image patches versus full images, revealing if tasks require holistic image understanding or can be solved with partial or localized visual cues. When applying RCI to 13 widely used multimodal benchmarks, we observed that most of them favor localized reasoning and exhibit significant spatial biases, indicating potential risks in real-world applications. RCI equips researchers & practitioners with an actionable tool for diagnosing & mitigating these biases, enabling the construction of datasets and benchmarks to foster the development of robust, enterprise-ready multimodal systems.
Physics-Guided Fair Graph Sampling for Water Temperature Prediction in River Networks
This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups.
Multi-Dimensional Hyena for Spatial Inductive Bias
In recent years, Vision Transformers have attracted increasing interest from computer vision researchers. However, the advantage of these transformers over CNNs is only fully manifested when trained over a large dataset, mainly due to the reduced inductive bias towards spatial locality within the transformer's self-attention mechanism. In this work, we present a data-efficient vision transformer that does not rely on self-attention. Instead, it employs a novel generalization to multiple axes of the very recent Hyena layer. We propose several alternative approaches for obtaining this generalization and delve into their unique distinctions and considerations from both empirical and theoretical perspectives. Our empirical findings indicate that the proposed Hyena N-D layer boosts the performance of various Vision Transformer architectures, such as ViT, Swin, and DeiT across multiple datasets. Furthermore, in the small dataset regime, our Hyena-based ViT is favorable to ViT variants from the recent literature that are specifically designed for solving the same challenge, i.e., working with small datasets or incorporating image-specific inductive bias into the self-attention mechanism. Finally, we show that a hybrid approach that is based on Hyena N-D for the first layers in ViT, followed by layers that incorporate conventional attention, consistently boosts the performance of various vision transformer architectures.
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Light-weight convolutional neural networks (CNNs) are the de-facto for mobile vision tasks. Their spatial inductive biases allow them to learn representations with fewer parameters across different vision tasks. However, these networks are spatially local. To learn global representations, self-attention-based vision trans-formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this paper, we ask the following question: is it possible to combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile vision tasks? Towards this end, we introduce MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters. Our source code is open-source and available at: https://github.com/apple/ml-cvnets
The Power of Linear Combinations: Learning with Random Convolutions
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of learned convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (i.i.d.) nature of default initialization techniques.
LOOPE: Learnable Optimal Patch Order in Positional Embeddings for Vision Transformers
Positional embeddings (PE) play a crucial role in Vision Transformers (ViTs) by providing spatial information otherwise lost due to the permutation invariant nature of self attention. While absolute positional embeddings (APE) have shown theoretical advantages over relative positional embeddings (RPE), particularly due to the ability of sinusoidal functions to preserve spatial inductive biases like monotonicity and shift invariance, a fundamental challenge arises when mapping a 2D grid to a 1D sequence. Existing methods have mostly overlooked or never explored the impact of patch ordering in positional embeddings. To address this, we propose LOOPE, a learnable patch-ordering method that optimizes spatial representation for a given set of frequencies, providing a principled approach to patch order optimization. Empirical results show that our PE significantly improves classification accuracy across various ViT architectures. To rigorously evaluate the effectiveness of positional embeddings, we introduce the "Three Cell Experiment", a novel benchmarking framework that assesses the ability of PEs to retain relative and absolute positional information across different ViT architectures. Unlike standard evaluations, which typically report a performance gap of 4 to 6% between models with and without PE, our method reveals a striking 30 to 35% difference, offering a more sensitive diagnostic tool to measure the efficacy of PEs. Our experimental analysis confirms that the proposed LOOPE demonstrates enhanced effectiveness in retaining both relative and absolute positional information.
Fine-grained Video-Text Retrieval: A New Benchmark and Method
The ability of perceiving fine-grained spatial and temporal information is crucial for video-language retrieval. However, the existing video retrieval benchmarks, such as MSRVTT and MSVD, fail to efficiently evaluate the fine-grained retrieval ability of video-language models (VLMs) due to a lack of detailed annotations. To address this problem, we present FIBER, a FIne-grained BEnchmark for text to video Retrieval, containing 1,000 videos sourced from the FineAction dataset. Uniquely, our FIBER benchmark provides detailed human-annotated spatial annotations and temporal annotations for each video, making it possible to independently evaluate the spatial and temporal bias of VLMs on video retrieval task. Besides, we employ a text embedding method to unlock the capability of fine-grained video-language understanding of Multimodal Large Language Models (MLLMs). Surprisingly, the experiment results show that our Video Large Language Encoder (VLLE) performs comparably to CLIP-based models on traditional benchmarks and has a stronger capability of fine-grained representation with lower spatial-temporal bias. Project page: https://fiber-bench.github.io.
LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models
Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots, such as scalable simulation, scene manipulation, and sparse-to-dense completion of LiDAR point clouds. While existing approaches have demonstrated the feasibility of image-based LiDAR data generation using deep generative models, they still struggle with fidelity and training stability. In this work, we present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds based on the image representation of range and reflectance intensity. Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks in recent years. To effectively train DDPMs in the LiDAR domain, we first conduct an in-depth analysis of data representation, loss functions, and spatial inductive biases. Leveraging our R2DM model, we also introduce a flexible LiDAR completion pipeline based on the powerful capabilities of DDPMs. We demonstrate that our method surpasses existing methods in generating tasks on the KITTI-360 and KITTI-Raw datasets, as well as in the completion task on the KITTI-360 dataset. Our project page can be found at https://kazuto1011.github.io/r2dm.
SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes
The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce Surprise3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. Surprise3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. Surprise3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.
Adapting Pretrained ViTs with Convolution Injector for Visuo-Motor Control
Vision Transformers (ViT), when paired with large-scale pretraining, have shown remarkable performance across various computer vision tasks, primarily due to their weak inductive bias. However, while such weak inductive bias aids in pretraining scalability, this may hinder the effective adaptation of ViTs for visuo-motor control tasks as a result of the absence of control-centric inductive biases. Such absent inductive biases include spatial locality and translation equivariance bias which convolutions naturally offer. To this end, we introduce Convolution Injector (CoIn), an add-on module that injects convolutions which are rich in locality and equivariance biases into a pretrained ViT for effective adaptation in visuo-motor control. We evaluate CoIn with three distinct types of pretrained ViTs (CLIP, MVP, VC-1) across 12 varied control tasks within three separate domains (Adroit, MetaWorld, DMC), and demonstrate that CoIn consistently enhances control task performance across all experimented environments and models, validating the effectiveness of providing pretrained ViTs with control-centric biases.
A Question-Answering Approach to Key Value Pair Extraction from Form-like Document Images
In this paper, we present a new question-answering (QA) based key-value pair extraction approach, called KVPFormer, to robustly extracting key-value relationships between entities from form-like document images. Specifically, KVPFormer first identifies key entities from all entities in an image with a Transformer encoder, then takes these key entities as questions and feeds them into a Transformer decoder to predict their corresponding answers (i.e., value entities) in parallel. To achieve higher answer prediction accuracy, we propose a coarse-to-fine answer prediction approach further, which first extracts multiple answer candidates for each identified question in the coarse stage and then selects the most likely one among these candidates in the fine stage. In this way, the learning difficulty of answer prediction can be effectively reduced so that the prediction accuracy can be improved. Moreover, we introduce a spatial compatibility attention bias into the self-attention/cross-attention mechanism for to better model the spatial interactions between entities. With these new techniques, our proposed achieves state-of-the-art results on FUNSD and XFUND datasets, outperforming the previous best-performing method by 7.2\% and 13.2\% in F1 score, respectively.
Spatial-frequency channels, shape bias, and adversarial robustness
What spatial frequency information do humans and neural networks use to recognize objects? In neuroscience, critical band masking is an established tool that can reveal the frequency-selective filters used for object recognition. Critical band masking measures the sensitivity of recognition performance to noise added at each spatial frequency. Existing critical band masking studies show that humans recognize periodic patterns (gratings) and letters by means of a spatial-frequency filter (or "channel'') that has a frequency bandwidth of one octave (doubling of frequency). Here, we introduce critical band masking as a task for network-human comparison and test 14 humans and 76 neural networks on 16-way ImageNet categorization in the presence of narrowband noise. We find that humans recognize objects in natural images using the same one-octave-wide channel that they use for letters and gratings, making it a canonical feature of human object recognition. On the other hand, the neural network channel, across various architectures and training strategies, is 2-4 times as wide as the human channel. In other words, networks are vulnerable to high and low frequency noise that does not affect human performance. Adversarial and augmented-image training are commonly used to increase network robustness and shape bias. Does this training align network and human object recognition channels? Three network channel properties (bandwidth, center frequency, peak noise sensitivity) correlate strongly with shape bias (53% variance explained) and with robustness of adversarially-trained networks (74% variance explained). Adversarial training increases robustness but expands the channel bandwidth even further away from the human bandwidth. Thus, critical band masking reveals that the network channel is more than twice as wide as the human channel, and that adversarial training only increases this difference.
Benchmarking Spatial Relationships in Text-to-Image Generation
Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a dataset, SR_{2D}, that contains sentences describing two or more objects and the spatial relationships between them. We construct an automated evaluation pipeline to recognize objects and their spatial relationships, and employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgement about spatial understanding. We offer the SR_{2D} dataset and the VISOR metric to the community in support of T2I reasoning research.
Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation
Positional bias (PB), manifesting as non-uniform sensitivity across different contextual locations, significantly impairs long-context comprehension and processing capabilities. While prior work seeks to mitigate PB through modifying the architectures causing its emergence, significant PB still persists. To address PB effectively, we introduce Pos2Distill, a position to position knowledge distillation framework. Pos2Distill transfers the superior capabilities from advantageous positions to less favorable ones, thereby reducing the huge performance gaps. The conceptual principle is to leverage the inherent, position-induced disparity to counteract the PB itself. We identify distinct manifestations of PB under \textsc{r}etrieval and \textsc{r}easoning paradigms, thereby designing two specialized instantiations: Pos2Distill-R\textsuperscript{1} and Pos2Distill-R\textsuperscript{2} respectively, both grounded in this core principle. By employing the Pos2Distill approach, we achieve enhanced uniformity and significant performance gains across all contextual positions in long-context retrieval and reasoning tasks. Crucially, both specialized systems exhibit strong cross-task generalization mutually, while achieving superior performance on their respective tasks.
ReGround: Improving Textual and Spatial Grounding at No Cost
When an image generation process is guided by both a text prompt and spatial cues, such as a set of bounding boxes, do these elements work in harmony, or does one dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to the sequential flow from gated self-attention to cross-attention. We demonstrate that such bias can be significantly mitigated without sacrificing accuracy in either grounding by simply rewiring the network architecture, changing from sequential to parallel for gated self-attention and cross-attention. This surprisingly simple yet effective solution does not require any fine-tuning of the network but significantly reduces the trade-off between the two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding.
Cumulative Spatial Knowledge Distillation for Vision Transformers
Distilling knowledge from convolutional neural networks (CNNs) is a double-edged sword for vision transformers (ViTs). It boosts the performance since the image-friendly local-inductive bias of CNN helps ViT learn faster and better, but leading to two problems: (1) Network designs of CNN and ViT are completely different, which leads to different semantic levels of intermediate features, making spatial-wise knowledge transfer methods (e.g., feature mimicking) inefficient. (2) Distilling knowledge from CNN limits the network convergence in the later training period since ViT's capability of integrating global information is suppressed by CNN's local-inductive-bias supervision. To this end, we present Cumulative Spatial Knowledge Distillation (CSKD). CSKD distills spatial-wise knowledge to all patch tokens of ViT from the corresponding spatial responses of CNN, without introducing intermediate features. Furthermore, CSKD exploits a Cumulative Knowledge Fusion (CKF) module, which introduces the global response of CNN and increasingly emphasizes its importance during the training. Applying CKF leverages CNN's local inductive bias in the early training period and gives full play to ViT's global capability in the later one. Extensive experiments and analysis on ImageNet-1k and downstream datasets demonstrate the superiority of our CSKD. Code will be publicly available.
2-D SSM: A General Spatial Layer for Visual Transformers
A central objective in computer vision is to design models with appropriate 2-D inductive bias. Desiderata for 2D inductive bias include two-dimensional position awareness, dynamic spatial locality, and translation and permutation invariance. To address these goals, we leverage an expressive variation of the multidimensional State Space Model (SSM). Our approach introduces efficient parameterization, accelerated computation, and a suitable normalization scheme. Empirically, we observe that incorporating our layer at the beginning of each transformer block of Vision Transformers (ViT) significantly enhances performance for multiple ViT backbones and across datasets. The new layer is effective even with a negligible amount of additional parameters and inference time. Ablation studies and visualizations demonstrate that the layer has a strong 2-D inductive bias. For example, vision transformers equipped with our layer exhibit effective performance even without positional encoding
SpatialSense: An Adversarially Crowdsourced Benchmark for Spatial Relation Recognition
Understanding the spatial relations between objects in images is a surprisingly challenging task. A chair may be "behind" a person even if it appears to the left of the person in the image (depending on which way the person is facing). Two students that appear close to each other in the image may not in fact be "next to" each other if there is a third student between them. We introduce SpatialSense, a dataset specializing in spatial relation recognition which captures a broad spectrum of such challenges, allowing for proper benchmarking of computer vision techniques. SpatialSense is constructed through adversarial crowdsourcing, in which human annotators are tasked with finding spatial relations that are difficult to predict using simple cues such as 2D spatial configuration or language priors. Adversarial crowdsourcing significantly reduces dataset bias and samples more interesting relations in the long tail compared to existing datasets. On SpatialSense, state-of-the-art recognition models perform comparably to simple baselines, suggesting that they rely on straightforward cues instead of fully reasoning about this complex task. The SpatialSense benchmark provides a path forward to advancing the spatial reasoning capabilities of computer vision systems. The dataset and code are available at https://github.com/princeton-vl/SpatialSense.
PredFormer: Transformers Are Effective Spatial-Temporal Predictive Learners
Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at https://github.com/yyyujintang/PredFormer .
Spatial Implicit Neural Representations for Global-Scale Species Mapping
Estimating the geographical range of a species from sparse observations is a challenging and important geospatial prediction problem. Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location. This problem has a long history in ecology, but traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets which can include tens of millions of records for hundreds of thousands of species. In this work, we use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously. We find that our approach scales gracefully, making increasingly better predictions as we increase the number of species and the amount of data per species when training. To make this problem accessible to machine learning researchers, we provide four new benchmarks that measure different aspects of species range estimation and spatial representation learning. Using these benchmarks, we demonstrate that noisy and biased crowdsourced data can be combined with implicit neural representations to approximate expert-developed range maps for many species.
Exploiting the Signal-Leak Bias in Diffusion Models
There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signal-leak bias is particularly significant when models are tuned to a specific style, causing sub-optimal style matching. Recent research tries to avoid the signal leakage during training. We instead show how we can exploit this signal-leak bias in existing diffusion models to allow more control over the generated images. This enables us to generate images with more varied brightness, and images that better match a desired style or color. By modeling the distribution of the signal leak in the spatial frequency and pixel domains, and including a signal leak in the initial latent, we generate images that better match expected results without any additional training.
Understanding the Spectral Bias of Coordinate Based MLPs Via Training Dynamics
Spectral bias is an important observation of neural network training, stating that the network will learn a low frequency representation of the target function before converging to higher frequency components. This property is interesting due to its link to good generalization in over-parameterized networks. However, in low dimensional settings, a severe spectral bias occurs that obstructs convergence to high frequency components entirely. In order to overcome this limitation, one can encode the inputs using a high frequency sinusoidal encoding. Previous works attempted to explain this phenomenon using Neural Tangent Kernel (NTK) and Fourier analysis. However, NTK does not capture real network dynamics, and Fourier analysis only offers a global perspective on the network properties that induce this bias. In this paper, we provide a novel approach towards understanding spectral bias by directly studying ReLU MLP training dynamics. Specifically, we focus on the connection between the computations of ReLU networks (activation regions), and the speed of gradient descent convergence. We study these dynamics in relation to the spatial information of the signal to understand how they influence spectral bias. We then use this formulation to study the severity of spectral bias in low dimensional settings, and how positional encoding overcomes this.
SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].
The Gravitational Wave Bias Parameter from Angular Power Spectra: Bridging Between Galaxies and Binary Black Holes
This study presents the modeling of the gravitational wave (GW) bias parameter by bridging a connection between simulated GW sources and galaxies in low redshift galaxy surveys 2MPZ and WISExSCOS (WISC). We study this connection by creating a mock GW catalog, populating galaxy surveys with binary black holes (BBHs) for different scenarios of the GW host-galaxy probability as a function of the galaxy stellar mass. We probe the observable consequences of this connection by exploring the spatial clustering of the GW sources in terms of the GW bias parameter. We consider a phenomenological broken power law model for the host-galaxy probability function, with a potential turnover M_{K} at high stellar mass (10^{11} M_{odot} in the fiducial model) where the star formation efficiency begins to drop. We vary the parameters of the GW host-galaxy probability function and find that generically the GW bias increases as M_{K} increases (and gets suppressed as M_{K} decreases). The change in the GW bias parameter shows a maximum change of about 30% for different scenarios explored in this work in comparison to the galaxy bias. Future measurements of the GW bias can help constrain M_{K} and the slopes of the host-galaxy probability function and thus offer insights into the underlying astrophysical processes.
DSI-Bench: A Benchmark for Dynamic Spatial Intelligence
Reasoning about dynamic spatial relationships is essential, as both observers and objects often move simultaneously. Although vision-language models (VLMs) and visual expertise models excel in 2D tasks and static scenarios, their ability to fully understand dynamic 3D scenarios remains limited. We introduce Dynamic Spatial Intelligence and propose DSI-Bench, a benchmark with nearly 1,000 dynamic videos and over 1,700 manually annotated questions covering nine decoupled motion patterns of observers and objects. Spatially and temporally symmetric designs reduce biases and enable systematic evaluation of models' reasoning about self-motion and object motion. Our evaluation of 14 VLMs and expert models reveals key limitations: models often conflate observer and object motion, exhibit semantic biases, and fail to accurately infer relative relationships in dynamic scenarios. Our DSI-Bench provides valuable findings and insights about the future development of general and expertise models with dynamic spatial intelligence.
ConceptScope: Characterizing Dataset Bias via Disentangled Visual Concepts
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
SpinBench: Perspective and Rotation as a Lens on Spatial Reasoning in VLMs
We present SpinBench, a cognitively grounded diagnostic benchmark for evaluating spatial reasoning in vision language models (VLMs). SpinBench is designed around the core challenge of spatial reasoning: perspective taking, the ability to reason about how scenes and object relations change under viewpoint transformation. Since perspective taking requires multiple cognitive capabilities, such as recognizing objects across views, relative positions grounding, and mentally simulating transformations, SpinBench introduces a set of fine-grained diagnostic categories. Our categories target translation, rotation, object relative pose, and viewpoint change, and are progressively structured so that single-object simpler tasks scaffold toward the most demanding multi-object perspective-taking setting. We evaluate 37 state-of-the-art VLMs, both proprietary and open source. Results reveal systematic weaknesses: strong egocentric bias, poor rotational understanding, and inconsistencies under symmetrical and syntactic reformulations. Scaling analysis shows both smooth improvements and emergent capabilities. While human subjects achieve high accuracy (91.2\%), task difficulty as measured by human response time shows strong correlation with VLM accuracy, indicating that SpinBench captures spatial reasoning challenges shared across humans and VLMs. We believe SpinBench provides critical insights into spatial reasoning in VLMs and highlights key gaps in their ability to reason about physical space. Our website can be found at https://spinbench25.github.io/.
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?
For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer has been on the rise. However, the quadratic computational cost of self-attention has become a serious problem in practice applications. There has been much research on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple architecture designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. This leaves open the possibility of incorporating a non-convolutional (or non-local) inductive bias into the architecture, so we used two simple ideas to incorporate inductive bias into the MLP-Mixer while taking advantage of its ability to capture global correlations. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. The small model that is RaftMLP-S is comparable to the state-of-the-art global MLP-based model in terms of parameters and efficiency per calculation. In addition, we tackled the problem of fixed input image resolution for global MLP-based models by utilizing bicubic interpolation. We demonstrated that these models could be applied as the backbone of architectures for downstream tasks such as object detection. However, it did not have significant performance and mentioned the need for MLP-specific architectures for downstream tasks for global MLP-based models. The source code in PyTorch version is available at https://github.com/okojoalg/raft-mlp.
Pathological Truth Bias in Vision-Language Models
Vision Language Models (VLMs) are improving quickly, but standard benchmarks can hide systematic failures that reduce real world trust. We introduce MATS (Multimodal Audit for Truthful Spatialization), a compact behavioral audit that measures whether models reject visually contradicted statements, and two metrics Spatial Consistency Score (SCS) and Incorrect Agreement Rate (IAR). Instruction tuned generative VLMs (LLaVA 1.5, QwenVLchat) exhibit very low SCS and high IAR, while contrastive encoders (CLIP, SigLIP) are far more robust. Activation patching causally localizes failure loci (mid to late cross attention for generative models, pooled projection components for contrastive models) and suggests concrete repair paths.
OBSR: Open Benchmark for Spatial Representations
GeoAI is evolving rapidly, fueled by diverse geospatial datasets like traffic patterns, environmental data, and crowdsourced OpenStreetMap (OSM) information. While sophisticated AI models are being developed, existing benchmarks are often concentrated on single tasks and restricted to a single modality. As such, progress in GeoAI is limited by the lack of a standardized, multi-task, modality-agnostic benchmark for their systematic evaluation. This paper introduces a novel benchmark designed to assess the performance, accuracy, and efficiency of geospatial embedders. Our benchmark is modality-agnostic and comprises 7 distinct datasets from diverse cities across three continents, ensuring generalizability and mitigating demographic biases. It allows for the evaluation of GeoAI embedders on various phenomena that exhibit underlying geographic processes. Furthermore, we establish a simple and intuitive task-oriented model baselines, providing a crucial reference point for comparing more complex solutions.
EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
We present EmerNeRF, a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes. Grounded in neural fields, EmerNeRF simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping. EmerNeRF hinges upon two core components: First, it stratifies scenes into static and dynamic fields. This decomposition emerges purely from self-supervision, enabling our model to learn from general, in-the-wild data sources. Second, EmerNeRF parameterizes an induced flow field from the dynamic field and uses this flow field to further aggregate multi-frame features, amplifying the rendering precision of dynamic objects. Coupling these three fields (static, dynamic, and flow) enables EmerNeRF to represent highly-dynamic scenes self-sufficiently, without relying on ground truth object annotations or pre-trained models for dynamic object segmentation or optical flow estimation. Our method achieves state-of-the-art performance in sensor simulation, significantly outperforming previous methods when reconstructing static (+2.93 PSNR) and dynamic (+3.70 PSNR) scenes. In addition, to bolster EmerNeRF's semantic generalization, we lift 2D visual foundation model features into 4D space-time and address a general positional bias in modern Transformers, significantly boosting 3D perception performance (e.g., 37.50% relative improvement in occupancy prediction accuracy on average). Finally, we construct a diverse and challenging 120-sequence dataset to benchmark neural fields under extreme and highly-dynamic settings.
DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.
SARA: Controllable Makeup Transfer with Spatial Alignment and Region-Adaptive Normalization
Makeup transfer is a process of transferring the makeup style from a reference image to the source images, while preserving the source images' identities. This technique is highly desirable and finds many applications. However, existing methods lack fine-level control of the makeup style, making it challenging to achieve high-quality results when dealing with large spatial misalignments. To address this problem, we propose a novel Spatial Alignment and Region-Adaptive normalization method (SARA) in this paper. Our method generates detailed makeup transfer results that can handle large spatial misalignments and achieve part-specific and shade-controllable makeup transfer. Specifically, SARA comprises three modules: Firstly, a spatial alignment module that preserves the spatial context of makeup and provides a target semantic map for guiding the shape-independent style codes. Secondly, a region-adaptive normalization module that decouples shape and makeup style using per-region encoding and normalization, which facilitates the elimination of spatial misalignments. Lastly, a makeup fusion module blends identity features and makeup style by injecting learned scale and bias parameters. Experimental results show that our SARA method outperforms existing methods and achieves state-of-the-art performance on two public datasets.
PulseCheck457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models
Although large multimodal models (LMMs) have demonstrated remarkable capabilities in visual scene interpretation and reasoning, their capacity for complex and precise 3-dimensional spatial reasoning remains uncertain. Existing benchmarks focus predominantly on 2D spatial understanding and lack a framework to comprehensively evaluate 6D spatial reasoning across varying complexities. To address this limitation, we present PulseCheck457, a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning: multi-object recognition, 2D location, 3D location, and 3D orientation. We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels that range from basic single object recognition to our new proposed complex 6D spatial reasoning tasks. We evaluated various large multimodal models (LMMs) on PulseCheck457, observing a general decline in performance as task complexity increases, particularly in 3D reasoning and 6D spatial tasks. To quantify these challenges, we introduce the Relative Performance Dropping Rate (RPDR), highlighting key weaknesses in 3D reasoning capabilities. Leveraging the unbiased attribute design of our dataset, we also uncover prediction biases across different attributes, with similar patterns observed in real-world image settings.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
Does resistance to style-transfer equal Global Shape Bias? Measuring network sensitivity to global shape configuration
Deep learning models are known to exhibit a strong texture bias, while human tends to rely heavily on global shape structure for object recognition. The current benchmark for evaluating a model's global shape bias is a set of style-transferred images with the assumption that resistance to the attack of style transfer is related to the development of global structure sensitivity in the model. In this work, we show that networks trained with style-transfer images indeed learn to ignore style, but its shape bias arises primarily from local detail. We provide a Disrupted Structure Testbench (DiST) as a direct measurement of global structure sensitivity. Our test includes 2400 original images from ImageNet-1K, each of which is accompanied by two images with the global shapes of the original image disrupted while preserving its texture via the texture synthesis program. We found that black{(1) models that performed well on the previous cue-conflict dataset do not fare well in the proposed DiST; (2) the supervised trained Vision Transformer (ViT) lose its global spatial information from positional embedding, leading to no significant advantages over Convolutional Neural Networks (CNNs) on DiST. While self-supervised learning methods, especially mask autoencoder significantly improves the global structure sensitivity of ViT. (3) Improving the global structure sensitivity is orthogonal to resistance to style-transfer, indicating that the relationship between global shape structure and local texture detail is not an either/or relationship. Training with DiST images and style-transferred images are complementary, and can be combined to train network together to enhance the global shape sensitivity and robustness of local features.} Our code will be hosted in github: https://github.com/leelabcnbc/DiST
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Models
Recently, DALL-E, a multimodal transformer language model, and its variants (including diffusion models) have shown high-quality text-to-image generation capabilities. However, despite the interesting image generation results, there has not been a detailed analysis on how to evaluate such models. In this work, we investigate the visual reasoning capabilities and social biases of different text-to-image models, covering both multimodal transformer language models and diffusion models. First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding. For this, we propose PaintSkills, a compositional diagnostic dataset and evaluation toolkit that measures these skills. In our experiments, there exists a large gap between the performance of recent text-to-image models and the upper bound accuracy in object counting and spatial relation understanding skills. Second, we assess gender and skin tone biases by measuring the variance of the gender/skin tone distribution based on automated and human evaluation. We demonstrate that recent text-to-image models learn specific gender/skin tone biases from web image-text pairs. We hope that our work will help guide future progress in improving text-to-image generation models on visual reasoning skills and learning socially unbiased representations. Code and data: https://github.com/j-min/DallEval
How to Detect Network Dependence in Latent Factor Models? A Bias-Corrected CD Test
In a recent paper Juodis and Reese (2022) (JR) show that the application of the CD test proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection. They propose a randomized test statistic to correct for over-rejection, and add a screening component to achieve power. This paper considers the same problem but from a different perspective, and shows that the standard CD test remains valid if the latent factors are weak in the sense the strength is less than half. In the case where latent factors are strong, we propose a bias-corrected version, CD*, which is shown to be asymptotically standard normal under the null of error cross-sectional independence and have power against network type alternatives. This result is shown to hold for pure latent factor models as well as for panel regression models with latent factors. The case where the errors are serially correlated is also considered. Small sample properties of the CD* test are investigated by Monte Carlo experiments and are shown to have the correct size for strong and weak factors as well as for Gaussian and non-Gaussian errors. In contrast, it is found that JR's test tends to over-reject in the case of panels with non-Gaussian errors, and has low power against spatial network alternatives. In an empirical application, using the CD* test, it is shown that there remains spatial error dependence in a panel data model for real house price changes across 377 Metropolitan Statistical Areas in the U.S., even after the effects of latent factors are filtered out.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
SpaCE: The Spatial Confounding Environment
Spatial confounding poses a significant challenge in scientific studies involving spatial data, where unobserved spatial variables can influence both treatment and outcome, possibly leading to spurious associations. To address this problem, we introduce SpaCE: The Spatial Confounding Environment, the first toolkit to provide realistic benchmark datasets and tools for systematically evaluating causal inference methods designed to alleviate spatial confounding. Each dataset includes training data, true counterfactuals, a spatial graph with coordinates, and smoothness and confounding scores characterizing the effect of a missing spatial confounder. It also includes realistic semi-synthetic outcomes and counterfactuals, generated using state-of-the-art machine learning ensembles, following best practices for causal inference benchmarks. The datasets cover real treatment and covariates from diverse domains, including climate, health and social sciences. SpaCE facilitates an automated end-to-end pipeline, simplifying data loading, experimental setup, and evaluating machine learning and causal inference models. The SpaCE project provides several dozens of datasets of diverse sizes and spatial complexity. It is publicly available as a Python package, encouraging community feedback and contributions.
Template shape estimation: correcting an asymptotic bias
We use tools from geometric statistics to analyze the usual estimation procedure of a template shape. This applies to shapes from landmarks, curves, surfaces, images etc. We demonstrate the asymptotic bias of the template shape estimation using the stratified geometry of the shape space. We give a Taylor expansion of the bias with respect to a parameter sigma describing the measurement error on the data. We propose two bootstrap procedures that quantify the bias and correct it, if needed. They are applicable for any type of shape data. We give a rule of thumb to provide intuition on whether the bias has to be corrected. This exhibits the parameters that control the bias' magnitude. We illustrate our results on simulated and real shape data.
Hierarchical Separable Video Transformer for Snapshot Compressive Imaging
Transformers have achieved the state-of-the-art performance on solving the inverse problem of Snapshot Compressive Imaging (SCI) for video, whose ill-posedness is rooted in the mixed degradation of spatial masking and temporal aliasing. However, previous Transformers lack an insight into the degradation and thus have limited performance and efficiency. In this work, we tailor an efficient reconstruction architecture without temporal aggregation in early layers and Hierarchical Separable Video Transformer (HiSViT) as building block. HiSViT is built by multiple groups of Cross-Scale Separable Multi-head Self-Attention (CSS-MSA) and Gated Self-Modulated Feed-Forward Network (GSM-FFN) with dense connections, each of which is conducted within a separate channel portions at a different scale, for multi-scale interactions and long-range modeling. By separating spatial operations from temporal ones, CSS-MSA introduces an inductive bias of paying more attention within frames instead of between frames while saving computational overheads. GSM-FFN further enhances the locality via gated mechanism and factorized spatial-temporal convolutions. Extensive experiments demonstrate that our method outperforms previous methods by !>!0.5 dB with comparable or fewer parameters and complexity. The source codes and pretrained models are released at https://github.com/pwangcs/HiSViT.
Training for temporal sparsity in deep neural networks, application in video processing
Activation sparsity improves compute efficiency and resource utilization in sparsity-aware neural network accelerators. As the predominant operation in DNNs is multiply-accumulate (MAC) of activations with weights to compute inner products, skipping operations where (at least) one of the two operands is zero can make inference more efficient in terms of latency and power. Spatial sparsification of activations is a popular topic in DNN literature and several methods have already been established to bias a DNN for it. On the other hand, temporal sparsity is an inherent feature of bio-inspired spiking neural networks (SNNs), which neuromorphic processing exploits for hardware efficiency. Introducing and exploiting spatio-temporal sparsity, is a topic much less explored in DNN literature, but in perfect resonance with the trend in DNN, to shift from static signal processing to more streaming signal processing. Towards this goal, in this paper we introduce a new DNN layer (called Delta Activation Layer), whose sole purpose is to promote temporal sparsity of activations during training. A Delta Activation Layer casts temporal sparsity into spatial activation sparsity to be exploited when performing sparse tensor multiplications in hardware. By employing delta inference and ``the usual'' spatial sparsification heuristics during training, the resulting model learns to exploit not only spatial but also temporal activation sparsity (for a given input data distribution). One may use the Delta Activation Layer either during vanilla training or during a refinement phase. We have implemented Delta Activation Layer as an extension of the standard Tensoflow-Keras library, and applied it to train deep neural networks on the Human Action Recognition (UCF101) dataset. We report an almost 3x improvement of activation sparsity, with recoverable loss of model accuracy after longer training.
VLMs as GeoGuessr Masters: Exceptional Performance, Hidden Biases, and Privacy Risks
Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, significant challenges remain, including biases and privacy concerns. To systematically address these issues in the context of geographic information recognition, we introduce a benchmark dataset consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to 53.8% accuracy in city prediction, they exhibit significant regional biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed (-12.5%) and sparsely populated (-17.0%) areas. Moreover, the models exhibit regional biases, frequently overpredicting certain locations; for instance, they consistently predict Sydney for images taken in Australia. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.
Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
STRICT: Stress Test of Rendering Images Containing Text
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce STRICT, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
In Rain or Shine: Understanding and Overcoming Dataset Bias for Improving Robustness Against Weather Corruptions for Autonomous Vehicles
Several popular computer vision (CV) datasets, specifically employed for Object Detection (OD) in autonomous driving tasks exhibit biases due to a range of factors including weather and lighting conditions. These biases may impair a model's generalizability, rendering it ineffective for OD in novel and unseen datasets. Especially, in autonomous driving, it may prove extremely high risk and unsafe for the vehicle and its surroundings. This work focuses on understanding these datasets better by identifying such "good-weather" bias. Methods to mitigate such bias which allows the OD models to perform better and improve the robustness are also demonstrated. A simple yet effective OD framework for studying bias mitigation is proposed. Using this framework, the performance on popular datasets is analyzed and a significant difference in model performance is observed. Additionally, a knowledge transfer technique and a synthetic image corruption technique are proposed to mitigate the identified bias. Finally, using the DAWN dataset, the findings are validated on the OD task, demonstrating the effectiveness of our techniques in mitigating real-world "good-weather" bias. The experiments show that the proposed techniques outperform baseline methods by averaged fourfold improvement.
SegEarth-OV: Towards Traning-Free Open-Vocabulary Segmentation for Remote Sensing Images
Remote sensing image plays an irreplaceable role in fields such as agriculture, water resources, military, and disaster relief. Pixel-level interpretation is a critical aspect of remote sensing image applications; however, a prevalent limitation remains the need for extensive manual annotation. For this, we try to introduce open-vocabulary semantic segmentation (OVSS) into the remote sensing context. However, due to the sensitivity of remote sensing images to low-resolution features, distorted target shapes and ill-fitting boundaries are exhibited in the prediction mask. To tackle this issue, we propose a simple and general upsampler, SimFeatUp, to restore lost spatial information in deep features in a training-free style. Further, based on the observation of the abnormal response of local patch tokens to [CLS] token in CLIP, we propose to execute a straightforward subtraction operation to alleviate the global bias in patch tokens. Extensive experiments are conducted on 17 remote sensing datasets spanning semantic segmentation, building extraction, road detection, and flood detection tasks. Our method achieves an average of 5.8%, 8.2%, 4%, and 15.3% improvement over state-of-the-art methods on 4 tasks. All codes are released. https://earth-insights.github.io/SegEarth-OV
Video Swin Transformer
The vision community is witnessing a modeling shift from CNNs to Transformers, where pure Transformer architectures have attained top accuracy on the major video recognition benchmarks. These video models are all built on Transformer layers that globally connect patches across the spatial and temporal dimensions. In this paper, we instead advocate an inductive bias of locality in video Transformers, which leads to a better speed-accuracy trade-off compared to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of the proposed video architecture is realized by adapting the Swin Transformer designed for the image domain, while continuing to leverage the power of pre-trained image models. Our approach achieves state-of-the-art accuracy on a broad range of video recognition benchmarks, including on action recognition (84.9 top-1 accuracy on Kinetics-400 and 86.1 top-1 accuracy on Kinetics-600 with ~20x less pre-training data and ~3x smaller model size) and temporal modeling (69.6 top-1 accuracy on Something-Something v2). The code and models will be made publicly available at https://github.com/SwinTransformer/Video-Swin-Transformer.
Error-Driven Scene Editing for 3D Grounding in Large Language Models
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.
Learning De-biased Representations with Biased Representations
Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at https://github.com/clovaai/rebias.
Coordinate-Aware Modulation for Neural Fields
Neural fields, mapping low-dimensional input coordinates to corresponding signals, have shown promising results in representing various signals. Numerous methodologies have been proposed, and techniques employing MLPs and grid representations have achieved substantial success. MLPs allow compact and high expressibility, yet often suffer from spectral bias and slow convergence speed. On the other hand, methods using grids are free from spectral bias and achieve fast training speed, however, at the expense of high spatial complexity. In this work, we propose a novel way for exploiting both MLPs and grid representations in neural fields. Unlike the prevalent methods that combine them sequentially (extract features from the grids first and feed them to the MLP), we inject spectral bias-free grid representations into the intermediate features in the MLP. More specifically, we suggest a Coordinate-Aware Modulation (CAM), which modulates the intermediate features using scale and shift parameters extracted from the grid representations. This can maintain the strengths of MLPs while mitigating any remaining potential biases, facilitating the rapid learning of high-frequency components. In addition, we empirically found that the feature normalizations, which have not been successful in neural filed literature, proved to be effective when applied in conjunction with the proposed CAM. Experimental results demonstrate that CAM enhances the performance of neural representation and improves learning stability across a range of signals. Especially in the novel view synthesis task, we achieved state-of-the-art performance with the least number of parameters and fast training speed for dynamic scenes and the best performance under 1MB memory for static scenes. CAM also outperforms the best-performing video compression methods using neural fields by a large margin.
EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States
Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains a challenging task for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning, which requires multi-hop reasoning about characters' beliefs. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured representations of entity states, which construct spatial scene graphs -- leveraging spatial information as an inductive bias -- for belief tracking of various ToM orders and enhancing events with fine-grained entity state details. Experimental results on multiple benchmarks, including ToMi, HiToM, and FANToM, show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
VRoPE: Rotary Position Embedding for Video Large Language Models
Rotary Position Embedding (RoPE) has shown strong performance in text-based Large Language Models (LLMs), but extending it to video remains a challenge due to the intricate spatiotemporal structure of video frames. Existing adaptations, such as RoPE-3D, attempt to encode spatial and temporal dimensions separately but suffer from two major limitations: positional bias in attention distribution and disruptions in video-text transitions. To overcome these issues, we propose Video Rotary Position Embedding (VRoPE), a novel positional encoding method tailored for Video-LLMs. Our approach restructures positional indices to preserve spatial coherence and ensure a smooth transition between video and text tokens. Additionally, we introduce a more balanced encoding strategy that mitigates attention biases, ensuring a more uniform distribution of spatial focus. Extensive experiments on Vicuna and Qwen2 across different model scales demonstrate that VRoPE consistently outperforms previous RoPE variants, achieving significant improvements in video understanding, temporal reasoning, and retrieval tasks. Code will be available at https://github.com/johncaged/VRoPE
MambaEye: A Size-Agnostic Visual Encoder with Causal Sequential Processing
Despite decades of progress, a truly input-size agnostic visual encoder-a fundamental characteristic of human vision-has remained elusive. We address this limitation by proposing MambaEye, a novel, causal sequential encoder that leverages the low complexity and causal-process based pure Mamba2 backbone. Unlike previous Mamba-based vision encoders that often employ bidirectional processing, our strictly unidirectional approach preserves the inherent causality of State Space Models, enabling the model to generate a prediction at any point in its input sequence. A core innovation is our use of relative move embedding, which encodes the spatial shift between consecutive patches, providing a strong inductive bias for translation invariance and making the model inherently adaptable to arbitrary image resolutions and scanning patterns. To achieve this, we introduce a novel diffusion-inspired loss function that provides dense, step-wise supervision, training the model to build confidence as it gathers more visual evidence. We demonstrate that MambaEye exhibits robust performance across a wide range of image resolutions, especially at higher resolutions such as 1536^2 on the ImageNet-1K classification task. This feat is achieved while maintaining linear time and memory complexity relative to the number of patches.
Density-invariant Features for Distant Point Cloud Registration
Registration of distant outdoor LiDAR point clouds is crucial to extending the 3D vision of collaborative autonomous vehicles, and yet is challenging due to small overlapping area and a huge disparity between observed point densities. In this paper, we propose Group-wise Contrastive Learning (GCL) scheme to extract density-invariant geometric features to register distant outdoor LiDAR point clouds. We mark through theoretical analysis and experiments that, contrastive positives should be independent and identically distributed (i.i.d.), in order to train densityinvariant feature extractors. We propose upon the conclusion a simple yet effective training scheme to force the feature of multiple point clouds in the same spatial location (referred to as positive groups) to be similar, which naturally avoids the sampling bias introduced by a pair of point clouds to conform with the i.i.d. principle. The resulting fully-convolutional feature extractor is more powerful and density-invariant than state-of-the-art methods, improving the registration recall of distant scenarios on KITTI and nuScenes benchmarks by 40.9% and 26.9%, respectively. Code is available at https://github.com/liuQuan98/GCL.
GeoRDF2Vec Learning Location-Aware Entity Representations in Knowledge Graphs
Many knowledge graphs contain a substantial number of spatial entities, such as cities, buildings, and natural landmarks. For many of these entities, exact geometries are stored within the knowledge graphs. However, most existing approaches for learning entity representations do not take these geometries into account. In this paper, we introduce a variant of RDF2Vec that incorporates geometric information to learn location-aware embeddings of entities. Our approach expands different nodes by flooding the graph from geographic nodes, ensuring that each reachable node is considered. Based on the resulting flooded graph, we apply a modified version of RDF2Vec that biases graph walks using spatial weights. Through evaluations on multiple benchmark datasets, we demonstrate that our approach outperforms both non-location-aware RDF2Vec and GeoTransE.
PriorCLIP: Visual Prior Guided Vision-Language Model for Remote Sensing Image-Text Retrieval
Remote sensing image-text retrieval plays a crucial role in remote sensing interpretation, yet remains challenging under both closed-domain and open-domain scenarios due to semantic noise and domain shifts. To address these issues, we propose a visual prior-guided vision-language model, PriorCLIP, which leverages visual priors for unbiased representation learning and adaptive vision-language alignment. In the closed-domain setting, PriorCLIP introduces two Progressive Attention Encoder (PAE) structures: Spatial-PAE constructs a belief matrix with instruction embeddings to filter key features and mitigate semantic bias. At the same time, Temporal-PAE exploits cyclic activation across time steps to enhance text representation. For the open-domain setting, we design a two-stage prior representation learning strategy, consisting of large-scale pre-training on coarse-grained image-text pairs, followed by fine-tuning on fine-grained pairs using vision-instruction, which enables robust retrieval across long-tail concepts and vocabulary shifts. Furthermore, a cluster-based symmetric contrastive Attribution Loss is proposed to constrain inter-class relations and alleviate semantic confusion in the shared embedding space. Extensive experiments on RSICD and RSITMD benchmarks demonstrate that PriorCLIP achieves substantial improvements, outperforming existing methods by 4.9% and 4.0% in closed-domain retrieval, and by 7.3% and 9.4% in open-domain retrieval, respectively.
Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions
Contemporary diffusion models built upon U-Net or Diffusion Transformer (DiT) architectures have revolutionized image generation through transformer-based attention mechanisms. The prevailing paradigm has commonly employed self-attention with quadratic computational complexity to handle global spatial relationships in complex images, thereby synthesizing high-fidelity images with coherent visual semantics.Contrary to conventional wisdom, our systematic layer-wise analysis reveals an interesting discrepancy: self-attention in pre-trained diffusion models predominantly exhibits localized attention patterns, closely resembling convolutional inductive biases. This suggests that global interactions in self-attention may be less critical than commonly assumed.Driven by this, we propose \(\Delta\)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks (\(\Delta\)ConvBlocks).By distilling attention patterns into localized convolutional operations while keeping other components frozen, \(\Delta\)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929times and surpassing LinFusion by 5.42times in efficiency--all without compromising generative fidelity.
EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.
Regressor-Segmenter Mutual Prompt Learning for Crowd Counting
Crowd counting has achieved significant progress by training regressors to predict instance positions. In heavily crowded scenarios, however, regressors are challenged by uncontrollable annotation variance, which causes density map bias and context information inaccuracy. In this study, we propose mutual prompt learning (mPrompt), which leverages a regressor and a segmenter as guidance for each other, solving bias and inaccuracy caused by annotation variance while distinguishing foreground from background. In specific, mPrompt leverages point annotations to tune the segmenter and predict pseudo head masks in a way of point prompt learning. It then uses the predicted segmentation masks, which serve as spatial constraint, to rectify biased point annotations as context prompt learning. mPrompt defines a way of mutual information maximization from prompt learning, mitigating the impact of annotation variance while improving model accuracy. Experiments show that mPrompt significantly reduces the Mean Average Error (MAE), demonstrating the potential to be general framework for down-stream vision tasks.
Hidden Biases of End-to-End Driving Models
End-to-end driving systems have recently made rapid progress, in particular on CARLA. Independent of their major contribution, they introduce changes to minor system components. Consequently, the source of improvements is unclear. We identify two biases that recur in nearly all state-of-the-art methods and are critical for the observed progress on CARLA: (1) lateral recovery via a strong inductive bias towards target point following, and (2) longitudinal averaging of multimodal waypoint predictions for slowing down. We investigate the drawbacks of these biases and identify principled alternatives. By incorporating our insights, we develop TF++, a simple end-to-end method that ranks first on the Longest6 and LAV benchmarks, gaining 14 driving score over the best prior work on Longest6.
Geopolitical biases in LLMs: what are the "good" and the "bad" countries according to contemporary language models
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.
Emergent Properties of Foveated Perceptual Systems
The goal of this work is to characterize the representational impact that foveation operations have for machine vision systems, inspired by the foveated human visual system, which has higher acuity at the center of gaze and texture-like encoding in the periphery. To do so, we introduce models consisting of a first-stage fixed image transform followed by a second-stage learnable convolutional neural network, and we varied the first stage component. The primary model has a foveated-textural input stage, which we compare to a model with foveated-blurred input and a model with spatially-uniform blurred input (both matched for perceptual compression), and a final reference model with minimal input-based compression. We find that: 1) the foveated-texture model shows similar scene classification accuracy as the reference model despite its compressed input, with greater i.i.d. generalization than the other models; 2) the foveated-texture model has greater sensitivity to high-spatial frequency information and greater robustness to occlusion, w.r.t the comparison models; 3) both the foveated systems, show a stronger center image-bias relative to the spatially-uniform systems even with a weight sharing constraint. Critically, these results are preserved over different classical CNN architectures throughout their learning dynamics. Altogether, this suggests that foveation with peripheral texture-based computations yields an efficient, distinct, and robust representational format of scene information, and provides symbiotic computational insight into the representational consequences that texture-based peripheral encoding may have for processing in the human visual system, while also potentially inspiring the next generation of computer vision models via spatially-adaptive computation. Code + Data available here: https://github.com/ArturoDeza/EmergentProperties
E-MoFlow: Learning Egomotion and Optical Flow from Event Data via Implicit Regularization
The estimation of optical flow and 6-DoF ego-motion, two fundamental tasks in 3D vision, has typically been addressed independently. For neuromorphic vision (e.g., event cameras), however, the lack of robust data association makes solving the two problems separately an ill-posed challenge, especially in the absence of supervision via ground truth. Existing works mitigate this ill-posedness by either enforcing the smoothness of the flow field via an explicit variational regularizer or leveraging explicit structure-and-motion priors in the parametrization to improve event alignment. The former notably introduces bias in results and computational overhead, while the latter, which parametrizes the optical flow in terms of the scene depth and the camera motion, often converges to suboptimal local minima. To address these issues, we propose an unsupervised framework that jointly optimizes egomotion and optical flow via implicit spatial-temporal and geometric regularization. First, by modeling camera's egomotion as a continuous spline and optical flow as an implicit neural representation, our method inherently embeds spatial-temporal coherence through inductive biases. Second, we incorporate structure-and-motion priors through differential geometric constraints, bypassing explicit depth estimation while maintaining rigorous geometric consistency. As a result, our framework (called E-MoFlow) unifies egomotion and optical flow estimation via implicit regularization under a fully unsupervised paradigm. Experiments demonstrate its versatility to general 6-DoF motion scenarios, achieving state-of-the-art performance among unsupervised methods and competitive even with supervised approaches.
A Surprising Failure? Multimodal LLMs and the NLVR Challenge
This study evaluates three state-of-the-art MLLMs -- GPT-4V, Gemini Pro, and the open-source model IDEFICS -- on the compositional natural language vision reasoning task NLVR. Given a human-written sentence paired with a synthetic image, this task requires the model to determine the truth value of the sentence with respect to the image. Despite the strong performance demonstrated by these models, we observe they perform poorly on NLVR, which was constructed to require compositional and spatial reasoning, and to be robust for semantic and systematic biases.
Towards Human-AI Collaborative Urban Science Research Enabled by Pre-trained Large Language Models
Pre-trained large language models (PLMs) have the potential to support urban science research through content creation, information extraction, assisted programming, text classification, and other technical advances. In this research, we explored the opportunities, challenges, and prospects of PLMs in urban science research. Specifically, we discussed potential applications of PLMs to urban institution, urban space, urban information, and citizen behaviors research through seven examples using ChatGPT. We also examined the challenges of PLMs in urban science research from both technical and social perspectives. The prospects of the application of PLMs in urban science research were then proposed. We found that PLMs can effectively aid in understanding complex concepts in urban science, facilitate urban spatial form identification, assist in disaster monitoring, and sense public sentiment. At the same time, however, the applications of PLMs in urban science research face evident threats, such as technical limitations, security, privacy, and social bias. The development of fundamental models based on domain knowledge and human-AI collaboration may help improve PLMs to support urban science research in future.
Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets
There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets, which is concluded to the lack of inductive bias. In this paper, we further consider this problem and point out two weaknesses of ViTs in inductive biases, that is, the spatial relevance and diverse channel representation. First, on spatial aspect, objects are locally compact and relevant, thus fine-grained feature needs to be extracted from a token and its neighbors. While the lack of data hinders ViTs to attend the spatial relevance. Second, on channel aspect, representation exhibits diversity on different channels. But the scarce data can not enable ViTs to learn strong enough representation for accurate recognition. To this end, we propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases. On spatial aspect, we adopt a hybrid structure, in which convolution is integrated into patch embedding and multi-layer perceptron module, forcing the model to capture the token features as well as their neighboring features. On channel aspect, we introduce a dynamic feature aggregation module in MLP and a brand new "head token" design in multi-head self-attention module to help re-calibrate channel representation and make different channel group representation interacts with each other. The fusion of weak channel representation forms a strong enough representation for classification. With this design, we successfully eliminate the performance gap between CNNs and ViTs, and our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters. Code is available at https://github.com/ArieSeirack/DHVT.
Punching Bag vs. Punching Person: Motion Transferability in Videos
Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts, even within similar distributions? For example, can a model recognize the broad action "punching" when presented with an unseen variation such as "punching person"? To explore this, we introduce a motion transferability framework with three datasets: (1) Syn-TA, a synthetic dataset with 3D object motions; (2) Kinetics400-TA; and (3) Something-Something-v2-TA, both adapted from natural video datasets. We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts. Our analysis reveals: 1) Multimodal models struggle more with fine-grained unknown actions than with coarse ones; 2) The bias-free Syn-TA proves as challenging as real-world datasets, with models showing greater performance drops in controlled settings; 3) Larger models improve transferability when spatial cues dominate but struggle with intensive temporal reasoning, while reliance on object and background cues hinders generalization. We further explore how disentangling coarse and fine motions can improve recognition in temporally challenging datasets. We believe this study establishes a crucial benchmark for assessing motion transferability in action recognition. Datasets and relevant code: https://github.com/raiyaan-abdullah/Motion-Transfer.
HRVMamba: High-Resolution Visual State Space Model for Dense Prediction
Recently, State Space Models (SSMs) with efficient hardware-aware designs, i.e., Mamba, have demonstrated significant potential in computer vision tasks due to their linear computational complexity with respect to token length and their global receptive field. However, Mamba's performance on dense prediction tasks, including human pose estimation and semantic segmentation, has been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation. To address these challenges, we introduce the Dynamic Visual State Space (DVSS) block, which utilizes multi-scale convolutional kernels to extract local features across different scales and enhance inductive bias, and employs deformable convolution to mitigate the long-range forgetting problem while enabling adaptive spatial aggregation based on input and task-specific information. By leveraging the multi-resolution parallel design proposed in HRNet, we introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process while promoting effective multi-scale feature learning. Extensive experiments highlight HRVMamba's impressive performance on dense prediction tasks, achieving competitive results against existing benchmark models without bells and whistles. Code is available at https://github.com/zhanghao5201/HRVMamba.
SITE: towards Spatial Intelligence Thorough Evaluation
Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships, underpinning disciplines from neuroscience to robotics. We introduce SITE, a benchmark dataset towards SI Thorough Evaluation in a standardized format of multi-choice visual question-answering, designed to assess large vision-language models' spatial intelligence across diverse visual modalities (single-image, multi-image, and video) and SI factors (figural to environmental scales, spatial visualization and orientation, intrinsic and extrinsic, static and dynamic). Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science, which prompt us to design two novel types of tasks about view-taking and dynamic scenes. Extensive experiments reveal that leading models fall behind human experts especially in spatial orientation, a fundamental SI factor. Moreover, we demonstrate a positive correlation between a model's spatial reasoning proficiency and its performance on an embodied AI task.
Are Vision Language Models Texture or Shape Biased and Can We Steer Them?
Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision - specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested VLMs.
OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
Measuring Social Biases in Grounded Vision and Language Embeddings
We generalize the notion of social biases from language embeddings to grounded vision and language embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting extending standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas
Large Vision Language Models (VLMs) have long struggled with spatial reasoning tasks. Surprisingly, even simple spatial reasoning tasks, such as recognizing "under" or "behind" relationships between only two objects, pose significant challenges for current VLMs. In this work, we study the spatial reasoning challenge from the lens of mechanistic interpretability, diving into the model's internal states to examine the interactions between image and text tokens. By tracing attention distribution over the image through out intermediate layers, we observe that successful spatial reasoning correlates strongly with the model's ability to align its attention distribution with actual object locations, particularly differing between familiar and unfamiliar spatial relationships. Motivated by these findings, we propose ADAPTVIS based on inference-time confidence scores to sharpen the attention on highly relevant regions when confident, while smoothing and broadening the attention window to consider a wider context when confidence is lower. This training-free decoding method shows significant improvement (e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such as WhatsUp and VSR with negligible cost. We make code and data publicly available for research purposes at https://github.com/shiqichen17/AdaptVis.
Eliminating Position Bias of Language Models: A Mechanistic Approach
Position bias has proven to be a prevalent issue of modern language models (LMs), where the models prioritize content based on its position within the given context. This bias often leads to unexpected model failures and hurts performance, robustness, and reliability across various applications. Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings. Specifically, we find that causal attention generally causes models to favor distant content, while relative positional encodings like RoPE prefer nearby ones based on the analysis of retrieval-augmented question answering (QA). Further, our empirical study on object detection reveals that position bias is also present in vision-language models (VLMs). Based on the above analyses, we propose to ELIMINATE position bias caused by different input segment orders (e.g., options in LM-as-a-judge, retrieved documents in QA) in a TRAINING-FREE ZERO-SHOT manner. Our method changes the causal attention to bidirectional attention between segments and utilizes model attention values to decide the relative orders of segments instead of using the order provided in input prompts, therefore enabling Position-INvariant inferencE (PINE) at the segment level. By eliminating position bias, models achieve better performance and reliability in downstream tasks where position bias widely exists, such as LM-as-a-judge and retrieval-augmented QA. Notably, PINE is especially useful when adapting LMs for evaluating reasoning pairs: it consistently provides 8 to 10 percentage points performance gains in most cases, and makes Llama-3-70B-Instruct perform even better than GPT-4-0125-preview on the RewardBench reasoning subset.
A Multifaceted Analysis of Negative Bias in Large Language Models through the Lens of Parametric Knowledge
Negative bias refers to the tendency of large language models (LLMs) to excessively generate negative responses in binary decision tasks (e.g., yes-no question answering). Previous research has focused on detecting and addressing negative attention heads that induce negative bias. However, the underlying detailed factors influencing negative bias remain underexplored. In this paper, we demonstrate that LLMs exhibit format-level negative bias, meaning the prompt format more influences their responses than the semantics of the negative response. For the fine-grained study of the negative bias, we introduce a pipeline for constructing the evaluation set, which systematically categorizes the dataset into three subsets based on the model's parametric knowledge: correct, incorrect, and insufficient relevant knowledge. Through analysis of this evaluation set, we identify a shortcut behavior in which models tend to generate negative responses when they lack sufficient knowledge to answer a yes-no question, leading to negative bias. We further examine how negative bias changes under various prompting scenarios related to parametric knowledge. We observe that providing relevant context and offering an "I don't know" option generally reduces negative bias, whereas chain-of-thought prompting tends to amplify the bias. Finally, we demonstrate that the degree of negative bias can vary depending on the type of prompt, which influences the direction of the response. Our work reveals the various factors that influence negative bias, providing critical insights for mitigating it in LLMs.
Understanding Bias in Large-Scale Visual Datasets
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Quantifying Spatial Audio Quality Impairment
Spatial audio quality is a highly multifaceted concept, with many interactions between environmental, geometrical, anatomical, psychological, and contextual considerations. Methods for characterization or evaluation of the geometrical components of spatial audio quality, however, remain scarce, despite being perhaps the least subjective aspect of spatial audio quality to quantify. By considering interchannel time and level differences relative to a reference signal, it is possible to construct a signal model to isolate some of the spatial distortion. By using a combination of least-square optimization and heuristics, we propose a signal decomposition method to isolate the spatial error from a processed signal, in terms of interchannel gain leakages and changes in relative delays. This allows the computation of simple energy-ratio metrics, providing objective measures of spatial and non-spatial signal qualities, with minimal assumptions and no dataset dependency. Experiments demonstrate the robustness of the method against common spatial signal degradation introduced by, e.g., audio compression and music source separation. Implementation is available at https://github.com/karnwatcharasupat/spauq.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Deep neural networks (DNNs) often rely on easy-to-learn discriminatory features, or cues, that are not necessarily essential to the problem at hand. For example, ducks in an image may be recognized based on their typical background scenery, such as lakes or streams. This phenomenon, also known as shortcut learning, is emerging as a key limitation of the current generation of machine learning models. In this work, we introduce a set of experiments to deepen our understanding of shortcut learning and its implications. We design a training setup with several shortcut cues, named WCST-ML, where each cue is equally conducive to the visual recognition problem at hand. Even under equal opportunities, we observe that (1) certain cues are preferred to others, (2) solutions biased to the easy-to-learn cues tend to converge to relatively flat minima on the loss surface, and (3) the solutions focusing on those preferred cues are far more abundant in the parameter space. We explain the abundance of certain cues via their Kolmogorov (descriptional) complexity: solutions corresponding to Kolmogorov-simple cues are abundant in the parameter space and are thus preferred by DNNs. Our studies are based on the synthetic dataset DSprites and the face dataset UTKFace. In our WCST-ML, we observe that the inborn bias of models leans toward simple cues, such as color and ethnicity. Our findings emphasize the importance of active human intervention to remove the inborn model biases that may cause negative societal impacts.
COBIAS: Contextual Reliability in Bias Assessment
Large Language Models (LLMs) are trained on extensive web corpora, which enable them to understand and generate human-like text. However, this training process also results in inherent biases within the models. These biases arise from web data's diverse and often uncurated nature, containing various stereotypes and prejudices. Previous works on debiasing models rely on benchmark datasets to measure their method's performance. However, these datasets suffer from several pitfalls due to the highly subjective understanding of bias, highlighting a critical need for contextual exploration. We propose understanding the context of inputs by considering the diverse situations in which they may arise. Our contribution is two-fold: (i) we augment 2,291 stereotyped statements from two existing bias-benchmark datasets with points for adding context; (ii) we develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to assess a statement's contextual reliability in measuring bias. Our metric aligns with human judgment on contextual reliability of statements (Spearman's rho = 0.65, p = 3.4 * 10^{-60}) and can be used to create reliable datasets, which would assist bias mitigation works.
Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases
Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.
Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective
Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.
How far can bias go? -- Tracing bias from pretraining data to alignment
As LLMs are increasingly integrated into user-facing applications, addressing biases that perpetuate societal inequalities is crucial. While much work has gone into measuring or mitigating biases in these models, fewer studies have investigated their origins. Therefore, this study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs, focusing on the Dolma dataset and the OLMo model. Using zero-shot prompting and token co-occurrence analyses, we explore how biases in training data influence model outputs. Our findings reveal that biases present in pre-training data are amplified in model outputs. The study also examines the effects of prompt types, hyperparameters, and instruction-tuning on bias expression, finding instruction-tuning partially alleviating representational bias while still maintaining overall stereotypical gender associations, whereas hyperparameters and prompting variation have a lesser effect on bias expression. Our research traces bias throughout the LLM development pipeline and underscores the importance of mitigating bias at the pretraining stage.
Global urban visual perception varies across demographics and personalities
Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators (safe, lively, wealthy, beautiful, boring, depressing) and four new ones (live nearby, walk, cycle, green). Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
Defining and Evaluating Visual Language Models' Basic Spatial Abilities: A Perspective from Psychometrics
The Theory of Multiple Intelligences underscores the hierarchical nature of cognitive capabilities. To advance Spatial Artificial Intelligence, we pioneer a psychometric framework defining five Basic Spatial Abilities (BSAs) in Visual Language Models (VLMs): Spatial Perception, Spatial Relation, Spatial Orientation, Mental Rotation, and Spatial Visualization. Benchmarking 13 mainstream VLMs through nine validated psychometric experiments reveals significant gaps versus humans (average score 24.95 vs. 68.38), with three key findings: 1) VLMs mirror human hierarchies (strongest in 2D orientation, weakest in 3D rotation) with independent BSAs (Pearson's r<0.4); 2) Smaller models such as Qwen2-VL-7B surpass larger counterparts, with Qwen leading (30.82) and InternVL2 lagging (19.6); 3) Interventions like chain-of-thought (0.100 accuracy gain) and 5-shot training (0.259 improvement) show limits from architectural constraints. Identified barriers include weak geometry encoding and missing dynamic simulation. By linking psychometric BSAs to VLM capabilities, we provide a diagnostic toolkit for spatial intelligence evaluation, methodological foundations for embodied AI development, and a cognitive science-informed roadmap for achieving human-like spatial intelligence.
Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
GIVL: Improving Geographical Inclusivity of Vision-Language Models with Pre-Training Methods
A key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical region. In fact, a significant proportion of knowledge is locally shared by people from certain regions but may not apply equally in other regions because of cultural differences. If a model is unaware of regional characteristics, it may lead to performance disparity across regions and result in bias against underrepresented groups. We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model. There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories. Motivated by the attributes, we design new pre-training objectives Image Knowledge Matching (IKM) and Image Edit Checking (IEC) to pre-train GIVL. Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
Quantifying Bias in Text-to-Image Generative Models
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Addressing Correlated Latent Exogenous Variables in Debiased Recommender Systems
Recommendation systems (RS) aim to provide personalized content, but they face a challenge in unbiased learning due to selection bias, where users only interact with items they prefer. This bias leads to a distorted representation of user preferences, which hinders the accuracy and fairness of recommendations. To address the issue, various methods such as error imputation based, inverse propensity scoring, and doubly robust techniques have been developed. Despite the progress, from the structural causal model perspective, previous debiasing methods in RS assume the independence of the exogenous variables. In this paper, we release this assumption and propose a learning algorithm based on likelihood maximization to learn a prediction model. We first discuss the correlation and difference between unmeasured confounding and our scenario, then we propose a unified method that effectively handles latent exogenous variables. Specifically, our method models the data generation process with latent exogenous variables under mild normality assumptions. We then develop a Monte Carlo algorithm to numerically estimate the likelihood function. Extensive experiments on synthetic datasets and three real-world datasets demonstrate the effectiveness of our proposed method. The code is at https://github.com/WallaceSUI/kdd25-background-variable.
A Closer Look at AUROC and AUPRC under Class Imbalance
In machine learning (ML), a widespread adage is that the area under the precision-recall curve (AUPRC) is a superior metric for model comparison to the area under the receiver operating characteristic (AUROC) for binary classification tasks with class imbalance. This paper challenges this notion through novel mathematical analysis, illustrating that AUROC and AUPRC can be concisely related in probabilistic terms. We demonstrate that AUPRC, contrary to popular belief, is not superior in cases of class imbalance and might even be a harmful metric, given its inclination to unduly favor model improvements in subpopulations with more frequent positive labels. This bias can inadvertently heighten algorithmic disparities. Prompted by these insights, a thorough review of existing ML literature was conducted, utilizing large language models to analyze over 1.5 million papers from arXiv. Our investigation focused on the prevalence and substantiation of the purported AUPRC superiority. The results expose a significant deficit in empirical backing and a trend of misattributions that have fuelled the widespread acceptance of AUPRC's supposed advantages. Our findings represent a dual contribution: a significant technical advancement in understanding metric behaviors and a stark warning about unchecked assumptions in the ML community. All experiments are accessible at https://github.com/mmcdermott/AUC_is_all_you_need.
Mind the gap in university rankings: a complex network approach towards fairness
University rankings are increasingly adopted for academic comparison and success quantification, even to establish performance-based criteria for funding assignment. However, rankings are not neutral tools, and their use frequently overlooks disparities in the starting conditions of institutions. In this research, we detect and measure structural biases that affect in inhomogeneous ways the ranking outcomes of universities from diversified territorial and educational contexts. Moreover, we develop a fairer rating system based on a fully data-driven debiasing strategy that returns an equity-oriented redefinition of the achieved scores. The key idea consists in partitioning universities in similarity groups, determined from multifaceted data using complex network analysis, and referring the performance of each institution to an expectation based on its peers. Significant evidence of territorial biases emerges for official rankings concerning both the OECD and Italian university systems, hence debiasing provides relevant insights suggesting the design of fairer strategies for performance-based funding allocations.
Q_{bias} -- A Dataset on Media Bias in Search Queries and Query Suggestions
This publication describes the motivation and generation of Q_{bias}, a large dataset of Google and Bing search queries, a scraping tool and dataset for biased news articles, as well as language models for the investigation of bias in online search. Web search engines are a major factor and trusted source in information search, especially in the political domain. However, biased information can influence opinion formation and lead to biased opinions. To interact with search engines, users formulate search queries and interact with search query suggestions provided by the search engines. A lack of datasets on search queries inhibits research on the subject. We use Q_{bias} to evaluate different approaches to fine-tuning transformer-based language models with the goal of producing models capable of biasing text with left and right political stance. Additionally to this work we provided datasets and language models for biasing texts that allow further research on bias in online information search.
Chinese vs. World Bank Development Projects: Insights from Earth Observation and Computer Vision on Wealth Gains in Africa, 2002-2013
Debates about whether development projects improve living conditions persist, partly because observational estimates can be biased by incomplete adjustment and because reliable outcome data are scarce at the neighborhood level. We address both issues in a continent-scale, sector-specific evaluation of Chinese and World Bank projects across 9,899 neighborhoods in 36 African countries (2002 to 2013), representative of 88% of the population. First, we use a recent dataset that measures living conditions with a machine-learned wealth index derived from contemporaneous satellite imagery, yielding a consistent panel of 6.7 km square mosaics. Second, to strengthen identification, we proxy officials' map-based placement criteria using pre-treatment daytime satellite images and fuse these with rich tabular covariates to estimate funder- and sector-specific ATEs via inverse-probability weighting. Incorporating imagery systematically shrinks effects relative to tabular-only models, indicating prior work likely overstated benefits. On average, both donors raise wealth, with larger gains for China; sector extremes in our sample include Trade and Tourism for the World Bank (+6.27 IWI points), and Emergency Response for China (+14.32). Assignment-mechanism analyses show World Bank placement is generally more predictable from imagery alone, as well as from tabular covariates. This suggests that Chinese project placements are more driven by non-visible, political, or event-driven factors than World Bank placements. To probe residual concerns about selection on observables, we also estimate within-neighborhood (unit) fixed-effects models at a spatial resolution about 450 times finer than prior fixed effects analyses, leveraging the computer-vision-imputed IWI panels; these deliver smaller but directionally consistent effects.
CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs' spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. % Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning. Spatial-MM benchmark is available at: https://github.com/FatemehShiri/Spatial-MM
Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
SpatialBench: Benchmarking Multimodal Large Language Models for Spatial Cognition
Spatial cognition is fundamental to real-world multimodal intelligence, allowing models to effectively interact with the physical environment. While multimodal large language models (MLLMs) have made significant strides, existing benchmarks often oversimplify spatial cognition, reducing it to a single-dimensional metric, which fails to capture the hierarchical structure and interdependence of spatial abilities. To address this gap, we propose a hierarchical spatial cognition framework that decomposes spatial intelligence into five progressively complex levels from basic observation to high-level planning. Building upon this taxonomy, we construct SpatialBench, a large-scale, fine-grained benchmark covering 15 tasks aligned with these cognitive levels. To provide a unified evaluation across heterogeneous tasks, we further introduce a high-level capability-oriented metric that reliably assesses a model's overall spatial reasoning ability. Extensive experiments over massive MLLMs reveal distinct performance stratification across cognitive levels: models exhibit strong perceptual grounding yet remain limited in symbolic reasoning, causal inference, and planning. Additional human tests demonstrate that humans perform selective, goal-directed abstraction, while MLLMs tend to over-attend to surface details without coherent spatial intent. Our work establishes the first systematic framework for measuring hierarchical spatial cognition in MLLMs, laying the foundation for future spatially intelligent systems.
A Survey of Large Language Model-Powered Spatial Intelligence Across Scales: Advances in Embodied Agents, Smart Cities, and Earth Science
Over the past year, the development of large language models (LLMs) has brought spatial intelligence into focus, with much attention on vision-based embodied intelligence. However, spatial intelligence spans a broader range of disciplines and scales, from navigation and urban planning to remote sensing and earth science. What are the differences and connections between spatial intelligence across these fields? In this paper, we first review human spatial cognition and its implications for spatial intelligence in LLMs. We then examine spatial memory, knowledge representations, and abstract reasoning in LLMs, highlighting their roles and connections. Finally, we analyze spatial intelligence across scales -- from embodied to urban and global levels -- following a framework that progresses from spatial memory and understanding to spatial reasoning and intelligence. Through this survey, we aim to provide insights into interdisciplinary spatial intelligence research and inspire future studies.
Latent Compass: Creation by Navigation
In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning
Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
Directional Bias Amplification
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, BiasAmp_{rightarrow} (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp
SPHERE: A Hierarchical Evaluation on Spatial Perception and Reasoning for Vision-Language Models
Current vision-language models may incorporate single-dimensional spatial cues, such as depth, object boundary, and basic spatial directions (e.g. left, right, front, back), yet often lack the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications. To address this gap, we develop SPHERE (Spatial Perception and Hierarchical Evaluation of REasoning), a hierarchical evaluation framework with a new human-annotated dataset to pinpoint model strengths and weaknesses, advancing from single-skill tasks to multi-skill tasks, and ultimately to complex reasoning tasks that require the integration of multiple spatial and visual cues with logical reasoning. Benchmark evaluation of state-of-the-art open-source models reveal significant shortcomings, especially in the abilities to understand distance and proximity, to reason from both allocentric and egocentric viewpoints, and to perform complex reasoning in a physical context. This work underscores the need for more advanced approaches to spatial understanding and reasoning, paving the way for improvements in vision-language models and their alignment with human-like spatial capabilities. The dataset will be open-sourced upon publication.
How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics?
Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles.
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
This Land is {Your, My} Land: Evaluating Geopolitical Biases in Language Models
Do the Spratly Islands belong to China, the Philippines, or Vietnam? A pretrained large language model (LLM) may answer differently if asked in the languages of each claimant country: Chinese, Tagalog, or Vietnamese. This contrasts with a multilingual human, who would likely answer consistently. In this paper, we show that LLMs recall certain geographical knowledge inconsistently when queried in different languages -- a phenomenon we term geopolitical bias. As a targeted case study, we consider territorial disputes, an inherently controversial and multilingual task. We introduce BorderLines, a dataset of territorial disputes which covers 251 territories, each associated with a set of multiple-choice questions in the languages of each claimant country (49 languages in total). We also propose a suite of evaluation metrics to precisely quantify bias and consistency in responses across different languages. We then evaluate various multilingual LLMs on our dataset and metrics to probe their internal knowledge and use the proposed metrics to discover numerous inconsistencies in how these models respond in different languages. Finally, we explore several prompt modification strategies, aiming to either amplify or mitigate geopolitical bias, which highlights how brittle LLMs are and how they tailor their responses depending on cues from the interaction context. Our code and data are available at https://github.com/manestay/borderlines
Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs
Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
