new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Decoding Latent Attack Surfaces in LLMs: Prompt Injection via HTML in Web Summarization

Large Language Models (LLMs) are increasingly integrated into web-based systems for content summarization, yet their susceptibility to prompt injection attacks remains a pressing concern. In this study, we explore how non-visible HTML elements such as <meta>, aria-label, and alt attributes can be exploited to embed adversarial instructions without altering the visible content of a webpage. We introduce a novel dataset comprising 280 static web pages, evenly divided between clean and adversarial injected versions, crafted using diverse HTML-based strategies. These pages are processed through a browser automation pipeline to extract both raw HTML and rendered text, closely mimicking real-world LLM deployment scenarios. We evaluate two state-of-the-art open-source models, Llama 4 Scout (Meta) and Gemma 9B IT (Google), on their ability to summarize this content. Using both lexical (ROUGE-L) and semantic (SBERT cosine similarity) metrics, along with manual annotations, we assess the impact of these covert injections. Our findings reveal that over 29% of injected samples led to noticeable changes in the Llama 4 Scout summaries, while Gemma 9B IT showed a lower, yet non-trivial, success rate of 15%. These results highlight a critical and largely overlooked vulnerability in LLM driven web pipelines, where hidden adversarial content can subtly manipulate model outputs. Our work offers a reproducible framework and benchmark for evaluating HTML-based prompt injection and underscores the urgent need for robust mitigation strategies in LLM applications involving web content.

  • 1 authors
·
Sep 6

SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds

We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks. The code, data and pretrained models are publicly available.

  • 7 authors
·
May 9, 2023

Object-Compositional Neural Implicit Surfaces

The neural implicit representation has shown its effectiveness in novel view synthesis and high-quality 3D reconstruction from multi-view images. However, most approaches focus on holistic scene representation yet ignore individual objects inside it, thus limiting potential downstream applications. In order to learn object-compositional representation, a few works incorporate the 2D semantic map as a cue in training to grasp the difference between objects. But they neglect the strong connections between object geometry and instance semantic information, which leads to inaccurate modeling of individual instance. This paper proposes a novel framework, ObjectSDF, to build an object-compositional neural implicit representation with high fidelity in 3D reconstruction and object representation. Observing the ambiguity of conventional volume rendering pipelines, we model the scene by combining the Signed Distance Functions (SDF) of individual object to exert explicit surface constraint. The key in distinguishing different instances is to revisit the strong association between an individual object's SDF and semantic label. Particularly, we convert the semantic information to a function of object SDF and develop a unified and compact representation for scene and objects. Experimental results show the superiority of ObjectSDF framework in representing both the holistic object-compositional scene and the individual instances. Code can be found at https://qianyiwu.github.io/objectsdf/

  • 7 authors
·
Jul 20, 2022

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction

We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision, easily get trapped in local minima, and therefore struggle with the reconstruction of objects with severe self-occlusion or thin structures. Meanwhile, recent neural methods for novel view synthesis, such as NeRF and its variants, use volume rendering to produce a neural scene representation with robustness of optimization, even for highly complex objects. However, extracting high-quality surfaces from this learned implicit representation is difficult because there are not sufficient surface constraints in the representation. In NeuS, we propose to represent a surface as the zero-level set of a signed distance function (SDF) and develop a new volume rendering method to train a neural SDF representation. We observe that the conventional volume rendering method causes inherent geometric errors (i.e. bias) for surface reconstruction, and therefore propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision. Experiments on the DTU dataset and the BlendedMVS dataset show that NeuS outperforms the state-of-the-arts in high-quality surface reconstruction, especially for objects and scenes with complex structures and self-occlusion.

  • 6 authors
·
Jun 20, 2021

Level-S$^2$fM: Structure from Motion on Neural Level Set of Implicit Surfaces

This paper presents a neural incremental Structure-from-Motion (SfM) approach, Level-S^2fM, which estimates the camera poses and scene geometry from a set of uncalibrated images by learning coordinate MLPs for the implicit surfaces and the radiance fields from the established keypoint correspondences. Our novel formulation poses some new challenges due to inevitable two-view and few-view configurations in the incremental SfM pipeline, which complicates the optimization of coordinate MLPs for volumetric neural rendering with unknown camera poses. Nevertheless, we demonstrate that the strong inductive basis conveying in the 2D correspondences is promising to tackle those challenges by exploiting the relationship between the ray sampling schemes. Based on this, we revisit the pipeline of incremental SfM and renew the key components, including two-view geometry initialization, the camera poses registration, the 3D points triangulation, and Bundle Adjustment, with a fresh perspective based on neural implicit surfaces. By unifying the scene geometry in small MLP networks through coordinate MLPs, our Level-S^2fM treats the zero-level set of the implicit surface as an informative top-down regularization to manage the reconstructed 3D points, reject the outliers in correspondences via querying SDF, and refine the estimated geometries by NBA (Neural BA). Not only does our Level-S^2fM lead to promising results on camera pose estimation and scene geometry reconstruction, but it also shows a promising way for neural implicit rendering without knowing camera extrinsic beforehand.

  • 4 authors
·
Nov 22, 2022

ObjectSDF++: Improved Object-Compositional Neural Implicit Surfaces

In recent years, neural implicit surface reconstruction has emerged as a popular paradigm for multi-view 3D reconstruction. Unlike traditional multi-view stereo approaches, the neural implicit surface-based methods leverage neural networks to represent 3D scenes as signed distance functions (SDFs). However, they tend to disregard the reconstruction of individual objects within the scene, which limits their performance and practical applications. To address this issue, previous work ObjectSDF introduced a nice framework of object-composition neural implicit surfaces, which utilizes 2D instance masks to supervise individual object SDFs. In this paper, we propose a new framework called ObjectSDF++ to overcome the limitations of ObjectSDF. First, in contrast to ObjectSDF whose performance is primarily restricted by its converted semantic field, the core component of our model is an occlusion-aware object opacity rendering formulation that directly volume-renders object opacity to be supervised with instance masks. Second, we design a novel regularization term for object distinction, which can effectively mitigate the issue that ObjectSDF may result in unexpected reconstruction in invisible regions due to the lack of constraint to prevent collisions. Our extensive experiments demonstrate that our novel framework not only produces superior object reconstruction results but also significantly improves the quality of scene reconstruction. Code and more resources can be found in https://qianyiwu.github.io/objectsdf++

  • 5 authors
·
Aug 15, 2023

NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction

Recent methods for neural surface representation and rendering, for example NeuS, have demonstrated the remarkably high-quality reconstruction of static scenes. However, the training of NeuS takes an extremely long time (8 hours), which makes it almost impossible to apply them to dynamic scenes with thousands of frames. We propose a fast neural surface reconstruction approach, called NeuS2, which achieves two orders of magnitude improvement in terms of acceleration without compromising reconstruction quality. To accelerate the training process, we parameterize a neural surface representation by multi-resolution hash encodings and present a novel lightweight calculation of second-order derivatives tailored to our networks to leverage CUDA parallelism, achieving a factor two speed up. To further stabilize and expedite training, a progressive learning strategy is proposed to optimize multi-resolution hash encodings from coarse to fine. We extend our method for fast training of dynamic scenes, with a proposed incremental training strategy and a novel global transformation prediction component, which allow our method to handle challenging long sequences with large movements and deformations. Our experiments on various datasets demonstrate that NeuS2 significantly outperforms the state-of-the-arts in both surface reconstruction accuracy and training speed for both static and dynamic scenes. The code is available at our website: https://vcai.mpi-inf.mpg.de/projects/NeuS2/ .

  • 6 authors
·
Dec 10, 2022

Volume Rendering of Neural Implicit Surfaces

Neural volume rendering became increasingly popular recently due to its success in synthesizing novel views of a scene from a sparse set of input images. So far, the geometry learned by neural volume rendering techniques was modeled using a generic density function. Furthermore, the geometry itself was extracted using an arbitrary level set of the density function leading to a noisy, often low fidelity reconstruction. The goal of this paper is to improve geometry representation and reconstruction in neural volume rendering. We achieve that by modeling the volume density as a function of the geometry. This is in contrast to previous work modeling the geometry as a function of the volume density. In more detail, we define the volume density function as Laplace's cumulative distribution function (CDF) applied to a signed distance function (SDF) representation. This simple density representation has three benefits: (i) it provides a useful inductive bias to the geometry learned in the neural volume rendering process; (ii) it facilitates a bound on the opacity approximation error, leading to an accurate sampling of the viewing ray. Accurate sampling is important to provide a precise coupling of geometry and radiance; and (iii) it allows efficient unsupervised disentanglement of shape and appearance in volume rendering. Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions, outperforming relevant baselines. Furthermore, switching shape and appearance between scenes is possible due to the disentanglement of the two.

  • 4 authors
·
Jun 22, 2021

Behind the Veil: Enhanced Indoor 3D Scene Reconstruction with Occluded Surfaces Completion

In this paper, we present a novel indoor 3D reconstruction method with occluded surface completion, given a sequence of depth readings. Prior state-of-the-art (SOTA) methods only focus on the reconstruction of the visible areas in a scene, neglecting the invisible areas due to the occlusions, e.g., the contact surface between furniture, occluded wall and floor. Our method tackles the task of completing the occluded scene surfaces, resulting in a complete 3D scene mesh. The core idea of our method is learning 3D geometry prior from various complete scenes to infer the occluded geometry of an unseen scene from solely depth measurements. We design a coarse-fine hierarchical octree representation coupled with a dual-decoder architecture, i.e., Geo-decoder and 3D Inpainter, which jointly reconstructs the complete 3D scene geometry. The Geo-decoder with detailed representation at fine levels is optimized online for each scene to reconstruct visible surfaces. The 3D Inpainter with abstract representation at coarse levels is trained offline using various scenes to complete occluded surfaces. As a result, while the Geo-decoder is specialized for an individual scene, the 3D Inpainter can be generally applied across different scenes. We evaluate the proposed method on the 3D Completed Room Scene (3D-CRS) and iTHOR datasets, significantly outperforming the SOTA methods by a gain of 16.8% and 24.2% in terms of the completeness of 3D reconstruction. 3D-CRS dataset including a complete 3D mesh of each scene is provided at project webpage.

  • 7 authors
·
Apr 3, 2024

SURFACEBENCH: Can Self-Evolving LLMs Find the Equations of 3D Scientific Surfaces?

Equation discovery from data is a core challenge in machine learning for science, requiring the recovery of concise symbolic expressions that govern complex physical and geometric phenomena. Recent approaches with large language models (LLMs) show promise in symbolic regression, but their success often hinges on memorized formulas or overly simplified functional forms. Existing benchmarks exacerbate this limitation: they focus on scalar functions, ignore domain grounding, and rely on brittle string-matching based metrics that fail to capture scientific equivalence. We introduce SurfaceBench, first comprehensive benchmark for symbolic surface discovery. SurfaceBench comprises 183 tasks across 15 categories of symbolic complexity, spanning explicit, implicit, and parametric equation representation forms. Each task includes ground-truth equations, variable semantics, and synthetically sampled three dimensional data. Unlike prior SR datasets, our tasks reflect surface-level structure, resist LLM memorization through novel symbolic compositions, and are grounded in scientific domains such as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate equation discovery quality, we pair symbolic checks with geometry-aware metrics such as Chamfer and Hausdorff distances, capturing both algebraic fidelity and spatial reconstruction accuracy. Our experiments reveal that state-of-the-art frameworks, while occasionally successful on specific families, struggle to generalize across representation types and surface complexities. SurfaceBench thus establishes a challenging and diagnostic testbed that bridges symbolic reasoning with geometric reconstruction, enabling principled benchmarking of progress in compositional generalization, data-driven scientific induction, and geometry-aware reasoning with LLMs. We release the code here: https://github.com/Sanchit-404/surfacebench

  • 4 authors
·
Nov 13

Complexity of counting points on curves and the factor $P_1(T)$ of the zeta function of surfaces

This article concerns the computational complexity of a fundamental problem in number theory: counting points on curves and surfaces over finite fields. There is no subexponential-time algorithm known and it is unclear if it can be NP-hard. Given a curve, we present the first efficient Arthur-Merlin protocol to certify its point-count, its Jacobian group structure, and its Hasse-Weil zeta function. We extend this result to a smooth projective surface to certify the factor P_{1}(T), corresponding to the first Betti number, of the zeta function; by using the counting oracle. We give the first algorithm to compute P_{1}(T) that is poly(log q)-time if the degree D of the input surface is fixed; and in quantum poly(Dlog q)-time in general. Our technique in the curve case, is to sample hash functions using the Weil and Riemann-Roch bounds, to certify the group order of its Jacobian. For higher dimension varieties, we first reduce to the case of a surface, which is fibred as a Lefschetz pencil of hyperplane sections over P^{1}. The formalism of vanishing cycles, and the inherent big monodromy, enable us to prove an effective version of Deligne's `theoreme du pgcd' using the hard-Lefschetz theorem and an equidistribution result due to Katz. These reduce our investigations to that of computing the zeta function of a curve, defined over a finite field extension F_{Q}/F_{q} of poly-bounded degree. This explicitization of the theory yields the first nontrivial upper bounds on the computational complexity.

  • 3 authors
·
Nov 4