Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVNLP: Turkish NLP Package
In this work, we present VNLP: the first dedicated, complete, open-source, well-documented, lightweight, production-ready, state-of-the-art Natural Language Processing (NLP) package for the Turkish language. It contains a wide variety of tools, ranging from the simplest tasks, such as sentence splitting and text normalization, to the more advanced ones, such as text and token classification models. Its token classification models are based on "Context Model", a novel architecture that is both an encoder and an auto-regressive model. NLP tasks solved by VNLP models include but are not limited to Sentiment Analysis, Named Entity Recognition, Morphological Analysis \& Disambiguation and Part-of-Speech Tagging. Moreover, it comes with pre-trained word embeddings and corresponding SentencePiece Unigram tokenizers. VNLP has an open-source GitHub repository, ReadtheDocs documentation, PyPi package for convenient installation, Python and command-line API and a demo page to test all the functionality. Consequently, our main contribution is a complete, compact, easy-to-install and easy-to-use NLP package for Turkish.
LettuceDetect: A Hallucination Detection Framework for RAG Applications
Retrieval Augmented Generation (RAG) systems remain vulnerable to hallucinated answers despite incorporating external knowledge sources. We present LettuceDetect a framework that addresses two critical limitations in existing hallucination detection methods: (1) the context window constraints of traditional encoder-based methods, and (2) the computational inefficiency of LLM based approaches. Building on ModernBERT's extended context capabilities (up to 8k tokens) and trained on the RAGTruth benchmark dataset, our approach outperforms all previous encoder-based models and most prompt-based models, while being approximately 30 times smaller than the best models. LettuceDetect is a token-classification model that processes context-question-answer triples, allowing for the identification of unsupported claims at the token level. Evaluations on the RAGTruth corpus demonstrate an F1 score of 79.22% for example-level detection, which is a 14.8% improvement over Luna, the previous state-of-the-art encoder-based architecture. Additionally, the system can process 30 to 60 examples per second on a single GPU, making it more practical for real-world RAG applications.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
What's Mine becomes Yours: Defining, Annotating and Detecting Context-Dependent Paraphrases in News Interview Dialogs
Best practices for high conflict conversations like counseling or customer support almost always include recommendations to paraphrase the previous speaker. Although paraphrase classification has received widespread attention in NLP, paraphrases are usually considered independent from context, and common models and datasets are not applicable to dialog settings. In this work, we investigate paraphrases in dialog (e.g., Speaker 1: "That book is mine." becomes Speaker 2: "That book is yours."). We provide an operationalization of context-dependent paraphrases, and develop a training for crowd-workers to classify paraphrases in dialog. We introduce a dataset with utterance pairs from NPR and CNN news interviews annotated for context-dependent paraphrases. To enable analyses on label variation, the dataset contains 5,581 annotations on 600 utterance pairs. We present promising results with in-context learning and with token classification models for automatic paraphrase detection in dialog.
Short Text Pre-training with Extended Token Classification for E-commerce Query Understanding
E-commerce query understanding is the process of inferring the shopping intent of customers by extracting semantic meaning from their search queries. The recent progress of pre-trained masked language models (MLM) in natural language processing is extremely attractive for developing effective query understanding models. Specifically, MLM learns contextual text embedding via recovering the masked tokens in the sentences. Such a pre-training process relies on the sufficient contextual information. It is, however, less effective for search queries, which are usually short text. When applying masking to short search queries, most contextual information is lost and the intent of the search queries may be changed. To mitigate the above issues for MLM pre-training on search queries, we propose a novel pre-training task specifically designed for short text, called Extended Token Classification (ETC). Instead of masking the input text, our approach extends the input by inserting tokens via a generator network, and trains a discriminator to identify which tokens are inserted in the extended input. We conduct experiments in an E-commerce store to demonstrate the effectiveness of ETC.
OMAR-RQ: Open Music Audio Representation Model Trained with Multi-Feature Masked Token Prediction
Developing open-source foundation models is essential for advancing research in music audio understanding and ensuring access to powerful, multipurpose representations for music information retrieval. We present OMAR-RQ, a model trained with self-supervision via masked token classification methodologies using a large-scale dataset with over 330,000 hours of music audio. We experiment with different input features and quantization options, and achieve state-of-the-art performance in music tagging, pitch estimation, chord recognition, beat tracking, segmentation, and difficulty estimation among open self-supervised models. We open-source our training and evaluation pipelines and model weights, available at https://github.com/mtg/omar-rq.
Acquiring Bidirectionality via Large and Small Language Models
Using token representation from bidirectional language models (LMs) such as BERT is still a widely used approach for token-classification tasks. Even though there exist much larger unidirectional LMs such as Llama-2, they are rarely used to replace the token representation of bidirectional LMs. In this work, we hypothesize that their lack of bidirectionality is keeping them behind. To that end, we propose to newly train a small backward LM and concatenate its representations to those of existing LM for downstream tasks. Through experiments in named entity recognition, we demonstrate that introducing backward model improves the benchmark performance more than 10 points. Furthermore, we show that the proposed method is especially effective for rare domains and in few-shot learning settings.
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Leveraging Large Language Models for Mobile App Review Feature Extraction
Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.
WangchanBERTa: Pretraining transformer-based Thai Language Models
Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts.
LLaDA-VLA: Vision Language Diffusion Action Models
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
AutoTrain: No-code training for state-of-the-art models
With the advancements in open-source models, training (or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks. We introduce AutoTrain (aka AutoTrain Advanced) -- an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.
Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging
Massively multilingual language models have displayed strong performance in zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer setups, where models fine-tuned on task data in a source language are transferred without any or with only a few annotated instances to the target language(s). However, current work typically overestimates model performance as fine-tuned models are frequently evaluated at model checkpoints that generalize best to validation instances in the target languages. This effectively violates the main assumptions of "true" ZS-XLT and FS-XLT. Such XLT setups require robust methods that do not depend on labeled target language data for validation and model selection. In this work, aiming to improve the robustness of "true" ZS-XLT and FS-XLT, we propose a simple and effective method that averages different checkpoints (i.e., model snapshots) during task fine-tuning. We conduct exhaustive ZS-XLT and FS-XLT experiments across higher-level semantic tasks (NLI, extractive QA) and lower-level token classification tasks (NER, POS). The results indicate that averaging model checkpoints yields systematic and consistent performance gains across diverse target languages in all tasks. Importantly, it simultaneously substantially desensitizes XLT to varying hyperparameter choices in the absence of target language validation. We also show that checkpoint averaging benefits performance when further combined with run averaging (i.e., averaging the parameters of models fine-tuned over independent runs).
Transparency-First Medical Language Models: Datasheets, Model Cards, and End-to-End Data Provenance for Clinical NLP
We introduce TeMLM, a set of transparency-first release artifacts for clinical language models. TeMLM unifies provenance, data transparency, modeling transparency, and governance into a single, machine-checkable release bundle. We define an artifact suite (TeMLM-Card, TeMLM-Datasheet, TeMLM-Provenance) and a lightweight conformance checklist for repeatable auditing. We instantiate the artifacts on Technetium-I, a large-scale synthetic clinical NLP dataset with 498,000 notes, 7.74M PHI entity annotations across 10 types, and ICD-9-CM diagnosis labels, and report reference results for ProtactiniumBERT (about 100 million parameters) on PHI de-identification (token classification) and top-50 ICD-9 code extraction (multi-label classification). We emphasize that synthetic benchmarks are valuable for tooling and process validation, but models should be validated on real clinical data prior to deployment.
Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
POS-tagging to highlight the skeletal structure of sentences
This study presents the development of a part-of-speech (POS) tagging model to extract the skeletal structure of sentences using transfer learning with the BERT architecture for token classification. The model, fine-tuned on Russian text, demonstrating its effectiveness. The approach offers potential applications in enhancing natural language processing tasks, such as improving machine translation. Keywords: part of speech tagging, morphological analysis, natural language processing, BERT.
Avey-B
Compact pretrained bidirectional encoders remain the backbone of industrial NLP under tight compute and memory budgets. Their effectiveness stems from self-attention's ability to deliver high-quality bidirectional contextualization with sequence-level parallelism, as popularized by BERT-style architectures. Recently, Avey was introduced as an autoregressive, attention-free alternative that naturally admits an encoder-only adaptation. In this paper, we reformulate Avey for the encoder-only paradigm and propose several innovations to its architecture, including decoupled static and dynamic parameterizations, stability-oriented normalization, and neural compression. Results show that this reformulated architecture compares favorably to four widely used Transformer-based encoders, consistently outperforming them on standard token-classification and information-retrieval benchmarks while scaling more efficiently to long contexts.
RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
GliLem: Leveraging GliNER for Contextualized Lemmatization in Estonian
We present GliLem -- a novel hybrid lemmatization system for Estonian that enhances the highly accurate rule-based morphological analyzer Vabamorf with an external disambiguation module based on GliNER -- an open vocabulary NER model that is able to match text spans with text labels in natural language. We leverage the flexibility of a pre-trained GliNER model to improve the lemmatization accuracy of Vabamorf by 10\% compared to its original disambiguation module and achieve an improvement over the token classification-based baseline. To measure the impact of improvements in lemmatization accuracy on the information retrieval downstream task, we first created an information retrieval dataset for Estonian by automatically translating the DBpedia-Entity dataset from English. We benchmark several token normalization approaches, including lemmatization, on the created dataset using the BM25 algorithm. We observe a substantial improvement in IR metrics when using lemmatization over simplistic stemming. The benefits of improving lemma disambiguation accuracy manifest in small but consistent improvement in the IR recall measure, especially in the setting of high k.
Spatial ModernBERT: Spatial-Aware Transformer for Table and Key-Value Extraction in Financial Documents at Scale
Extracting tables and key-value pairs from financial documents is essential for business workflows such as auditing, data analytics, and automated invoice processing. In this work, we introduce Spatial ModernBERT-a transformer-based model augmented with spatial embeddings-to accurately detect and extract tabular data and key-value fields from complex financial documents. We cast the extraction task as token classification across three heads: (1) Label Head, classifying each token as a label (e.g., PO Number, PO Date, Item Description, Quantity, Base Cost, MRP, etc.); (2) Column Head, predicting column indices; (3) Row Head, distinguishing the start of item rows and header rows. The model is pretrained on the PubTables-1M dataset, then fine-tuned on a financial document dataset, achieving robust performance through cross-entropy loss on each classification head. We propose a post-processing method to merge tokens using B-I-IB tagging, reconstruct the tabular layout, and extract key-value pairs. Empirical evaluation shows that Spatial ModernBERT effectively leverages both textual and spatial cues, facilitating highly accurate table and key-value extraction in real-world financial documents.
Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong second-place out of 77 teams with an accuracy of 86.95\%, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text.
Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models
Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.
Turk-LettuceDetect: A Hallucination Detection Models for Turkish RAG Applications
The widespread adoption of Large Language Models (LLMs) has been hindered by their tendency to hallucinate, generating plausible but factually incorrect information. While Retrieval-Augmented Generation (RAG) systems attempt to address this issue by grounding responses in external knowledge, hallucination remains a persistent challenge, particularly for morphologically complex, low-resource languages like Turkish. This paper introduces Turk-LettuceDetect, the first suite of hallucination detection models specifically designed for Turkish RAG applications. Building on the LettuceDetect framework, we formulate hallucination detection as a token-level classification task and fine-tune three distinct encoder architectures: a Turkish-specific ModernBERT, TurkEmbed4STS, and multilingual EuroBERT. These models were trained on a machine-translated version of the RAGTruth benchmark dataset containing 17,790 instances across question answering, data-to-text generation, and summarization tasks. Our experimental results show that the ModernBERT-based model achieves an F1-score of 0.7266 on the complete test set, with particularly strong performance on structured tasks. The models maintain computational efficiency while supporting long contexts up to 8,192 tokens, making them suitable for real-time deployment. Comparative analysis reveals that while state-of-the-art LLMs demonstrate high recall, they suffer from low precision due to over-generation of hallucinated content, underscoring the necessity of specialized detection mechanisms. By releasing our models and translated dataset, this work addresses a critical gap in multilingual NLP and establishes a foundation for developing more reliable and trustworthy AI applications for Turkish and other languages.
Measuring the Robustness of Natural Language Processing Models to Domain Shifts
Existing research on Domain Robustness (DR) suffers from disparate setups, lack of evaluation task variety, and reliance on challenge sets. In this paper, we pose a fundamental question: What is the state of affairs of the DR challenge in the era of Large Language Models (LLMs)? To this end, we construct a DR benchmark comprising diverse NLP tasks, including sentence and token-level classification, QA, and generation, each task consists of several domains. We explore the DR challenge of fine-tuned and few-shot learning models in natural domain shift settings and devise two diagnostic metrics of Out-of-Distribution (OOD) performance degradation: The commonly used Source Drop (SD) and the overlooked Target Drop (TD). Our findings reveal important insights: First, despite their capabilities, zero-to-few shot LLMs and fine-tuning approaches still fail to meet satisfactory performance in the OOD context; Second, TD approximates better than SD the average OOD degradation; Third, in a significant proportion of domain shifts, either SD or TD is positive, but not both, and therefore disregarding one can lead to incorrect DR conclusions.
Extracting Definienda in Mathematical Scholarly Articles with Transformers
We consider automatically identifying the defined term within a mathematical definition from the text of an academic article. Inspired by the development of transformer-based natural language processing applications, we pose the problem as (a) a token-level classification task using fine-tuned pre-trained transformers; and (b) a question-answering task using a generalist large language model (GPT). We also propose a rule-based approach to build a labeled dataset from the LATEX source of papers. Experimental results show that it is possible to reach high levels of precision and recall using either recent (and expensive) GPT 4 or simpler pre-trained models fine-tuned on our task.
Qwen3Guard Technical Report
As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs.
Framework for Machine Evaluation of Reasoning Completeness in Large Language Models For Classification Tasks
The growing adoption of machine learning (ML) in sensitive domains has heightened the demand for transparent and interpretable artificial intelligence. Large Language Models (LLMs) are increasingly capable of producing natural language explanations, yet it remains unclear whether these rationales faithfully capture the predictive signals that underlie decisions. This paper introduces RACE-Reasoning Alignment for Completeness of Explanations, a systematic framework to evaluate the alignment between LLM-generated explanations and interpretable feature importance scores derived from a logistic regression baseline. We analyze four widely used text classification datasets-WIKI ONTOLOGY, AG NEWS, IMDB, and GOEMOTIONS-and compare LLM rationales against top-ranked supporting and contradicting lexical features. To capture alignment at multiple levels of granularity, RACE implements token-aware, exact string, and edit-distance matching techniques. Empirical results reveal a consistent asymmetry: correct predictions exhibit higher coverage of supporting features, while incorrect predictions are associated with elevated coverage of contradicting features. Edit-distance matching further uncovers paraphrastic overlaps, boosting coverage while preserving this asymmetry. These findings demonstrate that LLM rationales combine both surface-level and flexible evidence reuse, yet can also amplify misleading cues in error cases. RACE provides new insights into the faithfulness of LLM explanations and establishes a quantitative basis for evaluating reasoning completeness in neural language models.
Large Language Models are Few-Shot Clinical Information Extractors
A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT, perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.
HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models
Large Language Models (LLMs) trained on massive corpora demonstrate impressive capabilities in a wide range of tasks. While there are ongoing efforts to adapt these models to languages beyond English, the attention given to their evaluation methodologies remains limited. Current multilingual benchmarks often rely on back translations or re-implementations of English tests, limiting their capacity to capture unique cultural and linguistic nuances. To bridge this gap for the Korean language, we introduce HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth. The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension. Contrary to traditional evaluation suites focused on token or sequence classification and specific mathematical or logical reasoning, HAE-RAE Bench emphasizes a model's aptitude for recalling Korean-specific knowledge and cultural contexts. Comparative analysis with prior Korean benchmarks indicates that the HAE-RAE Bench presents a greater challenge to non-native models, by disturbing abilities and knowledge learned from English being transferred.
Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model
In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{\aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.
Weight subcloning: direct initialization of transformers using larger pretrained ones
Training large transformer models from scratch for a target task requires lots of data and is computationally demanding. The usual practice of transfer learning overcomes this challenge by initializing the model with weights of a pretrained model of the same size and specification to increase the convergence and training speed. However, what if no pretrained model of the required size is available? In this paper, we introduce a simple yet effective technique to transfer the knowledge of a pretrained model to smaller variants. Our approach called weight subcloning expedites the training of scaled-down transformers by initializing their weights from larger pretrained models. Weight subcloning involves an operation on the pretrained model to obtain the equivalent initialized scaled-down model. It consists of two key steps: first, we introduce neuron importance ranking to decrease the embedding dimension per layer in the pretrained model. Then, we remove blocks from the transformer model to match the number of layers in the scaled-down network. The result is a network ready to undergo training, which gains significant improvements in training speed compared to random initialization. For instance, we achieve 4x faster training for vision transformers in image classification and language models designed for next token prediction.
TinyDrop: Tiny Model Guided Token Dropping for Vision Transformers
Vision Transformers (ViTs) achieve strong performance in image classification but incur high computational costs from processing all image tokens. To reduce inference costs in large ViTs without compromising accuracy, we propose TinyDrop, a training-free token dropping framework guided by a lightweight vision model. The guidance model estimates the importance of tokens while performing inference, thereby selectively discarding low-importance tokens if large vit models need to perform attention calculations. The framework operates plug-and-play, requires no architectural modifications, and is compatible with diverse ViT architectures. Evaluations on standard image classification benchmarks demonstrate that our framework reduces FLOPs by up to 80% for ViTs with minimal accuracy degradation, highlighting its generalization capability and practical utility for efficient ViT-based classification.
Token Prediction as Implicit Classification to Identify LLM-Generated Text
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation. Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task and directly fine-tune the base LM to perform it. We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments. We compared our approach to the more direct approach of utilizing hidden states for classification. Evaluation shows the exceptional performance of our method in the text classification task, highlighting its simplicity and efficiency. Furthermore, interpretability studies on the features extracted by our model reveal its ability to differentiate distinctive writing styles among various LLMs even in the absence of an explicit classifier. We also collected a dataset named OpenLLMText, containing approximately 340k text samples from human and LLMs, including GPT3.5, PaLM, LLaMA, and GPT2.
Language Model Cascades: Token-level uncertainty and beyond
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks, but at the expense of increased inference costs. Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs: here, a small model is invoked for most "easy" instances, while a few "hard" instances are deferred to the large model. While the principles underpinning cascading are well-studied for classification tasks - with deferral based on predicted class uncertainty favored theoretically and practically - a similar understanding is lacking for generative LM tasks. In this work, we initiate a systematic study of deferral rules for LM cascades. We begin by examining the natural extension of predicted class uncertainty to generative LM tasks, namely, the predicted sequence uncertainty. We show that this measure suffers from the length bias problem, either over- or under-emphasizing outputs based on their lengths. This is because LMs produce a sequence of uncertainty values, one for each output token; and moreover, the number of output tokens is variable across examples. To mitigate this issue, we propose to exploit the richer token-level uncertainty information implicit in generative LMs. We argue that naive predicted sequence uncertainty corresponds to a simple aggregation of these uncertainties. By contrast, we show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform such simple aggregation strategies, via experiments on a range of natural language benchmarks with FLAN-T5 models. We further show that incorporating embeddings from the smaller model and intermediate layers of the larger model can give an additional boost in the overall cost-quality tradeoff.
MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection
Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models, to obtain new samples from a distribution given samples from a discrete space. GGM deploys a discrete Markov chain called the heat bath dynamics (or the Glauber dynamics) to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens. Our novel conceptual framework provides an exact reduction of the task of learning the denoising Markov chain to solving a class of binary classification tasks. More specifically, the model learns to classify a given token in a noisy sequence as signal or noise. In contrast, prior works on discrete diffusion models either solve regression problems to learn importance ratios, or minimize loss functions given by variational approximations. We apply GGM to language modeling and image generation, where images are discretized using image tokenizers like VQGANs. We show that it outperforms existing discrete diffusion models in language generation, and demonstrates strong performance for image generation without using dataset-specific image tokenizers. We also show that our model is capable of performing well in zero-shot control settings like text and image infilling.
Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling
Ensembling multiple models has always been an effective approach to push the limits of existing performance and is widely used in classification tasks by simply averaging the classification probability vectors from multiple classifiers to achieve better accuracy. However, in the thriving open-source Large Language Model (LLM) community, ensembling methods are rare and typically limited to ensembling the full-text outputs of LLMs, such as selecting the best output using a ranker, which leads to underutilization of token-level probability information. In this paper, we treat the Generation of each token by LLMs as a Classification (GaC) for ensembling. This approach fully exploits the probability information at each generation step and better prevents LLMs from producing early incorrect tokens that lead to snowballing errors. In experiments, we ensemble state-of-the-art LLMs on several benchmarks, including exams, mathematics and reasoning, and observe that our method breaks the existing community performance ceiling. Furthermore, we observed that most of the tokens in the answer are simple and do not affect the correctness of the final answer. Therefore, we also experimented with ensembling only key tokens, and the results showed better performance with lower latency across benchmarks.
Masked Image Modeling via Dynamic Token Morphing
Masked Image Modeling (MIM) arises as a promising option for Vision Transformers among various self-supervised learning (SSL) methods. The essence of MIM lies in token-wise masked patch predictions, with targets patchified from images; or generated by pre-trained tokenizers or models. We argue targets from the pre-trained models usually exhibit spatial inconsistency, which makes it excessively challenging for the model to follow to learn more discriminative representations. To mitigate the issue, we introduce a novel self-supervision signal based on Dynamic Token Morphing (DTM), which dynamically aggregates contextually related tokens. DTM can be generally applied to various SSL frameworks, yet we propose a simple MIM that employs DTM to effectively improve the performance barely introducing extra training costs. Our experiments on ImageNet-1K and ADE20K evidently demonstrate the superiority of our methods. Furthermore, the comparative evaluation of iNaturalist and Fine-grained Visual Classification datasets further validates the transferability of our method on various downstream tasks. Our code will be released publicly.
Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction
Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.
SeiT++: Masked Token Modeling Improves Storage-efficient Training
Recent advancements in Deep Neural Network (DNN) models have significantly improved performance across computer vision tasks. However, achieving highly generalizable and high-performing vision models requires expansive datasets, resulting in significant storage requirements. This storage challenge is a critical bottleneck for scaling up models. A recent breakthrough by SeiT proposed the use of Vector-Quantized (VQ) feature vectors (i.e., tokens) as network inputs for vision classification. This approach achieved 90% of the performance of a model trained on full-pixel images with only 1% of the storage. While SeiT needs labeled data, its potential in scenarios beyond fully supervised learning remains largely untapped. In this paper, we extend SeiT by integrating Masked Token Modeling (MTM) for self-supervised pre-training. Recognizing that self-supervised approaches often demand more data due to the lack of labels, we introduce TokenAdapt and ColorAdapt. These methods facilitate comprehensive token-friendly data augmentation, effectively addressing the increased data requirements of self-supervised learning. We evaluate our approach across various scenarios, including storage-efficient ImageNet-1k classification, fine-grained classification, ADE-20k semantic segmentation, and robustness benchmarks. Experimental results demonstrate consistent performance improvement in diverse experiments, validating the effectiveness of our method. Code is available at https://github.com/naver-ai/seit.
HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection
Audio classification is an important task of mapping audio samples into their corresponding labels. Recently, the transformer model with self-attention mechanisms has been adopted in this field. However, existing audio transformers require large GPU memories and long training time, meanwhile relying on pretrained vision models to achieve high performance, which limits the model's scalability in audio tasks. To combat these problems, we introduce HTS-AT: an audio transformer with a hierarchical structure to reduce the model size and training time. It is further combined with a token-semantic module to map final outputs into class featuremaps, thus enabling the model for the audio event detection (i.e. localization in time). We evaluate HTS-AT on three datasets of audio classification where it achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models. Moreover, HTS-AT requires only 35% model parameters and 15% training time of the previous audio transformer. These results demonstrate the high performance and high efficiency of HTS-AT.
A BERTology View of LLM Orchestrations: Token- and Layer-Selective Probes for Efficient Single-Pass Classification
Production LLM systems often rely on separate models for safety and other classification-heavy steps, increasing latency, VRAM footprint, and operational complexity. We instead reuse computation already paid for by the serving LLM: we train lightweight probes on its hidden states and predict labels in the same forward pass used for generation. We frame classification as representation selection over the full token-layer hidden-state tensor, rather than committing to a fixed token or fixed layer (e.g., first-token logits or final-layer pooling). To implement this, we introduce a two-stage aggregator that (i) summarizes tokens within each layer and (ii) aggregates across layer summaries to form a single representation for classification. We instantiate this template with direct pooling, a 100K-parameter scoring-attention gate, and a downcast multi-head self-attention (MHA) probe with up to 35M trainable parameters. Across safety and sentiment benchmarks our probes improve over logit-only reuse (e.g., MULI) and are competitive with substantially larger task-specific baselines, while preserving near-serving latency and avoiding the VRAM and latency costs of a separate guard-model pipeline.
HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
MaxPoolBERT: Enhancing BERT Classification via Layer- and Token-Wise Aggregation
The [CLS] token in BERT is commonly used as a fixed-length representation for classification tasks, yet prior work has shown that both other tokens and intermediate layers encode valuable contextual information. In this work, we propose MaxPoolBERT, a lightweight extension to BERT that refines the [CLS] representation by aggregating information across layers and tokens. Specifically, we explore three modifications: (i) max-pooling the [CLS] token across multiple layers, (ii) enabling the [CLS] token to attend over the entire final layer using an additional multi-head attention (MHA) layer, and (iii) combining max-pooling across the full sequence with MHA. Our approach enhances BERT's classification accuracy (especially on low-resource tasks) without requiring pre-training or significantly increasing model size. Experiments on the GLUE benchmark show that MaxPoolBERT consistently achieves a better performance on the standard BERT-base model.
Small Language Models in the Real World: Insights from Industrial Text Classification
With the emergence of ChatGPT, Transformer models have significantly advanced text classification and related tasks. Decoder-only models such as Llama exhibit strong performance and flexibility, yet they suffer from inefficiency on inference due to token-by-token generation, and their effectiveness in text classification tasks heavily depends on prompt quality. Moreover, their substantial GPU resource requirements often limit widespread adoption. Thus, the question of whether smaller language models are capable of effectively handling text classification tasks emerges as a topic of significant interest. However, the selection of appropriate models and methodologies remains largely underexplored. In this paper, we conduct a comprehensive evaluation of prompt engineering and supervised fine-tuning methods for transformer-based text classification. Specifically, we focus on practical industrial scenarios, including email classification, legal document categorization, and the classification of extremely long academic texts. We examine the strengths and limitations of smaller models, with particular attention to both their performance and their efficiency in Video Random-Access Memory (VRAM) utilization, thereby providing valuable insights for the local deployment and application of compact models in industrial settings.
MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHubhttps://github.com/staraink/MIRepNet.
On the Effect of Token Merging on Pre-trained Models for Code
Tokenization is a fundamental component of language models for code. It involves breaking down the input into units that are later passed to the language model stack to learn high-dimensional representations used in various contexts, from classification to generation. However, the output of these tokenizers is often longer than that traditionally used in compilers and interpreters. This could result in undesirable effects, such as increased computational overhead. In this work, we investigate the effect of merging the hidden representations of subtokens that belong to the same semantic unit, such as subtokens that form a single identifier. We propose two strategies: one based on averaging the representations and another that leverages a learning-based approach. Both methods can be seamlessly integrated with existing language models for code. We conduct experiments using six language models for code: CodeBERT, GraphCodeBERT, UniXCoder, CdoeT5, CodeT5+ (220M), and CodeT5+ (770M), across three software engineering tasks: vulnerability detection, code classification, and code translation. Results show that these strategies can reduce the number of floating-point operations by 1% to 19%. Regarding downstream performance, the most significant degradation was observed in the vulnerability detection task, where the F1 score decreased by 1.82 points compared to the baseline. In contrast, for code translation, we observed an improvement of 2.47 points in CodeBLEU. This work contributes to the broader effort of improving language models for code across multiple dimensions, including both computational efficiency and downstream performance.
Explore Spurious Correlations at the Concept Level in Language Models for Text Classification
Language models (LMs) have gained great achievement in various NLP tasks for both fine-tuning and in-context learning (ICL) methods. Despite its outstanding performance, evidence shows that spurious correlations caused by imbalanced label distributions in training data (or exemplars in ICL) lead to robustness issues. However, previous studies mostly focus on word- and phrase-level features and fail to tackle it from the concept level, partly due to the lack of concept labels and subtle and diverse expressions of concepts in text. In this paper, we first use the LLM to label the concept for each text and then measure the concept bias of models for fine-tuning or ICL on the test data. Second, we propose a data rebalancing method to mitigate the spurious correlations by adding the LLM-generated counterfactual data to make a balanced label distribution for each concept. We verify the effectiveness of our mitigation method and show its superiority over the token removal method. Overall, our results show that there exist label distribution biases in concepts across multiple text classification datasets, and LMs will utilize these shortcuts to make predictions in both fine-tuning and ICL methods.
ZeroTuning: Unlocking the Initial Token's Power to Enhance Large Language Models Without Training
Recently, training-free methods for improving large language models (LLMs) have attracted growing interest, with token-level attention tuning emerging as a promising and interpretable direction. However, existing methods typically rely on auxiliary mechanisms to identify important or irrelevant task-specific tokens, introducing potential bias and limiting applicability. In this paper, we uncover a surprising and elegant alternative: the semantically empty initial token is a powerful and underexplored control point for optimizing model behavior. Through theoretical analysis, we show that tuning the initial token's attention sharpens or flattens the attention distribution over subsequent tokens, and its role as an attention sink amplifies this effect. Empirically, we find that: (1) tuning its attention improves LLM performance more effectively than tuning other task-specific tokens; (2) the effect follows a consistent trend across layers, with earlier layers having greater impact, but varies across attention heads, with different heads showing distinct preferences in how they attend to this token. Based on these findings, we propose ZeroTuning, a training-free approach that improves LLM performance by applying head-specific attention adjustments to this special token. Despite tuning only one token, ZeroTuning achieves higher performance on text classification, multiple-choice, and multi-turn conversation tasks across models such as Llama, Qwen, and DeepSeek. For example, ZeroTuning improves Llama-3.1-8B by 11.71% on classification, 2.64% on QA tasks, and raises its multi-turn score from 7.804 to 7.966. The method is also robust to limited resources, few-shot settings, long contexts, quantization, decoding strategies, and prompt variations. Our work sheds light on a previously overlooked control point in LLMs, offering new insights into both inference-time tuning and model interpretability.
On Unsupervised Prompt Learning for Classification with Black-box Language Models
Large language models (LLMs) have achieved impressive success in text-formatted learning problems, and most popular LLMs have been deployed in a black-box fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream task to obtain better performance, and this functionality is provided by the owners of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always required to adjust the model parameters. However, in many real-world applications, LLMs can label textual datasets with even better quality than skilled human annotators, motivating us to explore the possibility of fine-tuning black-box LLMs with unlabeled data. In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where the learning parameters are the prompt itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled as a sequence of discrete tokens, and every token has its own to-be-learned categorical distribution. On the other hand, for learning the pseudo labels, we are the first to consider the in-context learning (ICL) capabilities of LLMs: we first identify reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as in-context demonstrations alongside the prompt. Those in-context demonstrations matter: previously, they are involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus, taking them into account during training makes the prompt-learning and prompt-using stages more consistent. Experiments on benchmark datasets show the effectiveness of our proposed algorithm. After unsupervised prompt learning, we can use the pseudo-labeled dataset for further fine-tuning by the owners of the black-box LLMs.
Token-Level Marginalization for Multi-Label LLM Classifiers
This paper addresses the critical challenge of deriving interpretable confidence scores from generative language models (LLMs) when applied to multi-label content safety classification. While models like LLaMA Guard are effective for identifying unsafe content and its categories, their generative architecture inherently lacks direct class-level probabilities, which hinders model confidence assessment and performance interpretation. This limitation complicates the setting of dynamic thresholds for content moderation and impedes fine-grained error analysis. This research proposes and evaluates three novel token-level probability estimation approaches to bridge this gap. The aim is to enhance model interpretability and accuracy, and evaluate the generalizability of this framework across different instruction-tuned models. Through extensive experimentation on a synthetically generated, rigorously annotated dataset, it is demonstrated that leveraging token logits significantly improves the interpretability and reliability of generative classifiers, enabling more nuanced content safety moderation.
Adaptive Token Sampling For Efficient Vision Transformers
While state-of-the-art vision transformer models achieve promising results in image classification, they are computationally expensive and require many GFLOPs. Although the GFLOPs of a vision transformer can be decreased by reducing the number of tokens in the network, there is no setting that is optimal for all input images. In this work, we therefore introduce a differentiable parameter-free Adaptive Token Sampler (ATS) module, which can be plugged into any existing vision transformer architecture. ATS empowers vision transformers by scoring and adaptively sampling significant tokens. As a result, the number of tokens is not constant anymore and varies for each input image. By integrating ATS as an additional layer within the current transformer blocks, we can convert them into much more efficient vision transformers with an adaptive number of tokens. Since ATS is a parameter-free module, it can be added to the off-the-shelf pre-trained vision transformers as a plug and play module, thus reducing their GFLOPs without any additional training. Moreover, due to its differentiable design, one can also train a vision transformer equipped with ATS. We evaluate the efficiency of our module in both image and video classification tasks by adding it to multiple SOTA vision transformers. Our proposed module improves the SOTA by reducing their computational costs (GFLOPs) by 2X, while preserving their accuracy on the ImageNet, Kinetics-400, and Kinetics-600 datasets.
Small Language Model Makes an Effective Long Text Extractor
Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
Vision Transformer (ViT) has emerged as a prominent backbone for computer vision. For more efficient ViTs, recent works lessen the quadratic cost of the self-attention layer by pruning or fusing the redundant tokens. However, these works faced the speed-accuracy trade-off caused by the loss of information. Here, we argue that token fusion needs to consider diverse relations between tokens to minimize information loss. In this paper, we propose a Multi-criteria Token Fusion (MCTF), that gradually fuses the tokens based on multi-criteria (e.g., similarity, informativeness, and size of fused tokens). Further, we utilize the one-step-ahead attention, which is the improved approach to capture the informativeness of the tokens. By training the model equipped with MCTF using a token reduction consistency, we achieve the best speed-accuracy trade-off in the image classification (ImageNet1K). Experimental results prove that MCTF consistently surpasses the previous reduction methods with and without training. Specifically, DeiT-T and DeiT-S with MCTF reduce FLOPs by about 44% while improving the performance (+0.5%, and +0.3%) over the base model, respectively. We also demonstrate the applicability of MCTF in various Vision Transformers (e.g., T2T-ViT, LV-ViT), achieving at least 31% speedup without performance degradation. Code is available at https://github.com/mlvlab/MCTF.
Continual Graph Convolutional Network for Text Classification
Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically update the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.
Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification
In recent years, the emergence of Transformers with self-attention mechanism has revolutionized the hyperspectral image (HSI) classification. However, these models face major challenges in computational efficiency, as their complexity increases quadratically with the sequence length. The Mamba architecture, leveraging a state space model (SSM), offers a more efficient alternative to Transformers. This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model in which, a token generation module first converts the HSI patch into spatial-spectral tokens. These tokens are then processed by morphological operations, which compute structural and shape information using depthwise separable convolutional operations. The extracted information is enhanced in a feature enhancement module that adjusts the spatial and spectral tokens based on the center region of the HSI sample, allowing for effective information fusion within each block. Subsequently, the tokens are refined through a multi-head self-attention which further improves the feature space. Finally, the combined information is fed into the state space block for classification and the creation of the ground truth map. Experiments on widely used HSI datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models. The source code will be made publicly available at https://github.com/MHassaanButt/MorpMamba.
On Robust Prefix-Tuning for Text Classification
Recently, prefix-tuning has gained increasing attention as a parameter-efficient finetuning method for large-scale pretrained language models. The method keeps the pretrained models fixed and only updates the prefix token parameters for each downstream task. Despite being lightweight and modular, prefix-tuning still lacks robustness to textual adversarial attacks. However, most currently developed defense techniques necessitate auxiliary model update and storage, which inevitably hamper the modularity and low storage of prefix-tuning. In this work, we propose a robust prefix-tuning framework that preserves the efficiency and modularity of prefix-tuning. The core idea of our framework is leveraging the layerwise activations of the language model by correctly-classified training data as the standard for additional prefix finetuning. During the test phase, an extra batch-level prefix is tuned for each batch and added to the original prefix for robustness enhancement. Extensive experiments on three text classification benchmarks show that our framework substantially improves robustness over several strong baselines against five textual attacks of different types while maintaining comparable accuracy on clean texts. We also interpret our robust prefix-tuning framework from the optimal control perspective and pose several directions for future research.
Wave Network: An Ultra-Small Language Model
We propose an innovative token representation and update method in a new ultra-small language model: the Wave network. Specifically, we use a complex vector to represent each token, encoding both global and local semantics of the input text. A complex vector consists of two components: a magnitude vector representing the global semantics of the input text, and a phase vector capturing the relationships between individual tokens and global semantics. Experiments on the AG News text classification task demonstrate that, when generating complex vectors from randomly initialized token embeddings, our single-layer Wave Network achieves 90.91\% accuracy with wave interference and 91.66\% with wave modulation -- outperforming a single Transformer layer using BERT pre-trained embeddings by 19.23\% and 19.98\%, respectively, and approaching the accuracy of the pre-trained and fine-tuned BERT base model (94.64\%). Additionally, compared to BERT base, the Wave Network reduces video memory usage and training time by 77.34\% and 85.62\% during wave modulation. In summary, we used a 2.4-million-parameter small language model to achieve accuracy comparable to a 100-million-parameter BERT model in text classification.
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all concepts across all images, regardless of content; and struggle to relate spatially-distant concepts. In this work, we challenge this paradigm by (a) representing images as semantic visual tokens and (b) running transformers to densely model token relationships. Critically, our Visual Transformer operates in a semantic token space, judiciously attending to different image parts based on context. This is in sharp contrast to pixel-space transformers that require orders-of-magnitude more compute. Using an advanced training recipe, our VTs significantly outperform their convolutional counterparts, raising ResNet accuracy on ImageNet top-1 by 4.6 to 7 points while using fewer FLOPs and parameters. For semantic segmentation on LIP and COCO-stuff, VT-based feature pyramid networks (FPN) achieve 0.35 points higher mIoU while reducing the FPN module's FLOPs by 6.5x.
Memory-based Language Models: An Efficient, Explainable, and Eco-friendly Approach to Large Language Modeling
We present memory-based language modeling as an efficient, eco-friendly alternative to deep neural network-based language modeling. It offers log-linearly scalable next-token prediction performance and strong memorization capabilities. Implementing fast approximations of k-nearest neighbor classification, memory-based language modeling leaves a relatively small ecological footprint both in training and in inference mode, as it relies fully on CPUs and attains low token latencies. Its internal workings are simple and fully transparent. We compare our implementation of memory-based language modeling, OLIFANT, with GPT-2 and GPT-Neo on next-token prediction accuracy, estimated emissions and speeds, and offer some deeper analyses of the model.
Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach
Fine-tuned pre-trained language models (LMs) have achieved enormous success in many natural language processing (NLP) tasks, but they still require excessive labeled data in the fine-tuning stage. We study the problem of fine-tuning pre-trained LMs using only weak supervision, without any labeled data. This problem is challenging because the high capacity of LMs makes them prone to overfitting the noisy labels generated by weak supervision. To address this problem, we develop a contrastive self-training framework, COSINE, to enable fine-tuning LMs with weak supervision. Underpinned by contrastive regularization and confidence-based reweighting, this contrastive self-training framework can gradually improve model fitting while effectively suppressing error propagation. Experiments on sequence, token, and sentence pair classification tasks show that our model outperforms the strongest baseline by large margins on 7 benchmarks in 6 tasks, and achieves competitive performance with fully-supervised fine-tuning methods.
TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation
Over the years, network traffic analysis and generation have advanced significantly. From traditional statistical methods, the field has progressed to sophisticated deep learning techniques. This progress has improved the ability to detect complex patterns and security threats, as well as to test and optimize network performance. However, obstacles persist, such as the dependence on labeled data for analysis and the difficulty of generating traffic samples that follow realistic patterns. Pre-trained deep neural networks have emerged as powerful tools to resolve these issues, offering improved performance by learning robust data representations from large unlabeled datasets. Despite their benefits, existing pre-trained models face challenges like token length limitation, which restricts their usefulness in comprehensive traffic analysis and realistic traffic generation. To address these challenges, we introduce TrafficGPT, a deep learning model that can tackle complex challenges related to long flow classification and generation tasks. This model uses generative pre-training with the linear attention mechanism, which allows for a substantially increased capacity of up to 12,032 tokens from the previous limit of only 512 tokens. TrafficGPT demonstrates superior performance in classification tasks, reaching state-of-the-art levels. In generation tasks, it closely resembles real traffic flows, with low JS divergence and an F1 score close to 0.5 (representing a random guess) in discriminating generated data. These advancements hold promise for future applications in both traffic flow classification and generation tasks.
Linguistic Collapse: Neural Collapse in (Large) Language Models
Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.
Accelerating Transformers with Spectrum-Preserving Token Merging
Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior works have proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top k similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the energy score. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAE-H compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of CLIP on Flickr30k compared to 4.5\% as others), and analogously in visual questions answering with LLaVa-7B. Furthermore, PiToMe is theoretically shown to preserve intrinsic spectral properties of the original token space under mild conditions
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
Vision transformers have achieved significant improvements on various vision tasks but their quadratic interactions between tokens significantly reduce computational efficiency. Many pruning methods have been proposed to remove redundant tokens for efficient vision transformers recently. However, existing studies mainly focus on the token importance to preserve local attentive tokens but completely ignore the global token diversity. In this paper, we emphasize the cruciality of diverse global semantics and propose an efficient token decoupling and merging method that can jointly consider the token importance and diversity for token pruning. According to the class token attention, we decouple the attentive and inattentive tokens. In addition to preserving the most discriminative local tokens, we merge similar inattentive tokens and match homogeneous attentive tokens to maximize the token diversity. Despite its simplicity, our method obtains a promising trade-off between model complexity and classification accuracy. On DeiT-S, our method reduces the FLOPs by 35% with only a 0.2% accuracy drop. Notably, benefiting from maintaining the token diversity, our method can even improve the accuracy of DeiT-T by 0.1% after reducing its FLOPs by 40%.
Saliency Map Verbalization: Comparing Feature Importance Representations from Model-free and Instruction-based Methods
Saliency maps can explain a neural model's predictions by identifying important input features. They are difficult to interpret for laypeople, especially for instances with many features. In order to make them more accessible, we formalize the underexplored task of translating saliency maps into natural language and compare methods that address two key challenges of this approach -- what and how to verbalize. In both automatic and human evaluation setups, using token-level attributions from text classification tasks, we compare two novel methods (search-based and instruction-based verbalizations) against conventional feature importance representations (heatmap visualizations and extractive rationales), measuring simulatability, faithfulness, helpfulness and ease of understanding. Instructing GPT-3.5 to generate saliency map verbalizations yields plausible explanations which include associations, abstractive summarization and commonsense reasoning, achieving by far the highest human ratings, but they are not faithfully capturing numeric information and are inconsistent in their interpretation of the task. In comparison, our search-based, model-free verbalization approach efficiently completes templated verbalizations, is faithful by design, but falls short in helpfulness and simulatability. Our results suggest that saliency map verbalization makes feature attribution explanations more comprehensible and less cognitively challenging to humans than conventional representations.
WhAM: Towards A Translative Model of Sperm Whale Vocalization
Sperm whales communicate in short sequences of clicks known as codas. We present WhAM (Whale Acoustics Model), the first transformer-based model capable of generating synthetic sperm whale codas from any audio prompt. WhAM is built by finetuning VampNet, a masked acoustic token model pretrained on musical audio, using 10k coda recordings collected over the past two decades. Through iterative masked token prediction, WhAM generates high-fidelity synthetic codas that preserve key acoustic features of the source recordings. We evaluate WhAM's synthetic codas using Fréchet Audio Distance and through perceptual studies with expert marine biologists. On downstream classification tasks including rhythm, social unit, and vowel classification, WhAM's learned representations achieve strong performance, despite being trained for generation rather than classification. Our code is available at https://github.com/Project-CETI/wham
Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability
Phishing attacks remain one of the most prevalent and persistent cybersecurity threat with attackers continuously evolving and intensifying tactics to evade the general detection system. Despite significant advances in artificial intelligence and machine learning, faithfully reproducing the interpretable reasoning with classification and explainability that underpin phishing judgments remains challenging. Due to recent advancement in Natural Language Processing, Large Language Models (LLMs) show a promising direction and potential for improving domain specific phishing classification tasks. However, enhancing the reliability and robustness of classification models requires not only accurate predictions from LLMs but also consistent and trustworthy explanations aligning with those predictions. Therefore, a key question remains: can LLMs not only classify phishing emails accurately but also generate explanations that are reliably aligned with their predictions and internally self-consistent? To answer these questions, we have fine-tuned transformer based models, including BERT, Llama models, and Wizard, to improve domain relevance and make them more tailored to phishing specific distinctions, using Binary Sequence Classification, Contrastive Learning (CL) and Direct Preference Optimization (DPO). To that end, we examined their performance in phishing classification and explainability by applying the ConsistenCy measure based on SHAPley values (CC SHAP), which measures prediction explanation token alignment to test the model's internal faithfulness and consistency and uncover the rationale behind its predictions and reasoning. Overall, our findings show that Llama models exhibit stronger prediction explanation token alignment with higher CC SHAP scores despite lacking reliable decision making accuracy, whereas Wizard achieves better prediction accuracy but lower CC SHAP scores.
GVdoc: Graph-based Visual Document Classification
The robustness of a model for real-world deployment is decided by how well it performs on unseen data and distinguishes between in-domain and out-of-domain samples. Visual document classifiers have shown impressive performance on in-distribution test sets. However, they tend to have a hard time correctly classifying and differentiating out-of-distribution examples. Image-based classifiers lack the text component, whereas multi-modality transformer-based models face the token serialization problem in visual documents due to their diverse layouts. They also require a lot of computing power during inference, making them impractical for many real-world applications. We propose, GVdoc, a graph-based document classification model that addresses both of these challenges. Our approach generates a document graph based on its layout, and then trains a graph neural network to learn node and graph embeddings. Through experiments, we show that our model, even with fewer parameters, outperforms state-of-the-art models on out-of-distribution data while retaining comparable performance on the in-distribution test set.
Multiscale Byte Language Models -- A Hierarchical Architecture for Causal Million-Length Sequence Modeling
Bytes form the basis of the digital world and thus are a promising building block for multimodal foundation models. Recently, Byte Language Models (BLMs) have emerged to overcome tokenization, yet the excessive length of bytestreams requires new architectural paradigms. Therefore, we present the Multiscale Byte Language Model (MBLM), a model-agnostic hierarchical decoder stack that allows training with context windows of 5M bytes on single GPU in full model precision. We thoroughly examine MBLM's performance with Transformer and Mamba blocks on both unimodal and multimodal tasks. Our experiments demonstrate that hybrid architectures are efficient in handling extremely long byte sequences during training while achieving near-linear generational efficiency. To the best of our knowledge, we present the first evaluation of BLMs on visual Q\&A tasks and find that, despite serializing images and the absence of an encoder, a MBLM with pure next token prediction can match custom CNN-LSTM architectures with designated classification heads. We show that MBLMs exhibit strong adaptability in integrating diverse data representations, including pixel and image filestream bytes, underlining their potential toward omnimodal foundation models. Source code is publicly available at: https://github.com/ai4sd/multiscale-byte-lm
HalleluBERT: Let every token that has meaning bear its weight
Transformer-based models have advanced NLP, yet Hebrew still lacks a large-scale RoBERTa encoder which is extensively trained. Existing models such as HeBERT, AlephBERT, and HeRo are limited by corpus size, vocabulary, or training depth. We present HalleluBERT, a RoBERTa-based encoder family (base and large) trained from scratch on 49.1~GB of deduplicated Hebrew web text and Wikipedia with a Hebrew-specific byte-level BPE vocabulary. Evaluated on NER and sentiment classification benchmarks, HalleluBERT outperforms both monolingual and multilingual baselines. HalleluBERT sets a new state of the art for Hebrew and highlights the benefits of fully converged monolingual pretraining.
TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning
Deep neural networks, including transformers and convolutional neural networks, have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., diseases-related anomalous points in ECG). To address this challenge, we formally reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC. The code will be available at https://github.com/xiwenc1/TimeMIL.
Recurrent Attention Networks for Long-text Modeling
Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.
SkipViT: Speeding Up Vision Transformers with a Token-Level Skip Connection
Vision transformers are known to be more computationally and data-intensive than CNN models. These transformer models such as ViT, require all the input image tokens to learn the relationship among them. However, many of these tokens are not informative and may contain irrelevant information such as unrelated background or unimportant scenery. These tokens are overlooked by the multi-head self-attention (MHSA), resulting in many redundant and unnecessary computations in MHSA and the feed-forward network (FFN). In this work, we propose a method to optimize the amount of unnecessary interactions between unimportant tokens by separating and sending them through a different low-cost computational path. Our method does not add any parameters to the ViT model and aims to find the best trade-off between training throughput and achieving a 0% loss in the Top-1 accuracy of the final model. Our experimental results on training ViT-small from scratch show that SkipViT is capable of effectively dropping 55% of the tokens while gaining more than 13% training throughput and maintaining classification accuracy at the level of the baseline model on Huawei Ascend910A.
Pooling And Attention: What Are Effective Designs For LLm-Based Embedding Models?
The significant advancements of Large Language Models (LLMs) in generative tasks have led to a growing body of work exploring LLM-based embedding models. While these models, employing different pooling and attention strategies, have achieved state-of-the-art performance on public embedding benchmarks, questions still arise about what constitutes an effective design for LLM-based embedding models. However, these models are often trained on different datasets, using different LLM base models or training settings. Moreover, evaluations on public embedding benchmarks often fail to report statistical significance, making it difficult to determine which designs truly contribute to final performance. This complicates the process for practitioners seeking optimal training recipes for LLM-based embedding models. In this study, we conduct a large-scale experiment by training a series of LLM-based embedding models using the same training data and base model but differing in their pooling and attention strategies. The results show that there is no one-size-fits-all solution: while bidirectional attention and an additional trainable pooling layer outperform in text similarity and information retrieval tasks, they do not significantly surpass simpler designs like EOS-last token pooling and default causal attention in clustering and classification tasks. Furthermore, we propose a new pooling strategy, Multi-Layers Trainable Pooling, which transforms the outputs of all hidden layers, rather than just the last layer, using a cross-attention network. This method proves to be statistically superior in text similarity and retrieval tasks compared to existing pooling methods. Overall, this paper sheds light on effective training strategies for LLM-based embedding models.
Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model
Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.
Which Tokens to Use? Investigating Token Reduction in Vision Transformers
Since the introduction of the Vision Transformer (ViT), researchers have sought to make ViTs more efficient by removing redundant information in the processed tokens. While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets. To close this gap, we set out to understand the reduction patterns of 10 different token reduction methods using four image classification datasets. By systematically comparing these methods on the different classification tasks, we find that the Top-K pruning method is a surprisingly strong baseline. Through in-depth analysis of the different methods, we determine that: the reduction patterns are generally not consistent when varying the capacity of the backbone model, the reduction patterns of pruning-based methods significantly differ from fixed radial patterns, and the reduction patterns of pruning-based methods are correlated across classification datasets. Finally we report that the similarity of reduction patterns is a moderate-to-strong proxy for model performance. Project page at https://vap.aau.dk/tokens.
I Know Which LLM Wrote Your Code Last Summer: LLM generated Code Stylometry for Authorship Attribution
Detecting AI-generated code, deepfakes, and other synthetic content is an emerging research challenge. As code generated by Large Language Models (LLMs) becomes more common, identifying the specific model behind each sample is increasingly important. This paper presents the first systematic study of LLM authorship attribution for C programs. We released CodeT5-Authorship, a novel model that uses only the encoder layers from the original CodeT5 encoder-decoder architecture, discarding the decoder to focus on classification. Our model's encoder output (first token) is passed through a two-layer classification head with GELU activation and dropout, producing a probability distribution over possible authors. To evaluate our approach, we introduce LLM-AuthorBench, a benchmark of 32,000 compilable C programs generated by eight state-of-the-art LLMs across diverse tasks. We compare our model to seven traditional ML classifiers and eight fine-tuned transformer models, including BERT, RoBERTa, CodeBERT, ModernBERT, DistilBERT, DeBERTa-V3, Longformer, and LoRA-fine-tuned Qwen2-1.5B. In binary classification, our model achieves 97.56% accuracy in distinguishing C programs generated by closely related models such as GPT-4.1 and GPT-4o, and 95.40% accuracy for multi-class attribution among five leading LLMs (Gemini 2.5 Flash, Claude 3.5 Haiku, GPT-4.1, Llama 3.3, and DeepSeek-V3). To support open science, we release the CodeT5-Authorship architecture, the LLM-AuthorBench benchmark, and all relevant Google Colab scripts on GitHub: https://github.com/LLMauthorbench/.
DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence Analysis Tasks
Pre-trained large language models demonstrate potential in extracting information from DNA sequences, yet adapting to a variety of tasks and data modalities remains a challenge. To address this, we propose DNAGPT, a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals. By enhancing the classic GPT model with a binary classification task (DNA sequence order), a numerical regression task (guanine-cytosine content prediction), and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks while processing both sequence and numerical data. Our evaluation of genomic signal and region recognition, mRNA abundance regression, and artificial genomes generation tasks demonstrates DNAGPT's superior performance compared to existing models designed for specific downstream tasks, benefiting from pre-training using the newly designed model structure.
Open Source State-Of-the-Art Solution for Romanian Speech Recognition
In this work, we present a new state-of-the-art Romanian Automatic Speech Recognition (ASR) system based on NVIDIA's FastConformer architecture--explored here for the first time in the context of Romanian. We train our model on a large corpus of, mostly, weakly supervised transcriptions, totaling over 2,600 hours of speech. Leveraging a hybrid decoder with both Connectionist Temporal Classification (CTC) and Token-Duration Transducer (TDT) branches, we evaluate a range of decoding strategies including greedy, ALSD, and CTC beam search with a 6-gram token-level language model. Our system achieves state-of-the-art performance across all Romanian evaluation benchmarks, including read, spontaneous, and domain-specific speech, with up to 27% relative WER reduction compared to previous best-performing systems. In addition to improved transcription accuracy, our approach demonstrates practical decoding efficiency, making it suitable for both research and deployment in low-latency ASR applications.
A Sea of Words: An In-Depth Analysis of Anchors for Text Data
Anchors (Ribeiro et al., 2018) is a post-hoc, rule-based interpretability method. For text data, it proposes to explain a decision by highlighting a small set of words (an anchor) such that the model to explain has similar outputs when they are present in a document. In this paper, we present the first theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. After formalizing the algorithm for text classification, we present explicit results on different classes of models when the vectorization step is TF-IDF, and words are replaced by a fixed out-of-dictionary token when removed. Our inquiry covers models such as elementary if-then rules and linear classifiers. We then leverage this analysis to gain insights on the behavior of Anchors for any differentiable classifiers. For neural networks, we empirically show that the words corresponding to the highest partial derivatives of the model with respect to the input, reweighted by the inverse document frequencies, are selected by Anchors.
Is Style All You Need? Dependencies Between Emotion and GST-based Speaker Recognition
In this work, we study the hypothesis that speaker identity embeddings extracted from speech samples may be used for detection and classification of emotion. In particular, we show that emotions can be effectively identified by learning speaker identities by use of a 1-D Triplet Convolutional Neural Network (CNN) & Global Style Token (GST) scheme (e.g., DeepTalk Network) and reusing the trained speaker recognition model weights to generate features in the emotion classification domain. The automatic speaker recognition (ASR) network is trained with VoxCeleb1, VoxCeleb2, and Librispeech datasets with a triplet training loss function using speaker identity labels. Using an Support Vector Machine (SVM) classifier, we map speaker identity embeddings into discrete emotion categories from the CREMA-D, IEMOCAP, and MSP-Podcast datasets. On the task of speech emotion detection, we obtain 80.8% ACC with acted emotion samples from CREMA-D, 81.2% ACC with semi-natural emotion samples in IEMOCAP, and 66.9% ACC with natural emotion samples in MSP-Podcast. We also propose a novel two-stage hierarchical classifier (HC) approach which demonstrates +2% ACC improvement on CREMA-D emotion samples. Through this work, we seek to convey the importance of holistically modeling intra-user variation within audio samples
Polynomial, trigonometric, and tropical activations
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.
Cancer image classification based on DenseNet model
Computer-aided diagnosis establishes methods for robust assessment of medical image-based examination. Image processing introduced a promising strategy to facilitate disease classification and detection while diminishing unnecessary expenses. In this paper, we propose a novel metastatic cancer image classification model based on DenseNet Block, which can effectively identify metastatic cancer in small image patches taken from larger digital pathology scans. We evaluate the proposed approach to the slightly modified version of the PatchCamelyon (PCam) benchmark dataset. The dataset is the slightly modified version of the PatchCamelyon (PCam) benchmark dataset provided by Kaggle competition, which packs the clinically-relevant task of metastasis detection into a straight-forward binary image classification task. The experiments indicated that our model outperformed other classical methods like Resnet34, Vgg19. Moreover, we also conducted data augmentation experiment and study the relationship between Batches processed and loss value during the training and validation process.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
Automated Feature Labeling with Token-Space Gradient Descent
We present a novel approach to feature labeling using gradient descent in token-space. While existing methods typically use language models to generate hypotheses about feature meanings, our method directly optimizes label representations by using a language model as a discriminator to predict feature activations. We formulate this as a multi-objective optimization problem in token-space, balancing prediction accuracy, entropy minimization, and linguistic naturalness. Our proof-of-concept experiments demonstrate successful convergence to interpretable single-token labels across diverse domains, including features for detecting animals, mammals, Chinese text, and numbers. Although our current implementation is constrained to single-token labels and relatively simple features, the results suggest that token-space gradient descent could become a valuable addition to the interpretability researcher's toolkit.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
MEXMA: Token-level objectives improve sentence representations
Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This can lead to loss of information, especially for tokens, which then degrades the sentence representation. We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives. The sentence representation in one language is used to predict masked tokens in another language, with both the sentence representation and all tokens directly updating the encoder. We show that adding token-level objectives greatly improves the sentence representation quality across several tasks. Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as well as several downstream tasks. We also analyse the information encoded in our tokens, and how the sentence representation is built from them.
Pre-trained Models for Natural Language Processing: A Survey
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Sticking to the Mean: Detecting Sticky Tokens in Text Embedding Models
Despite the widespread use of Transformer-based text embedding models in NLP tasks, surprising 'sticky tokens' can undermine the reliability of embeddings. These tokens, when repeatedly inserted into sentences, pull sentence similarity toward a certain value, disrupting the normal distribution of embedding distances and degrading downstream performance. In this paper, we systematically investigate such anomalous tokens, formally defining them and introducing an efficient detection method, Sticky Token Detector (STD), based on sentence and token filtering. Applying STD to 40 checkpoints across 14 model families, we discover a total of 868 sticky tokens. Our analysis reveals that these tokens often originate from special or unused entries in the vocabulary, as well as fragmented subwords from multilingual corpora. Notably, their presence does not strictly correlate with model size or vocabulary size. We further evaluate how sticky tokens affect downstream tasks like clustering and retrieval, observing significant performance drops of up to 50%. Through attention-layer analysis, we show that sticky tokens disproportionately dominate the model's internal representations, raising concerns about tokenization robustness. Our findings show the need for better tokenization strategies and model design to mitigate the impact of sticky tokens in future text embedding applications.
UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph.
ChuLo: Chunk-Level Key Information Representation for Long Document Processing
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
Text2Token: Unsupervised Text Representation Learning with Token Target Prediction
Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.
A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, built on architectures such as Transformer, RWKV, and Mamba. We demonstrate that this law offers new perspectives and insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and information flow. Overall, our law enables more fine-grained approaches to the design, training, and interpretation of LLMs through scrutinizing their internal data processing mechanisms.
DocBERT: BERT for Document Classification
We present, to our knowledge, the first application of BERT to document classification. A few characteristics of the task might lead one to think that BERT is not the most appropriate model: syntactic structures matter less for content categories, documents can often be longer than typical BERT input, and documents often have multiple labels. Nevertheless, we show that a straightforward classification model using BERT is able to achieve the state of the art across four popular datasets. To address the computational expense associated with BERT inference, we distill knowledge from BERT-large to small bidirectional LSTMs, reaching BERT-base parity on multiple datasets using 30x fewer parameters. The primary contribution of our paper is improved baselines that can provide the foundation for future work.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
Strings from the Library of Babel: Random Sampling as a Strong Baseline for Prompt Optimisation
Recent prompt optimisation approaches use the generative nature of language models to produce prompts -- even rivaling the performance of human-curated prompts. In this paper, we demonstrate that randomly sampling tokens from the model vocabulary as ``separators'' can be as effective as language models for prompt-style text classification. Our experiments show that random separators are competitive baselines, having less than a 1% difference compared to previous self-optimisation methods and showing a 12% average relative improvement over strong human baselines across nine text classification tasks and eight language models. We further analyse this phenomenon in detail using three different random generation strategies, establishing that the language space is rich with potentially good separators, with a greater than 40% average chance that a randomly drawn separator performs better than human-curated separators. These observations challenge the common assumption that an effective prompt should be human readable or task relevant and establish a strong baseline for prompt optimisation research.
Parameter-Efficient Transformer Embeddings
Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Supervised Graph Contrastive Pretraining for Text Classification
Contrastive pretraining techniques for text classification has been largely studied in an unsupervised setting. However, oftentimes labeled data from related tasks which share label semantics with current task is available. We hypothesize that using this labeled data effectively can lead to better generalization on current task. In this paper, we propose a novel way to effectively utilize labeled data from related tasks with a graph based supervised contrastive learning approach. We formulate a token-graph by extrapolating the supervised information from examples to tokens. Our formulation results in an embedding space where tokens with high/low probability of belonging to same class are near/further-away from one another. We also develop detailed theoretical insights which serve as a motivation for our method. In our experiments with 13 datasets, we show our method outperforms pretraining schemes by 2.5% and also example-level contrastive learning based formulation by 1.8% on average. In addition, we show cross-domain effectiveness of our method in a zero-shot setting by 3.91% on average. Lastly, we also demonstrate our method can be used as a noisy teacher in a knowledge distillation setting to significantly improve performance of transformer based models in low labeled data regime by 4.57% on average.
Logits are All We Need to Adapt Closed Models
Many commercial Large Language Models (LLMs) are often closed-source, limiting developers to prompt tuning for aligning content generation with specific applications. While these models currently do not provide access to token logits, we argue that if such access were available, it would enable more powerful adaptation techniques beyond prompt engineering. In this paper, we propose a token-level probability reweighting framework that, given access to logits and a small amount of task-specific data, can effectively steer black-box LLMs toward application-specific content generation. Our approach views next-token prediction through the lens of supervised classification. We show that aligning black-box LLMs with task-specific data can be formulated as a label noise correction problem, leading to Plugin model -- an autoregressive probability reweighting model that operates solely on logits. We provide theoretical justification for why reweighting logits alone is sufficient for task adaptation. Extensive experiments with multiple datasets, LLMs, and reweighting models demonstrate the effectiveness of our method, advocating for broader access to token logits in closed-source models.
RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models
Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs.
Tuning Pre-trained Model via Moment Probing
Recently, efficient fine-tuning of large-scale pre-trained models has attracted increasing research interests, where linear probing (LP) as a fundamental module is involved in exploiting the final representations for task-dependent classification. However, most of the existing methods focus on how to effectively introduce a few of learnable parameters, and little work pays attention to the commonly used LP module. In this paper, we propose a novel Moment Probing (MP) method to further explore the potential of LP. Distinguished from LP which builds a linear classification head based on the mean of final features (e.g., word tokens for ViT) or classification tokens, our MP performs a linear classifier on feature distribution, which provides the stronger representation ability by exploiting richer statistical information inherent in features. Specifically, we represent feature distribution by its characteristic function, which is efficiently approximated by using first- and second-order moments of features. Furthermore, we propose a multi-head convolutional cross-covariance (MHC^3) to compute second-order moments in an efficient and effective manner. By considering that MP could affect feature learning, we introduce a partially shared module to learn two recalibrating parameters (PSRP) for backbones based on MP, namely MP_{+}. Extensive experiments on ten benchmarks using various models show that our MP significantly outperforms LP and is competitive with counterparts at less training cost, while our MP_{+} achieves state-of-the-art performance.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
On the Origins of Linear Representations in Large Language Models
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a simple latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to show that the next token prediction objective (softmax with cross-entropy) and the implicit bias of gradient descent together promote the linear representation of concepts. Experiments show that linear representations emerge when learning from data matching the latent variable model, confirming that this simple structure already suffices to yield linear representations. We additionally confirm some predictions of the theory using the LLaMA-2 large language model, giving evidence that the simplified model yields generalizable insights.
RetroMAE v2: Duplex Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models
To better support retrieval applications such as web search and question answering, growing effort is made to develop retrieval-oriented language models. Most of the existing works focus on improving the semantic representation capability for the contextualized embedding of [CLS] token. However, recent study shows that the ordinary tokens besides [CLS] may provide extra information, which helps to produce a better representation effect. As such, it's necessary to extend the current methods where all contextualized embeddings can be jointly pre-trained for the retrieval tasks. With this motivation, we propose a new pre-training method: duplex masked auto-encoder, a.k.a. DupMAE, which targets on improving the semantic representation capacity for the contextualized embeddings of both [CLS] and ordinary tokens. It introduces two decoding tasks: one is to reconstruct the original input sentence based on the [CLS] embedding, the other one is to minimize the bag-of-words loss (BoW) about the input sentence based on the entire ordinary tokens' embeddings. The two decoding losses are added up to train a unified encoding model. The embeddings from [CLS] and ordinary tokens, after dimension reduction and aggregation, are concatenated as one unified semantic representation for the input. DupMAE is simple but empirically competitive: with a small decoding cost, it substantially contributes to the model's representation capability and transferability, where remarkable improvements are achieved on MS MARCO and BEIR benchmarks.
ColBERT's [MASK]-based Query Augmentation: Effects of Quadrupling the Query Input Length
A unique aspect of ColBERT is its use of [MASK] tokens in queries to score documents (query augmentation). Prior work shows [MASK] tokens weighting non-[MASK] query terms, emphasizing certain tokens over others , rather than introducing whole new terms as initially proposed. We begin by demonstrating that a term weighting behavior previously reported for [MASK] tokens in ColBERTv1 holds for ColBERTv2. We then examine the effect of changing the number of [MASK] tokens from zero to up to four times past the query input length used in training, both for first stage retrieval, and for scoring candidates, observing an initial decrease in performance with few [MASK]s, a large increase when enough [MASK]s are added to pad queries to an average length of 32, then a plateau in performance afterwards. Additionally, we compare baseline performance to performance when the query length is extended to 128 tokens, and find that differences are small (e.g., within 1% on various metrics) and generally statistically insignificant, indicating performance does not collapse if ColBERT is presented with more [MASK] tokens than expected.
From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift.
Give your Text Representation Models some Love: the Case for Basque
Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available.
SINDER: Repairing the Singular Defects of DINOv2
Vision Transformer models trained on large-scale datasets, although effective, often exhibit artifacts in the patch token they extract. While such defects can be alleviated by re-training the entire model with additional classification tokens, the underlying reasons for the presence of these tokens remain unclear. In this paper, we conduct a thorough investigation of this phenomenon, combining theoretical analysis with empirical observations. Our findings reveal that these artifacts originate from the pre-trained network itself, specifically stemming from the leading left singular vector of the network's weights. Furthermore, to mitigate these defects, we propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset, thereby avoiding the need for complete re-training. We validate our method on various downstream tasks, including unsupervised segmentation, classification, supervised segmentation, and depth estimation, demonstrating its effectiveness in improving model performance. Codes and checkpoints are available at https://github.com/haoqiwang/sinder.
LaoPLM: Pre-trained Language Models for Lao
Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scare situation of the Lao language. We additionally present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We will release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications.
Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval
Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks.
Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages
Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training
ChuXin: 1.6B Technical Report
In this report, we present ChuXin, an entirely open-source language model with a size of 1.6 billion parameters. Unlike the majority of works that only open-sourced the model weights and architecture, we have made everything needed to train a model available, including the training data, the training process, and the evaluation code. Our goal is to empower and strengthen the open research community, fostering transparency and enabling a new wave of innovation in the field of language modeling. Furthermore, we extend the context length to 1M tokens through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. The weights for both models are available at Hugging Face to download and use.
Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process
Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
The Geometry of Tokens in Internal Representations of Large Language Models
We investigate the relationship between the geometry of token embeddings and their role in the next token prediction within transformer models. An important aspect of this connection uses the notion of empirical measure, which encodes the distribution of token point clouds across transformer layers and drives the evolution of token representations in the mean-field interacting picture. We use metrics such as intrinsic dimension, neighborhood overlap, and cosine similarity to observationally probe these empirical measures across layers. To validate our approach, we compare these metrics to a dataset where the tokens are shuffled, which disrupts the syntactic and semantic structure. Our findings reveal a correlation between the geometric properties of token embeddings and the cross-entropy loss of next token predictions, implying that prompts with higher loss values have tokens represented in higher-dimensional spaces.
