File size: 14,218 Bytes
493df70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
from typing import Optional, Union, List
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.video_utils import VideoInput
class NemotronNanoVLV2ImagesKwargs(ImagesKwargs):
min_pixels: Optional[int]
max_pixels: Optional[int]
patch_size: Optional[int]
temporal_patch_size: Optional[int]
merge_size: Optional[int]
class NemotronNanoVLV2ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: NemotronNanoVLV2ImagesKwargs
videos_kwargs: VideosKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class NemotronNanoVLV2Processor(ProcessorMixin):
r"""
Constructs a Nemotron Nano VL V2 processor which wraps an image processor and a tokenizer into a single processor.
[`NemotronNanoVLV2Processor`] offers all the functionalities of the image processor and tokenizer. See the
[`~NemotronNanoVLV2Processor.__call__`] and [`~NemotronNanoVLV2Processor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`AutoTokenizer`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
video_processor_class = "AutoVideoProcessor"
tokenizer_class = ("AutoTokenizer")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
self.image_token = "<image>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<video>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
self.image_start_token = "<img>" if not hasattr(tokenizer, "image_start_token") else tokenizer.image_start_token
self.image_end_token = "</img>" if not hasattr(tokenizer, "image_end_token") else tokenizer.image_end_token
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.convert_tokens_to_ids(self.image_token)
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.convert_tokens_to_ids(self.video_token)
)
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[NemotronNanoVLV2ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare multimodal inputs (text, images, videos) for the model. This method processes text by
replacing image/video tokens with appropriate placeholder sequences, processes images and videos through the
image processor, and tokenizes the final text.
The method performs the following key operations:
1. Processes images using the image processor to get pixel values and patch counts
2. Processes videos using the image processor with max_num_tiles=1 to get video pixel values
3. Replaces `<image>` tokens in text with `<img>` + image tokens + `</img>` sequences
4. Replaces `<video>` tokens in text with frame-by-frame descriptions including timestamps (if metadata provided)
5. Tokenizes the processed text and combines all outputs
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence should be a string. The text can contain
special tokens `<image>` and `<video>` that will be replaced with appropriate token sequences.
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The video or batch of videos to be prepared. Each video should be a 4D NumPy array or PyTorch
tensor with shape (num_frames, channels, height, width). Both channels-first and channels-last formats
are supported. Note: Currently only supports batch size of 1 for videos.
images_kwargs (`Dict`, *optional*):
Additional keyword arguments for image processing, including:
- `min_pixels` (`int`, *optional*): Minimum number of pixels for image processing
- `max_pixels` (`int`, *optional*): Maximum number of pixels for image processing
- `patch_size` (`int`, *optional*): Size of patches for image processing
- `temporal_patch_size` (`int`, *optional*): Size of temporal patches
- `merge_size` (`int`, *optional*): Size for merging patches
videos_kwargs (`Dict`, *optional*):
Additional keyword arguments for video processing, including:
- `video_metadata` (`VideoMetadata`, *optional*): Metadata containing fps information for timestamp calculation
text_kwargs (`Dict`, *optional*):
Additional keyword arguments for text tokenization, including:
- `return_tensors` (`str` or [`~utils.TensorType`], *optional*): Framework for returned tensors ('tf', 'pt', 'np', 'jax')
- `padding` (`bool`, *optional*): Whether to pad sequences (defaults to False)
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **num_patches** -- Number of patches per image. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
Raises:
AssertionError: If videos are provided with batch size > 1 (not currently supported).
Note:
- Image tokens `<image>` in text are replaced with `<img>` + repeated image tokens + `</img>`
- Video tokens `<video>` in text are replaced with frame-by-frame descriptions
- When video metadata with fps is provided, frame descriptions include timestamps
- Videos are processed with max_num_tiles=1 regardless of the images setting
"""
output_kwargs = self._merge_kwargs(
NemotronNanoVLV2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
image_inputs = videos_inputs = {}
if images is not None:
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_num_patches = image_inputs["num_patches"]
if videos is not None:
orig_tiles = self.image_processor.max_num_tiles
self.image_processor.max_num_tiles = 1
videos_inputs = self.image_processor(images=videos, **output_kwargs["images_kwargs"])
self.image_processor.max_num_tiles = orig_tiles
video_num_patches = [sum(videos_inputs["num_patches"])]
videos_inputs["pixel_values_videos"] = videos_inputs["pixel_values"]
del videos_inputs["pixel_values"]
if not isinstance(text, list):
text = [text]
text = text.copy() # below lines change text in-place
if images is not None:
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(self.image_token, self.image_start_token + "<|placeholder|>" * image_num_patches[index] * self.image_processor.num_image_token + self.image_end_token, 1)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if videos is not None:
assert len(text) == 1, "Video is not supported for batch size > 1"
video_metadata = output_kwargs.get("videos_kwargs", {}).get("video_metadata", None)
i = 0
index = 0
if self.video_token in text[i]:
each_frame = self.image_start_token + "<|placeholder|>" * self.image_processor.num_image_token + self.image_end_token
video_prompt = "This is a video:\n"
for j in range(video_num_patches[index]):
if video_metadata is not None and video_metadata.fps is not None:
timestamp = j / video_metadata.fps
video_prompt += f"Frame {j+1} sampled at {timestamp:.2f} seconds: {each_frame}\n"
else:
# Fallback to original format without timestamps
video_prompt += f"Frame {j+1}: {each_frame}\n"
text[i] = text[i].replace(self.video_token, video_prompt, 1)
text[i] = text[i].replace("<|placeholder|>", self.video_token)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
video_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (num_frames, height, width) per each video.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = NemotronNanoVLV2ProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
num_image_patches = [
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
for image_size in image_sizes
]
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`list[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
return names_from_processor + ["second_per_grid_ts"]
__all__ = ["NemotronNanoVLV2Processor"]
|