File size: 14,218 Bytes
493df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from typing import Optional, Union, List

import numpy as np

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.video_utils import VideoInput


class NemotronNanoVLV2ImagesKwargs(ImagesKwargs):
    min_pixels: Optional[int]
    max_pixels: Optional[int]
    patch_size: Optional[int]
    temporal_patch_size: Optional[int]
    merge_size: Optional[int]


class NemotronNanoVLV2ProcessorKwargs(ProcessingKwargs, total=False):
    images_kwargs: NemotronNanoVLV2ImagesKwargs
    videos_kwargs: VideosKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
    }


class NemotronNanoVLV2Processor(ProcessorMixin):
    r"""
    Constructs a Nemotron Nano VL V2 processor which wraps an image processor and a tokenizer into a single processor.
    [`NemotronNanoVLV2Processor`] offers all the functionalities of the image processor and tokenizer. See the
    [`~NemotronNanoVLV2Processor.__call__`] and [`~NemotronNanoVLV2Processor.decode`] for more information.
    Args:
        image_processor ([`AutoImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]

    image_processor_class = "AutoImageProcessor"
    video_processor_class = "AutoVideoProcessor"
    tokenizer_class = ("AutoTokenizer")

    def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
        self.image_token = "<image>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        self.video_token = "<video>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
        self.image_start_token = "<img>" if not hasattr(tokenizer, "image_start_token") else tokenizer.image_start_token
        self.image_end_token = "</img>" if not hasattr(tokenizer, "image_end_token") else tokenizer.image_end_token
        self.image_token_id = (
            tokenizer.image_token_id
            if getattr(tokenizer, "image_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.image_token)
        )
        self.video_token_id = (
            tokenizer.video_token_id
            if getattr(tokenizer, "video_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.video_token)
        )
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        videos: VideoInput = None,
        **kwargs: Unpack[NemotronNanoVLV2ProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare multimodal inputs (text, images, videos) for the model. This method processes text by 
        replacing image/video tokens with appropriate placeholder sequences, processes images and videos through the 
        image processor, and tokenizes the final text.

        The method performs the following key operations:
        1. Processes images using the image processor to get pixel values and patch counts
        2. Processes videos using the image processor with max_num_tiles=1 to get video pixel values  
        3. Replaces `<image>` tokens in text with `<img>` + image tokens + `</img>` sequences
        4. Replaces `<video>` tokens in text with frame-by-frame descriptions including timestamps (if metadata provided)
        5. Tokenizes the processed text and combines all outputs

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, *optional*):
                The sequence or batch of sequences to be encoded. Each sequence should be a string. The text can contain
                special tokens `<image>` and `<video>` that will be replaced with appropriate token sequences.
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
                The video or batch of videos to be prepared. Each video should be a 4D NumPy array or PyTorch
                tensor with shape (num_frames, channels, height, width). Both channels-first and channels-last formats 
                are supported. Note: Currently only supports batch size of 1 for videos.
            images_kwargs (`Dict`, *optional*):
                Additional keyword arguments for image processing, including:
                - `min_pixels` (`int`, *optional*): Minimum number of pixels for image processing
                - `max_pixels` (`int`, *optional*): Maximum number of pixels for image processing  
                - `patch_size` (`int`, *optional*): Size of patches for image processing
                - `temporal_patch_size` (`int`, *optional*): Size of temporal patches
                - `merge_size` (`int`, *optional*): Size for merging patches
            videos_kwargs (`Dict`, *optional*):
                Additional keyword arguments for video processing, including:
                - `video_metadata` (`VideoMetadata`, *optional*): Metadata containing fps information for timestamp calculation
            text_kwargs (`Dict`, *optional*):
                Additional keyword arguments for text tokenization, including:
                - `return_tensors` (`str` or [`~utils.TensorType`], *optional*): Framework for returned tensors ('tf', 'pt', 'np', 'jax')
                - `padding` (`bool`, *optional*): Whether to pad sequences (defaults to False)

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **num_patches** -- Number of patches per image. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.

        Raises:
            AssertionError: If videos are provided with batch size > 1 (not currently supported).

        Note:
            - Image tokens `<image>` in text are replaced with `<img>` + repeated image tokens + `</img>`
            - Video tokens `<video>` in text are replaced with frame-by-frame descriptions
            - When video metadata with fps is provided, frame descriptions include timestamps
            - Videos are processed with max_num_tiles=1 regardless of the images setting
        """
        output_kwargs = self._merge_kwargs(
            NemotronNanoVLV2ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        image_inputs = videos_inputs = {}
        if images is not None:
            image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
            image_num_patches = image_inputs["num_patches"]

        if videos is not None:
            orig_tiles = self.image_processor.max_num_tiles
            self.image_processor.max_num_tiles = 1
            videos_inputs = self.image_processor(images=videos, **output_kwargs["images_kwargs"])
            self.image_processor.max_num_tiles = orig_tiles
            video_num_patches = [sum(videos_inputs["num_patches"])]
            videos_inputs["pixel_values_videos"] = videos_inputs["pixel_values"]
            del videos_inputs["pixel_values"]

        if not isinstance(text, list):
            text = [text]

        text = text.copy()  # below lines change text in-place
        if images is not None:
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    text[i] = text[i].replace(self.image_token, self.image_start_token + "<|placeholder|>" * image_num_patches[index] * self.image_processor.num_image_token + self.image_end_token, 1)
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)
        if videos is not None:
            assert len(text) == 1, "Video is not supported for batch size > 1"
            video_metadata = output_kwargs.get("videos_kwargs", {}).get("video_metadata", None)
            i = 0
            index = 0
            if self.video_token in text[i]:
                each_frame = self.image_start_token + "<|placeholder|>" * self.image_processor.num_image_token + self.image_end_token
                video_prompt = "This is a video:\n"
                for j in range(video_num_patches[index]):
                    if video_metadata is not None and video_metadata.fps is not None:
                        timestamp = j / video_metadata.fps
                        video_prompt += f"Frame {j+1} sampled at {timestamp:.2f} seconds: {each_frame}\n"
                    else:
                        # Fallback to original format without timestamps
                        video_prompt += f"Frame {j+1}: {each_frame}\n"
                
                text[i] = text[i].replace(self.video_token, video_prompt, 1)
            text[i] = text[i].replace("<|placeholder|>", self.video_token)

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)

    def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
        """
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.
            video_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (num_frames, height, width) per each video.
        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        """

        vision_data = {}
        if image_sizes is not None:
            images_kwargs = NemotronNanoVLV2ProcessorKwargs._defaults.get("images_kwargs", {})
            images_kwargs.update(kwargs)
            merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size

            num_image_patches = [
                self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
                for image_size in image_sizes
            ]
            num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
            vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
        return MultiModalData(**vision_data)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(
        self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
    ):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
            clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
                Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
            **kwargs:
                Additional arguments to be passed to the tokenizer's `batch_decode method`.

        Returns:
            `list[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        return names_from_processor + ["second_per_grid_ts"]


__all__ = ["NemotronNanoVLV2Processor"]