Text Generation
Transformers
Safetensors
English
gpt_oss
cybersecurity
security
gpt-oss
openai
fine-tuned
merged
Mixture of Experts
conversational
File size: 1,868 Bytes
9e30106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from typing import Dict, Any
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

class EndpointHandler:
    def __init__(self, path: str = ""):
        """Initialize model and tokenizer."""
        self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        self.model = AutoModelForCausalLM.from_pretrained(
            path,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            trust_remote_code=True
        )
        self.model.eval()
        self.device = next(self.model.parameters()).device
        print(f"Model loaded on {self.device}")

    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Handle inference request."""
        inputs = data.get("inputs", data.get("input", ""))
        params = data.get("parameters", {})
        
        encoded = self.tokenizer(
            inputs,
            return_tensors="pt",
            truncation=True,
            max_length=2048
        ).to(self.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **encoded,
                max_new_tokens=params.get("max_new_tokens", 256),
                temperature=params.get("temperature", 0.7),
                top_p=params.get("top_p", 0.9),
                do_sample=params.get("do_sample", True),
                repetition_penalty=params.get("repetition_penalty", 1.1),
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
            )
        
        generated = outputs[0][encoded["input_ids"].shape[1]:]
        text = self.tokenizer.decode(generated, skip_special_tokens=True)
        
        return {"generated_text": text}