--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:91044 - loss:CosineSimilarityLoss base_model: hiiamsid/sentence_similarity_spanish_es widget: - source_sentence: ¿Cuánto debo pagar por la llave con código VA34P? sentences: - ¿La llave HY5P pertenece a qué marca? - ¿Cuál es el valor actual de VA34P JMA? - ¿Cuánto cuesta la llave ME4P? - source_sentence: ¿Me puedes decir cuánto vale TOYOTA (TOY43) 2 BOTONES HILUX TOYO04? sentences: - ¿Cuánto debo pagar por la llave con código CAB? - ¿Qué llave tiene el código TOYO04? - ¿Qué código tiene la LETRA D? - source_sentence: ¿Tienen disponible la NISSAN DER LOGO? sentences: - ¿Cuál es el valor actual de NISSAN DER LOGO? - ¿La llave MZ13A pertenece a qué marca? - ¿CARRIAGE TENSION SPRING 017-24 tiene un precio accesible? - source_sentence: ¿Qué código tiene la GLOBE DER PEQ MKS? sentences: - ¿Qué llave tiene el código YM021? - ¿Qué llave tiene el código MER03? - ¿Cuánto cuesta la llave VP095? - source_sentence: ¿Qué modelo corresponde al código YP107? sentences: - ¿La llave TE4 pertenece a qué marca? - ¿Me puedes decir cuánto vale FANAL? - ¿Cuánto cuesta la llave P123VE? pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on hiiamsid/sentence_similarity_spanish_es This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sd-dreambooth-library/mks-similarity") # Run inference sentences = [ '¿Qué modelo corresponde al código YP107?', '¿Cuánto cuesta la llave P123VE?', '¿La llave TE4 pertenece a qué marca?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 91,044 training samples * Columns: sentence1, sentence2, and label * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | label | |:-------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------| | ¿CY1 HELLO KITTY CORAZONES tiene un precio accesible? | ¿Cuánto cuesta la llave CY43? | 0.0 | | ¿Qué modelo corresponde al código OP12? | ¿Me puedes decir cuánto vale CHEVROLET GM29? | 0.0 | | ¿YALE PERSONAJE HULK tiene un precio accesible? | ¿Cuánto debo pagar por la llave con código YP117? | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 10,116 evaluation samples * Columns: sentence1, sentence2, and label * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------------|:-------------------------------------------------------------|:-----------------| | ¿Cuál es el precio de la AM3 AMERICAN LOCK? | ¿Cuánto debo pagar por la llave con código AM3? | 1.0 | | ¿Cuánto debo pagar por la llave con código MAS9? | ¿La llave MAS9 pertenece a qué marca? | 1.0 | | ¿La llave YP113 pertenece a qué marca? | ¿Qué llave tiene el código E029? | 0.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0351 | 100 | 0.1663 | - | | 0.0703 | 200 | 0.1023 | - | | 0.1054 | 300 | 0.0807 | - | | 0.1405 | 400 | 0.0723 | - | | 0.1757 | 500 | 0.0614 | 0.0535 | | 0.2108 | 600 | 0.0569 | - | | 0.2460 | 700 | 0.052 | - | | 0.2811 | 800 | 0.0382 | - | | 0.3162 | 900 | 0.0408 | - | | 0.3514 | 1000 | 0.0358 | 0.0329 | | 0.3865 | 1100 | 0.0353 | - | | 0.4216 | 1200 | 0.032 | - | | 0.4568 | 1300 | 0.0303 | - | | 0.4919 | 1400 | 0.0275 | - | | 0.5271 | 1500 | 0.0263 | 0.0223 | | 0.5622 | 1600 | 0.0237 | - | | 0.5973 | 1700 | 0.0215 | - | | 0.6325 | 1800 | 0.0233 | - | | 0.6676 | 1900 | 0.0198 | - | | 0.7027 | 2000 | 0.022 | 0.0163 | | 0.7379 | 2100 | 0.0185 | - | | 0.7730 | 2200 | 0.0178 | - | | 0.8082 | 2300 | 0.0168 | - | | 0.8433 | 2400 | 0.018 | - | | 0.8784 | 2500 | 0.0158 | 0.0127 | | 0.9136 | 2600 | 0.0141 | - | | 0.9487 | 2700 | 0.015 | - | | 0.9838 | 2800 | 0.0131 | - | | 1.0190 | 2900 | 0.0117 | - | | 1.0541 | 3000 | 0.0106 | 0.0100 | | 1.0892 | 3100 | 0.0082 | - | | 1.1244 | 3200 | 0.0088 | - | | 1.1595 | 3300 | 0.0084 | - | | 1.1947 | 3400 | 0.0087 | - | | 1.2298 | 3500 | 0.0093 | 0.0079 | | 1.2649 | 3600 | 0.0106 | - | | 1.3001 | 3700 | 0.0097 | - | | 1.3352 | 3800 | 0.0074 | - | | 1.3703 | 3900 | 0.0072 | - | | 1.4055 | 4000 | 0.0094 | 0.0067 | | 1.4406 | 4100 | 0.0062 | - | | 1.4758 | 4200 | 0.0072 | - | | 1.5109 | 4300 | 0.0081 | - | | 1.5460 | 4400 | 0.0075 | - | | 1.5812 | 4500 | 0.0071 | 0.0059 | | 1.6163 | 4600 | 0.0049 | - | | 1.6514 | 4700 | 0.0064 | - | | 1.6866 | 4800 | 0.0072 | - | | 1.7217 | 4900 | 0.0075 | - | | 1.7569 | 5000 | 0.0062 | 0.0052 | | 1.7920 | 5100 | 0.0061 | - | | 1.8271 | 5200 | 0.0059 | - | | 1.8623 | 5300 | 0.0062 | - | | 1.8974 | 5400 | 0.005 | - | | 1.9325 | 5500 | 0.0068 | 0.0048 | | 1.9677 | 5600 | 0.0051 | - | ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 3.4.1 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```